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model of T of cardinality = has a set of cardinality » which is @-indiscernible
for all quantifier-free formulae ¢.

Tt follows for instance that if » is regular and %+ (x)z, then there
is no model of Peano arithmetic of cardinality » which is embeddable
in all models of Peano arithmetic of cardinality ». One presumes the same
is true for all uncountable », but for » singular or weakly compact the
proof must be different.
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On successors in cardinal arithmetic
by
John Truss (Leeds)

Abstract. Properties of the three kinds of sueccessor of a cardinal number defined
by Tarski (Indagationes Mathematicae 16 (1954), pp. 26-32) are discussed. Let them
be 1, 2, 3-successors respectively. A Fraenkel-Mostowski model is given in which the
axiom of chojce fails, but every cardinal has a unique I-successor. It is proved that
if every cardinal has a 3-successor, then z infinite implies z = 2x. Models are given
containing cardinals «, y such that 2x iz a successor of z, and y* a successor of y, re-
spectively, and various other properties and characterizations of 3-successors are
mentioned. The positive results are based mainly on Tarski’s methods in cardinal
arithmetic (see Lindenbaum-Tarski, Communication sur les recherches de la Théorie
des Ensembles, C. R. Soc. Se. Varsovie, CL III 19 (1926), pp. 299-330), together with
some cofinality arguments.

§ 1. Introduction (*). In [8] Tarski defined three types of successor
of a cardinal number (henceforth called 1,2, 3-successors respectively)
and proved that “for all » (x has a 2-successor)” implies the axiom
of choice. (If « has a 2-successor, it is necessarily unique). We show
in § 3 that “for all # (x has a unique 1-successor)” does not imply
the axiom of choice (at least in a Fraenkel-Mostowski setting) nor
even that every Dedekind finite cardinal is finite. In § 4 we show
that “for all # (z has a 3-successor)” implies that for all infinite «, # = 2a.
‘We feel that probably neither of these assertions, nor even the former
with “unique” inserted, implies the axiom of choice, but no proofs of
any of these have yet been announced. For completeness we begin § 4
with a proof, pointed out to the author by Prof. A. Levy, that “for all
well-ordered « (x has a 2-successor)” implies the axiom of choice, and
conclude it with one or two characterizations of cardinals which can or
cannot be 3-successors.

§ 5 is devoted to a few special cases. Models are given in which there
are cardinals z, y such that 2 is a 3-successor of z and 72 is a 3-successor
of y. Of course it is known that 2% can be a 1-successor of x. We show
that whenever this happens, 2% is also a 3-successor of z. The same is

(*) In a letter, Professor Tarski informed the author that he had proved Theorem 3
independently some time ago. Lemma 2 and Theorem 7 (ii) were first announced in
Lindenbaum-Tarski, Communication sur les Recherches de lu Théorie .des Ensembles,

C. R. Soc. Se. Varsovie, Cl. III 19 (1926), pp. 299-330.
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shown for z-s(zx) and z--w(z), where x is the Hartogs aleph function.
We do not know if 2% a 3-successor of # is possible when 2 is not well-
ordered. For it to be impossible would be a natural, but perhaps unlikely,
extension of results of Sierpinski [5] and Specker [7]..

The author wishes to express his thanks to Dr. F. R. Drake and
Professor A. Levy for their supervigion during the preparation of this
paper, which forms part of his doctoral thesis at the University of
Leeds, and to the Science Research Ceuncil for their financial support.

§ 2. Definitions and well-known lemmas.

We say that y is a 1-successor of x (written # adjy) if # <y and
whenever 5 <<y, 2= 1.

We say that y is a 2-successor of o (written » adjy) if 2 <y and
whenever z >z, 2 > .

We say that y is a 3-successor of # (written = adjy) if # <y and
whenever z <y, z < 2.

‘ For any cardinal #,n(2) is the least well-ordered cardinal § such
that s< 2.

For cardinals # and ¥, @ <+ y means that if | X|= &, |¥|= ¥, there
is a function from a subset of ¥ onto X.

Leywma 1 (Tarski [9], p. 80, Theorem 2). If &4y = @2 there are
Pyq,7 such that 3 =2a+p=a+q, y=p+7r, 2= g+

Proof. Let X, ¥, Z be disjoint sets of cardinals x, Yy, 2 respectively,
f a 1-1 mapping from X u ¥ onto X u Z. ‘

Let

P ={neX: for all new, fYn)eX v ¥},
={{eZ: for al necw, fF U eX U zy,

B = {neX: for some n ¢ w, f )2},

Ry = {{ e Z: for some new, f¢) e Y}.

Let p = |P|, ¢ = |Q], » = |R|. Map R—R,, 1-1 and “onto” by n—f"n)
where n is the least integer such that f*(y) € Z. That this map is 1-1 and
“onto” is easily verified. Hence |R,| = 7.

. Therefore y =p-+r, ¢ = g+

Map Pw X 1-1 onto X thus £—f(&) it &e| {f4P): new} E-&
otherwise. If, for & e P X, f(&) ¢ Z, then by definition of P, f~"(&) ¢ P,
each n ¢ w. Hence the image of the map i§ contained in X.

Similarly it is 1-1 and “onto”. Therefore @ = x-- p and in a similar
faghion, = z+g.

LevvA 2. If e <<y << -t there is an s <t osuch that y = x-s.

Proof. As <y we may let 24 q = Y. As o+ a < o+t we may let
e+a+b = x|
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By Lemma 1 there are p,q,r such that v=a+p=2+q, at+b
= p+r, t=g+r. Thus a <p-+r and so may be written as p,-+r, where
P <P, 1 <1 Since py; <p and & = 2+ p, ¢ = x4+ p,. Therefore y = z-+a
=g+p+n=r+rn and r,<r <t

So 7, i3 our choice for s.

Levna 3 (Tarski [8], p. 30, Theorem 1). Any cardinal » has a 1-suc-
cessor, denoted by z*, and defined by

() &t =241 if <o+l and (i) 2t = x+x(z) otherwise.

Proof. (i) is clear.

(ii) Since = x+1, ¥ < @ Suppose y < %(z). Then by definition
of §(z),y < . Let x = y’'+2 where y’' = max(y, §), using the fact that
2>=%. Then z+y=y' +s+y=2+(y+y)=2+y" because y,y are
well-ordered, one at least of them is infinite, and ¥’ = max(y, y’). There-
fore x+y = x. Hence y <s(x)—>at+y=ax.

Now let # <y < #™ = o+ x(«). Then by Lemma 2, y = z+1, some
t< (). It <x(x), y = a+1==1x, contrary to z < y. Thus = s(x) and
Yy =zt s(x).

§ 3. 1-successors. We consider a TFraenkel-Mostowski model which
in fact is one of those defined by Mostowski in [4], though our use for it
is rather different from his.

Suppose that M is a model of set theory with the axiom of choice,
suitably modified to accommodate urelemente (just modify extensionality),
in which U, the set of urelemente, has cardinal ¥,.

Then U may be indexed by wX 2, U= {uy: iew,je2}

Let U; = {ug, usy} for each i, and Vy,= J{Usi i< n}.

G is the group of all permutations of U which preserve each Us.
Nofice that every member of G has order 1 or 2, and so @ is Abelian.

If 6 € @ and £ e M, the action of ¢ on & is defined by transfinite in-
duction on rank &, thus, of = {on: 5 &L

If £, let

H(f) ={ceG:cf=¢ and K =1{ceG:netsanp=1}.

& is the filter of subgroups of @ generated by {H («): % e U}. Thus
H eF«>HD K(T,), some n.

N is the Fraenkel-Mostowski model defined by U, &, and §. That is,
EeNesrECN and H (&) G-

(This defines e N by transfinite induction on rank &).

That 9 is a model of set theory (modified to include urelemente)
except for the axiom of choice is proved by Mostowski in [4], p. 153-157.

It is easily seen that K (V) has finite index in &. (In fact its index
is 27*1), Hence ¥ is countable and we let § = {Gy, Gy, Gs, ...} Where
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whenever the least m such that G¢D K (V) is less than the least # such
that @ D K (Vy), then i <j. o
Leb m; = the least » such that 6D IK( 7n). Thus 4 < j—n; < ny.
(I) Let P = the set of equivalence classes of o under the relation ~,
i~ it ny=mny. P will figure quite prominently later.

Notice that p e P—p finite.

Tet v, be the sequence (igy, tors Uigs Yr1y Usoy Uzrs -y Ungy Uny) WhoSE

entries are all the members of V.

Let w; = {ov,: o € G4}. We show that

(1) H(ws) = Gs.

Clearly H (w:) D G;. Conversely, suppose that o e H (wi). Now v, e wq,
S0 av,, € ow; = wq. Therefore ov,, is of the form 7v,, some 7 e G;. Hence
7% €H (v,) = E(V,,) (anything which fixes v, , fixes each of its entries).
Therefore e @ by definition of n. Therefore o el = Gy.

Let X,,= {ows: oeXK(Va)} X {(n,d)}. The indexing at the end is
just designed to ensure that all the X,’s arve disjoint.

Then X,,;is in N as it is hereditarily finite. X,; is a typical set which
is transitive under the action of K (Vy), which is supported by K(Vs),
and which contains a member whose symmetry group is precisely Gy.

We are able to express any cardinal of the model quite simply in
terms of the X,/'s.

Lemva 4 (Léuchli [3], p. 34, Lemma 2). X e N can be well-ordered
n N (X)F.

Proof., Suppose K(X)¢F. Let f be a 1-1 function from X onto an
ordinal, in 9t (using the axiom of choice in. ).

Then if ce K(X),

of = c{(&,fE): £ X}
= {{c&, of): £eX}
= {(&,f8): £ e X} because oe K (X), and every
ordinal iz fixed by o
=f.
Hence H(f) D K(X) ¥ and f ¢ . Therefore X can be well-ordered in 9.

Conversely, if X can be well-ordered in R, there ix o 1-1 function f
in M from X onto an ordinal. .

Since o € & fixes each ordinal, anything in H(f) fixes each member
of X, ie K(X)e§.

Now let X e 9t. Then for some 2 ¢ w, H(X)D K(V,). Define ~ on X
by &~m if there is a o ¢ K (Vy) mapping & onto n. ~ is an equivalence
relation on X and the ~-classes ave called the K (Vy,)-orbits of X.
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Let X be the set of all the orbits.

For each Y <X, H(Y)D K(V,), so K(X)D K (Vy). By Lemma 4,
X can be well-ordered in . Let X = {X,: a < f} some ordinal 4. Pick £, ¢ X,
each a, by the axiom of choice in m Let 7, be the unique ¢ such that

H(£) ~ K (Vy) = Gi.

For each i ew, let A;= {a < f: i,= ).

Map X—{J{diXXn: iew} by f as follows. If £€e¢X, £ is in
2 unique X,, as ¥ is a partition of X. As X, is a K (Va)-orbit there is
& o e K(Va) such that &= of,. Let f(£) = (a, (ow;,n,1,).

Then f is well-defined, 1-1, “onto”, and H(f)D K(V,).

1. Well-defined and 1-1.
o€, = 1&,, 0,7 e K (V)
©1Tre e H(E) nE(V,) = G;
—17'c e Hw i) by (II)
Cow; = ;.
. “Onto”.
B’y definition of Xni, Xpi= {ow::
(a7 (ow;, n, 'La)) = f(c€,)-
3. H(f)D E(Va).
If 7€ KE(Va), and of, e X,
f(aé,) = T(a7 (Gwiaa ) lba))
and fr(c&,) = f(r6é,) = (a, (rowiu, n 1,,))
Now any map from ordinals to ordinals which is in M is also in N, so we
may map each A; 1-1 onto a well-ordered cardinal »;, using the axiom
of choice in Y.

Hence any set of 9t can be put.into 1-1 correspondence with a set
of the form [J{xiX Xni: 7€}, some 7 € w. '

Thus from the point of view of discussing the cardinals of %, we
need only concern ourselves with sets of this form.

THEOREM 1. In N, every cardinal has a unigue 1-successor, but U is
an infinite set with no countable subset, and hence the axiom of choice fails.

Proof. By Lemma 4, if € is a countable subset of U, K(C) %, so
K(C)D K(T,) some n € w.

As (' is infinite, ¢ contains some point un; outside V,. Then the
permutation of U which interchanges um, and um,, and leaves everything
else fixed, is in K(¥,) but not in K(C), contradicting K (C)D K (V,).

Hence U has no countable subset in %, and in particular, cannot
be well-ordered in .

Now to show that every cardinal has a wunique 1-successor in .
By Lemma 3 any cardinal has a 1-successor and we just need to show
uniqueness.

o

ce E(Va)}X {n,i)} so

< \)
(a (rc’wia, Ny Y]y
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Suppose # adjs-+a. We must show that z+a=a+b where b is
a well-ordered eardinal. Then by the comparability of well-ordered cardi-
nals, b= s(@) (b =1 if a7 = o+1) and a+a > 2+ ¥(@) (or 2+a > 241)
which gives z-+a = ¥+ (%) (#+6e = 2+1) as desired, because z adjz+a.

Choose an 7 large enough to support sets X, A of cardinals #, a
respectively. # is now kept fixed. By the remarks before the statement
of the theorem, we may suppose that i

X=U{ux X x{0)ico} and A= |J{aXXu: icow}.

The @ inserted as a last co-ordinate of X is just to ensure that
Xnd=0. X, A “supported” by n means that H(X), H(A)D K (V,).
In fact any union of Xy,’s is in M, and is also supported by n.

Suppose now that the following holds.

(III) There is an m ¢ w such that there are only finitely many p ¢ P
for which there is no 1-1 mapping ¢ from

U X Xy x {0} jepto | {o; X Xng: j ep} into
UM X Xy X {@): jep} with H(g) D K (Vo).

(See (I) for the definition of P).

Then for every other p (outside this finite set) there is such a g, g,
say. Thus for some finite B C w,

g=1\J{g,: peP and p ~ B= 0} maps
U X Xy X {B}: e} U {#; X Xns: j ¢ B} 1-1 into
U X Xy x {B): jew}, and H(g) D K (Va).
Thus the union of all the g,’s for p outside a finite set gives an “ahsorption

map” for | {%; X Xus: § ¢ B} into |J {4 X Xuy X {@}: j € w}.

Hence z+6=a+|J{#;X Xns: jeB}. Now as B is finite, and
each X,; iy finite, )

U {#x Xt j e BY can be well-ordered.

Thus #-+e = @+b where b is’a well-ordered cardinal. This is just what
was required.

We now show that the alternative asswmption to (ITI) rewults in
a contradiction.

(IV)  Suppose that for all m e w there are infinitely many p <> such
that there is no 1-1 mapping ¢ from .
U 2% XngX {0}: j e p} v U {5 X Xag: j e p} into
U {45 X Xns X {0} j e p} with H(g) D K (V).
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Then we may partition P into two sets P,, P, with precisely the
same property. Let ¢ map o 1-1 onto «®x 2. If g(r) = (m, s, %) e > X 2,
at stage r we put into Py the least p not already in P, or P; such that

- property (IV) is satisfied with respect to m and p. The co-ordinate s is

designed to ensuré that for each m we get infinitely many p’s in each
of Py, P;. Any p’s which are left over are put in P,.
Let

A= U {msX Xngr j e UPo},
Ay = U (s X Xg2 §e U Po}y

Then 4 = 4, A, and A, n A4, =0.
Suppose that

[Aol = a0,
4 =a.

V) rta,=2x.
Then there is a 1-1 map ¢ from X U 4, onto X in N. Let H(g) D K (V)
where m > n.
By (IV) for P, there is a p ¢ P, for all of whose members 7, n; >,
such that there is no 1-1 mapping g, from
U 2% Xayx 0}: j ep}o U frx Xag: § e p} into o
U X Xayx {0}: j e p} with H(g,) D K(Vm) -
In particular, the restriction of g to the first set fails to be such a g,.
Hence g maps some point of 7
U {4 X Xy X {@}: § epy o U (X a2 j e p} into
U {4 X Zns X {0}: j ¢ D} -
Let ((a, (owe, 1, 1), 0), (B, (105,75 3), 0)) ¢g, where achi, Beky icp,
jép, o,7eK(Va), and the first @ may not be there (and in which case

xea) if tt  oint lies in A4,, not in X.
Case ng<mg (mi#n; as jép, Lep).
Let ¢ the permutation of U which interchanges ,, and u,,

and leaves everything else fixed. Then ¢ e K(V,) as ny <M, 50 @(Tw;)
= twy. Also ¢ ¢ K (V) because ni>m, S0 @ e H(g). Applying ¢ to the
assertion that .
. ((a,(cwi,n,i),@),(ﬁ,(rwj,n,j),ﬁ))eg
we get
((a7 (powi, n, 1), Q)y (ﬂ; G 0)) €g,
and since g is 1-1,
gow; = ow; (similarly if @ is not present) .

Since G is Abelian, @w; = wi.
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Now wi = {y¥: z <G} Hence g, = yv,, some y ¢ Gi. Therefore
1 "¢ e H(y,) = KE(V,)C €& by definition of n,. Therefore ¢ e G = Gy.
So ;D E(V,,) v oK(V,)=K(V,_,), contradicting the definition of n;
as the least I such that G;D K(V;).

Case (ii). ny > n,.

Let ¢ be the permutation of U which interchanges u,, and w,, and
leaves everything else fixed. As before, ¢ ¢« K(V,,) 80 @{ow;) = ow; and
@ ¢ H(g). This time using the fact that ¢ is a function we derive guw;
= 7w; and this leads to a contradiction of the definition of n;.

Hence our assumption (V) is contradicted, and x-a, > 2. Similarly
#+a; > ». Since x adj z+a and a,, a, < a, we have

40y =-+a, =2-+0a.
Let g be a 1-1 map from X u 4, onto X v 4,. Let H(g) D K (Vy), where
m = n.
Then by (IV) for P, there is a p e P,, for all of whose members
4, 1y > m, such that there is no 1-1 mapping g, from

U {4 X Zug x {0} j epy v U {5 X Xng: j ep} into
U {4 X Xay X (B} j e p} with H(g,)D K (V).

As Defore we get an ((a, (o, m, i), B, (B, (vws, n, j),@)) such  that
ael; OT %1, felyOr %5, LeP, J¢p, 6,7 K(Vy), and the two @’s will or
will not be present (it makes no difference) depending on whether the
points lie in A4,, 4; or X.

The only extra point to notice here is that P, ~ P, = @, and so,
intuitively, 4, and 4, cannot “interfere” with each other. A contradiction
is now arrived at in the same way as before.

Assumption (IV) is therefore false, and the theorem is proved.

In order to formulate Theorem 1 as a relative consistency resuls,
let T be the theory formed from ZF by modifying extensionality to allow
urelemente. Then Theorem 1 gives »

CororLrARY. If T is consistent, then so is T 4+ there is a cardinol
incomparable with %, (and hence TVAC) + every cardinal has a unique
1-sucecessor.

§ 4. 2 and 3-successors. ‘

THEOREM 2. If every well-ordered cardinal has a 2-suceessor, then the
axiom of choice holds. (Pointed out by A. Levy).

Proof. Let » be a well-ordered cardinal. Then s(x) = »" = the
least well-ordered cardinal > is a 1-successor of » by Lemma 3. By

definition of 2-gsuceessor, »* is >, and hence = the 2-successor of x given .
by our hypothesis. (In fact this i the argument showing, as mentioned.

©
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in the introduction, that if a cardinal # has a 2-successor it is unique,
and is also the only 1-gsuccessor of z).

Suppose that # is any cardinal.

It w(z) < @45 (@), ¥(@) <zts@), as §7(x) is the 2-successor of
w(z), as shown. above.

Therefore s*(z) = s(r+%(x)) > s(v*(x)), contradicting the definition
of N(S"'(-’l))). So s(x) = -+ %(x), giving » < x(x) and x well-ordered.

TmMMA 6 (Tarski [9], p. 81, Theorem 3). If ksty= (k+1)ztz,
where k is & positive integer (5 0), then z+y = 2x+2.

Proof. We use induction. Tf k=1 the conclusion is the same as
the premise. Otherwise, suppose (k41)z+y = (k+42)z-+2 Then z+
+ (ke +y) = a+(k+1)z+2).

By Lemma 1 there are p, ¢,r such that

x=at+tp=2+q, ksty=p+r, (k+l)rt+z=gq+r.
Hence
km+g/'= (k—Vz+x+y (as k> 0)
= (h—D)z+(z+0) +y
=krt+qty=p+q+r
= (k+1)z+2+p= (k+)atz.

Therefore ¢y = 2x+2, by induction.
LevMMA 7. If < 22 and 2 adjz+y, then x+y <2z-+y.
Proof. Suppose that z-+y=2z+y. Then 2<25<3s<32+Y
= 2a+y = a+y. ,
Since z adj #—+¥, 20 = 3x. By Lemma 6 with y=2=0, o= 2z,
confrary to assumption.
Leyma 8. If o < 22 and » adj o+y, where y< @, then v+y has no
3 -successor.
Proof. Suppose not, and let (z+y) be a 3-successor of #-+y. Then
(x4y) > @
Let (w+y) = ax+z If e= (x+y), s+2=2, 80
oty < 204y < 3wty < 3ut(@4e) =2 = (3+y),
by Lemmas 6 and 7, contradicting z+y adj (z+y)"
’ Therefore z < (z+y)". By definition of 3-suceessor, 2 < 2-+y. There-
re (z-+y) = x+2 < 2049.
o ](Sagf—i—l‘;/(z,mm&—; there—!isja t < @ such that (z+¥) = z+y+t ijv
? < x-+y. So by Lemma 6, 22 < 25+¥. Hence 2+t < a-+y-+i=(+y).
Using again the definition of 3-successor, z+t< z+y. Thus e e+t
<a+ty, and as » adj a+y, #=2a+t or ¥+i=2o+Y.
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If 2=+t o+y+1t=a+y, contradicting 24y < (w+y). If on
the other hand x4+t = 2y, by Lemma 1 there are p, ¢, such that
g=x+p=0+¢ t=p+70 y=q+r

Therefore 9y =q+r<p+qt+r=1i+g<a+q=a.
dicts y<£ 2.

This contra-

THEOREM 3. If © > ¥, and © < 2z, then x--s(x) has no 3-successor.

Hence “every cardinal has a 3-successor” implies “for all infinite z, x = 2&”.

Proof. The first part is immediate from Lemma 8, Lemma 3, and
the definition of w(z).

The second part follows easily too provided that, given an infinite »
such that o < 2r, we may find one >,.

Replace our original # by @+ ,. We must show that 2+ ¥, < 20 ¥,.

If Ny < o, @43 = @ < 28 = 24 ¥, so there is no problem. If x,< ,
then z < z-+1.

Suppose ©+%, = 22+y,. By Lemma 1 there are p, g, such that

E=04+p=0+¢q, N=p-+r, a+¥N=qg+7r.
As @ <z+1, p=qg=0. Therefore » << z-+¥,=1r <Y, contradicting
not well-ordered.
We conclude § 4 with a simple characterization of some 3 -successors,
and of some cardinals which cannot be 3-successors. These characteri-
zations coincide when “for all infinite z, = 22",

icm

TueoreM 4. (i) If o adj y, 2+y =y, and y is not the sum of x and

an incomparable cardinal, then = adj, v.

(ii) If y s the sum of two incomparable cardinals @ and b such that
t<a and b—>i+z =z, then y is not a 3-successor of .

(ili) If for every infinite x, » = 2, then 4 a 3-successor < Y a 1-suc-
cessor and y 4s not the sum of two incomparable cardivals.

(i) If w adj, y and @ adj, y, # and y are Dedekind finite or well-ordered.

Proof. (i) Let 2 < y.Theno < 242 < oty = y. Hence w--2 = x or 9.

If v+2=ua, 2 < » as desired.

It 42 =y, 2z is comparable with @, giving 2 <{ x or 2 = .

(i) Suppose = adj; ¥ = a+b. Then a,b<a-+bd, as a and b are

incomparable. Therefore a,b < 2. Let .4, BC X be of the appropriate .

cardinals. Let P=A B, Q= A—B, R= B—-A, p=|P|, ¢= Qi
7= |R|. Then a =p+q, b=p+r, PHegtr<e So p<a,band a-t+p
= 2. Therefore y = a+b=2p+q+r <pla= «, contradieting @ < 9.
(ili) Suppose # adjs y and y = a+b, a, b incomparable. Then # adj ¥
certainly. If x is finite there is no problem. I t< a,b, then t <y, so
t< o, and i+2 = x (as = 2z). Now use (ii). Conversely, if # adj y and y
ig not the sum of two incomparable cardinals, by (i), # is finite or @ adj, .

% 2= Ny
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(iv) By the remark during the proof of Theorem 2, and Lemma 3,
Yy =a+s5(x), or z and y are Dedekind finite.
If y = 2+ w(x), let U<y 8(z). Then as §(x) =y, 4o = By (ii)
2 and s(z) are comparable, 50 z is well-ordered, and y = z-+s(x) is too.

§ 5. Miscellaneous results. Firstly we give a model containing ecardi-
nals z, y such that = adj 2«, y adj 2y, and such that & adj, 22 but not Y
adj; 2y.

We use the notation for a Fraenkel-Mostowski model introduced
ab the beginning of § 3. (In this case it is quite easy to construet a Cohen
model giving us the result, or else the Jech-Sochor Theorem [2] can be
used.)

Let U= {u; a < w;}, G = the group of all permutations of U, and &
be the countably closed filter of sub-groups of & generated by {H (u):
ue Ul 9 is the resulting model. )

Levua 9. If 24y <o+2 and whenever Lo and y,2--t= 2z, then
Y \< .

Proof. Let o = a1+ b= ate,y=c¢+d, 2> b-1d Then ¢ < x and Yy
80 @+¢=2. Therefore y = ¢+ d <b+edd sl etz— 2

COROLLARY. If oty <7t 2, x well-ordered and wx(y)
then y < =.

Now let » = | U™

THEOREM 5. The following hold in 9.

(1) % adjs z (so0 5, has in fact two distinct 3 -successors).
(ii) = adj, 2z.
(iil) 4-% adj 2(z-+-x) but not z+x adj, 2(x+%), any well-ordered

K N(2) > x5,

Proof. (i) Let ¥ be any subset of U in 9%. Then for countable

sub-
set 4 of U, ’

H(V)DK(4).

VY CA, V| <y as desired. If u eV —A4, let v be any member of
U—4, and ¢ be the permutation of T/ fixing everything except u, v and
interchanging these two.

Then u,v¢ 4, 80 ¢ e K(4). Therefore & e H(V). Hence » ¢ V. This
shows that VD U— 4.

Now let B be a countable subset of ' —A. Then

= |Ul<|[V—B|+|A|+|B| = [V—B|+s,= [V—B|+|B| = [V].

(ii) Suppose y < 2. Then y=1+y. where y, y,<2. By (i),
Yy Yo <% or =z. If both of ¥, y, equal o, y = 2& as desived. If not,
Y=Yty <ax+y =2

We must also show that z < Ex.}fﬁt—SQw, U is a disjoint union of

2 — Fundamenta Mathematicae, T. LXXVIII


Artur


icm

two uncountable sets. But the proof of (i) showed that any VC U iy ‘

18 J. Truss

countable or has a countable complement.

(i) If o4% <y < 2(w+x) = 20+%, by Lemma 2 y is of the form :
z+x+t, some t<<ax. By (I) t<8, or t=2. Therefore y = a-x--t !

= 2 % O < B4 %+ Ny= 24 %.

wX_Xte must al—:o ;ElOOW that @+ x < 2o+x». If #+x=2x-+x, by the
corollary to Lemma 9 and the fact that w(2%)= S(x) >, o= 2,

ii).

contr}%fjﬂ;};ﬁ; t(o ;how that 2+ » adj, 22+ = fails, we observe that 2z < 20+ x
gince x<t x. However, if 22 < o+ %, by Lemma 1 tl%ere are p, q,r such
that = o+p=a+q=p+r, x> g+7. 1<%, $0 I8 vsfell—orflered, and
being <z, is < v,. Hence p = , and o = 22, contra@lctmg (ii).

We now do the same for # and «* as Theorem 5 (ii) does for # and 2x.
We do not know whether z adj 22— adj; 2% The model used, §010V:1y’s
model of [6], also satisties %, has two distinet 3 -successors, in 1115_ case ¥,
and 2%, He uses an inaccessible cardinal for his construction, but it seems
unlikely that we need it in fact for our conclusions.

His model satisfies

(1) 2% cannot be well-ordered,

(2) any uncountable set of reals contains a non-empty perfect closed
subset and

(8) every infinite well-ordered successor cardinal is regular.

From (2) follows immediately (4) %, adj 2%, since any non-empty
perfect closed set of reals has cardinal 2%, '

. LemMaA 10 (Tarski [10], p. 148, Lemma 1). If oy < 241, then <2

coory <+t If in addition one at least of %, y, 2, t is well-ordered, then © < 2

or y <t

Proof. Choose disjoint sets X, ¥, Z, T of the appropriate cardinals
such that XxYC Zu T. _ _

We suppose without loss of generality that if any of #,¥y,#,¢ 18
well-ordered, that « or ¢ is well-ordered.

If for some ne ¥, X X {n} C Z, then x < 2. If not, for every e XY,
(XX {nh) A T #0. '

Let f(7) =7 it (Xx {y}) contains 7. f is clearly well-defined, and
maps a subset of T onto Y. Hence y <xt.

If we know that @ or ¢ is well-ordered, for each # ¢ ¥ we may _pick
a member f(n) of (X x {#}) ~ T, making f this time a 1-1 map from ¥
into T, and giving v <.

We write & adj” y if there is a sequence

% adj 2, adj 2, ... adj 2, such that z,= 2, za=19.

It can be shown, though we do not need it here, that the =, if it exists,
is unique (see [11]).

©
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Before stating Theorem 6 we just remark that if z adj 2z then nzx
adj™ 2(nz). The proof is very simple and is omitted.

THEOREM 6. If %, adj 2% s v, and every infinite well-ordered successor
cardinal is regular, then there are w,, m, y e SAUSTYIng xn adj® a2, each n.
In addition, , adj; z?.

Proof. We show briefly that s, adj; 2%, though this in fact follows
at once from (i) or (ii) of Theorem 7.

Suppose 2 < 2%. Then v, < w45, < 0Ly, = 28 — oRo.oKe Tp So
=N+ TSN a8 desired. If .42 = 2%-2% Temmga 10 gives z > 2%
or §, > 2% Hence z = 2%, also as desired.

Let x be the least well-ordered cardinal such that wtx 28 (TIn fact
%=1, in Solovay’s model.) Let x, = x, %,,, = ;.

Let &, = 2-28% L 5 To show that @, adj™ 42, it is enough to show that

oy = 2-280 L5 adj 2Rl Loadj w280, — st 20 = g2
and this is the same as

Ky 2RO adj Hyyp 2Oz
Firstly suppose we have equality.

Then z,,,, 2% < «,,-2% | ;¢ By Lemma 10, Honog K 2R 01 2¥0 L gy
Each of these is impossible, the first because

each m <n.

$(Hipg1) > sy = N (%, 2%)  (since x(z)-5(y) = s(ay)),

and the second because 2% is not well-ordered.
Secondly suppose that

2 2RO 2, Yy K gy 2P, Where x,-2% <y < Ky pp 280

(using Lemma 2 of course). Let R = the real numbers (any set of
cardinal 2% would do), and let ¥ Cs,,_,x R of cardinal y be such that
for each r ¢ R, ¥ n (%,,,, % {r}) is an initial segment of Hmaq X {r}. Let the
order-type of ¥ ~(x,,, % {r}) be a,. If there are 2% s in R such that
@ = #yi1, then y = x, 2% as desired. If there are less than 2% guch »’s,
there are <{v, of them as x, adj, 2%, so
(VI) X~ {”m+1 X {1} o, = xm—kl}i KN gy = Mgy -
Now cfw,yy = #,,, Dbecause #,,, is an infinite well-ordered successor
cardinal.

Hence cfx,, ., ¢+ 2% since » <+ 2%. This shows that the values of a,
below #,,., are bounded below x, 41, and so
(VII) 1Y o U {#pa X {7 @, < K} < 2R
Putting together (VI) and (VII),

¥y= I:Yx < %m'zxu_:xm-)-l .

o
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Therefore §-+#n < m 2%+t Hence w280 adj 2,0 204, ag

desired. . X
The fact that @, adj, #? follows from (iii) of the next theorem, since

po= 2Ot (2¥) and = 2 (2.

THEOREM 7. (1) If % is well-ordeved and » adj @ = #*, then x adj, &

(ii) If = adj 2% then » adjs 2%.

(iii) If z+x(z) adj 2-5(2) then x4 w(x) adjs @ N(2).

Proof. (i) Let y < » Then » < x+y <oty <s-+o=wnr There
fore x-+y =« or x.

T sety=r, y<x as desired. If x4y = & = 2? Lemma 10 gwes
x> ® Or § > . %> o contradicts » adj », so @ = y as desired.

() <o+l < 2+2 < 2% Since # adj 2% # = w41 or w1 = 42,
Each of these implies #= o+1 (if #41= m+2, we have 1+x =1+
-~ (z41), so by Lemma 1 there are p, ¢, 7 with 1 = 1+p = 14+¢q, 2= p4-r,
2+1= ¢+, ete.)

o< 2w <L 30 <L 4-2% = 22 = 2T

n

Again, = 2z or 2z = 3x. By Lemma 6 each of these implies z = 2z
Now suppose that ¥ < 2% Then 2 < 49 < @+2% = 2% If 2= x4y,
¥ < @ as desired. If 2ty = 2% = 2%.2% Lemma 10 gives us

22w or 2Ly,

The first is impossible by Cantor’s Theorem, so the second holds, which
is what was wanted.

(iii) As in (ii) we just need to show that if @ % (%) -+ ¢ = 2% (a) then
y=wa8x) or y<rts).

By Lemma 10, %-5(%) = (1-5(2))-(2), and the fact that @ - (x) @+ 5 (a),
we get s(x) <y. Therefore z+%(z)+y = 24y =ax-%(x). Again using
Lemma 10, and # 3 w(2), we get = <y.

As y=N8(2) let y=2-+5(z). Then w-+w(@)<y-+5(@) =2+5(»)
=¥y < @-N(2), giving the desired conclusion by w-+w(2) adj «-s(x).

Now Theorem 6 showed that Solovay’s medel contains an # such
that o4y (x) adj %-8(z) (namely x-2%). We finish by showing that this
holds under slightly more general circumstances, for example in 9 of
Theorem 5.

THEOREM 8. If x ad]s @ and cfxtx @, where x is well-ordered, then
Lont+xt adj weoxt.

Proof. Tet |X| =2 and ¥ C X x »T be a subset of X X =+ of cardi-

nal y iuch that for each £eX, ¥ m ({&}x »%) is an initial segment of
{& x ot
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Let the order-type of ¥ ~ ({£}x ") be a,. Let

X,={feX:aq,=%") and X,={fcX: a4 < %t}
I X =, V= vt X <a, X <% 50 U8 Xt £cX)]
= X, x#t <

Since cfy <* z, the values of a; on X, are bounded below x*. There-
fore | Y| < %t +a-%, so

y<extsy=rx" or y<Laowlat.

It remains to show that & x+»* < ¢-»". Now 2 3 »*, since cfxt < »*
and efx® £ ». Therefore ¥ (x) = »*
I znt+zt =z%%, by Lemma 10,

Lo or o< ut,

The first is impossible, as §(x") > »* = §(2- =), and the second has just
been ruled out. :
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