Some characterizations of smooth continua

by
T. Maékowiak (Wroclaw)

Abstract. A continuum X is smooth if there is a point p in X such that (1) given
any point @ in X, there is a unique subcontinuum px which is irreducible between p
and z, and (2) for each sequence of points a, ¢ X which is convergent to the point a,
the sequence of irreducible continua pa, is convergent to the continuum pa. The paper
contains various characterizations of smooth continua, in particular by the structure
of some decomposition space, by the weak cutpoint order, by the T-relation and some
mapping properties. These characterizations have the form of necessary and sufficient
conditions under which a continuum has property (2) if if is assumed to have property (1).

§ 1. Introduction. All the spaces considered in this paper are metrie.
A continuum is said to be unicoherent if for any decomposition onto two
subcontinua the intersection of those subcontinua is connected. A con-
tinuum is said to be hereditarily unicoherent if each of its subcontinua
is unicoherent. It is known that a continuum X is hereditarily unicoherent
if and only if, given any set Z C X, there exists a unique subcontinuum
I(Z) of X which is irreducible with respect to containing Z (see [2],
T1, p. 189). It is also known ([14], Theorem 1.1, p. 179) that

(1.1) A continuum X is hereditarily unicoherent if and only if for
any two points z,y ¢ X there exists a unique subcontinuum I(z, y) which
is irreducible between z and y.

A dendroid is a hereditarily unicoherent, arewise connected continuum.
A point p of a dendroid X is called a ramification point (in the classical
sense) if it is the common end-point of three (or more) arcs in X whose
only common point is p. A dendroid having exactly one ramification point
is called a fan. A dendroid X is said to be smooth if there exists a point
p e X such that for every sequence of points @y ¢ X convergent to the
point a the sequence of arcs pa, is convergent (in the topological sense)
to the arc pa.

The notion of smoothness was first introduced and investigated in [3]
and [6] for fans, and mnext it was generalized to dendroids in {4], from
another point of view it was investigated in [10]. Some characterizations
of smooth dendroids are also contained in [15]. Recently this concept
has been generalized to continua hereditarily unicoherent at a point.
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A continuum X is said to be hereditarily unicoherent at a point p e X
if the intersection of any two subcontinua, each of which contains p,
is connected (see [7], p. 52).

Similarly to (1.1) it is proved ([7], Theorem 1.3, p. 52) that

(1.2} A continuum X is hereditarily unicoherent at a point p if and
only if, given any point x ¢ X, there exists a unique subcontinuum which
is irreducible between p and a.

This subcontinuum will be denoted by pax.

A continuum X is said to be smooth at a point p if X is hereditarily
unicoherent at p and, for each sequence of points.a, ¢ X which is con-
vergent to the point @, the sequence of irreducible continua pa, is con-
vergent (in the topological sense) to the continuum pa. A continuum X is
said to be smooth if there exists a point p ¢ X such that X is smooth at p.

The aim of the paper is to investigate smooth continua by finding
properties which characterize them. Most of those properties are patterned
after those characterizing smooth dendroids (see [4]).

Section 2 plays an auxiliary role and contains some general facts
about continua which are hereditarily unicoherent at a point and about
smooth eontinua. In particular, Theorem (2.6) gives a characterization
of dendroids. In Section 3 properties equivalent to smoothness in continua
are formulated and several theorems on characterizations of smooth
continua are proved. The section is divided into five parts. Part A con-
tains a characterization of smooth continua which is given by the structure
of the decomposition space of the canonieal decomposition introduced
by Gordh in [7]. The notion of the weak cutpoint order is used to give
another characterization in part B, which is needed to prove the next
theorems. Part C. contains some characterizations of the smoothness of
continua based upon the T-relation of non-aposyndeticity. The charac-
terizations in parts B and C are closely related to the results obtained
by Gordh in [9]. In part D we study various kinds of mappings and we
obtain several characterizations of smooth continua in this way. In
particular, the concepts of a radially convex mapping and of an order-
preserving multivalued one are introduced and applied to obtain charac-
terizations of smooth continua. Finally, two other properties equivalent
to smoothness are given in part E. They concern the inner structure of
smooth continua.

The author is very much indebted to dr. J. J. Charatonik for many

helpful remarks and suggestions offered during the preparation of this
paper.

§2. The smootl‘mess' of continua. The definition of the hereditary uni-
coherence at a point implies immediately (see [7], Theorem 1.1) that
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(2.1) A continuum is hereditarily unicoherent if and only if it is
hereditarily unicoherent at every point.

Let a continuum X be hereditarily unicoherent at a point p ¢ X.
We define the following equivalence relation g, on X:

() zopy ifand only if pz=opy.

The equivalence class of a point z « X with respect to the relation op
will be denoted by [#]. Notice that

(2.2) If zepx, then [2] C pa.

Indeed, zepr implies pzC pzr. If ye[z], i.e. py= pz, then yepz;
thus y € px. ’

The set of all points of a topological space X which can be joined
with the point p by a closed, connected and proper subset of the space
X is called the composant of the point p. It is well known (see [11], p. 239
and [12], Theorem 3, § 48, p. 210) that

(2.3) If ¢ is & composant of a continuum X, then the set X\C is
connected.

(2.4) LEMMA. Let a continuum X be hereditarily unicoherent at a point p.
For every x ¢« X the equivalence classes [x] are comnecied.

Proof. Let # « X. By (2.3) it remains to show that the composant C of
the point p in the continuum px is equal to pz~\[«]. Indeed, if zepaNz],
then pa~[z] by (2.2) contains pz; thus paN\[«]C 0. If ze[z], then, by
definition, we have pz = px; thus 2 e pa\C and hence CC pa\[z].

Let p: X— X/p, denote the canonical map from a continuum X onto
the quotient space X/p,. Lemma (2.4) and Theorem 9 in [12], § 46, I,
p. 131 imply the following .

(2.5) COROLLARY. If a continuum X is hereditarily wunicoherent at
a point p and if the canonical map ¢: X— X[op is closed, then o is monotone.

We shall now prove (cf. [9], Theorems 2.2 and 2.3)

(2.6) THEOREM. A continuum X is a dendroid if and only if X is
hereditarily unicoherent at some point p and for every © e X the continuum px
s an are.

Proof. If X is a dendroid, then the condition follows immediately
from (2.1) and from the definition of a dendroid. To prove the other
implication, let z and ¥ be points of a continuum X which satisties the

condition assumed. Since the continua pz and py are arcs by hypothesis,
their union pzw py contains an arc zy. Thus X is arcwise connected.
We shall prove that X is hereditarily unicoherent, i.e., that ay is the only
continuum irreducible between 2 and y (see (1.1)). For this purpose let
I(x,v) be an arbitrary continuum irreducible between z and y. Consider
two cases.
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1. either y e px or z e py. Assume y e py (if we i
. Py, the proof is the
same). Then‘pyC pr and xy C px; hence py nay = {y}’. Since the union
py v Iz, y)is a continuum containing points p and », we have pz C py u
v Iz, y) a,nd' hence »y Cpy v I(z,y). The arc sy has only one point y
1111 common thh the arc py; therefore zy\{y} C I(«, y), and hence taking
closure we have ayC I(z,y); thus a2y =1 i ibili
e s Y); Y (#,y) by the irreducibility
2. we X\py and y e X\pa. Since the continuum X i i
. y - St is hereditaril
umcohere{lt vat the point p, the intersection px ~py is a continuumy-r
therefor.e it is the arc pz. Take arcs 22C pz and yzC py. Then the unior:
iz v gz is equal to the arc zy and we have yz ~ pz = {2} and a2 ~ py = {=}
hs in eavsezzl we conclude that px Cpy v I(x,y) and py Copou I(z y):
eré)el zzCI(z,y) and y2CI(x,y). Therefore zzu yz CI(z, y),b ,i.e.’
2y F(m, 1); t]?us as before zy = I(z,y), which completes the proof,
or an arbitrary continuum X the set P(X) = { i .
¢ Iy ¢ = {p e X: X is smooth
Z:vjzl}l lisn c;]_;ed the initial set of X. The definition of a smooth continuum
can now be formulated ta i i
Ssooth 1t PO 20 as follows: a continuum X is called
(i Slillce c.len(‘h'oids,. in particular fans, are hereditarily unicoherent
(i ; Ooz;id;::rfﬂy ulﬁlaiol&eren[t at every point by (2.1)), ghe definitions
ormulated in [3] and [4] for those conti i
the above definition. A spi indi o ree with
. piral winding up the circle is an exa
. » . . m 1
a smooth continuum which is neither hereditarily unicoherent o '0£
) nor arcwise
It follows from Theorem (2.6) that

(2.7) If a continuum is smo i
By oth and arcwise connected, then it is

(2.8) If a continuum is smooth i
& cor . and p is an initial point of i
any subcontinuum of it containing the point p is smooltjzh L;t(;f h then
\ co];[:mﬁfg let & continuum X be smooth at a point p, and let 4 be
B oniun stiehxthat PeACX Hoecd, thenprCA by the hereditar
o cobere cls ‘31 31: Pp. ]‘;ft Zn—» and let z, € A. Then px, and P arsc;
and we have Li =
n_l)glpmn P2 by the smoothness of X;

thus 4 is smooth at p.

More ! i
e fouowill,; s;izgil egntmu_a: can b_e found in [7], (8] and [9]. In particular
D, 58 and of the I;l ;; an immediate consequence of Theorem 5.2 in [7 ],
able and that the e e decomposition space X]g, is metric separ-
relation : eeon%posfcl‘on of X into equivalence classes of th
fp 15 upper semi-continuous (see [17], Theorem (2.2 2 ’
(2.9) Liet 3 continuum X be smooth "o B TR

equivalence relation defined by (a), . F 2O 1 16t ¢y Do the

and let ¢: X X/o, be the canonical
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map. Then the decomposition D= {p~Y(1): teX/op} has the following
properties:

(i) D is upper semi-continuous,

(if) the elements of D are continua,

(iii) the decomposition space of D is arcwise connected, and

(iv) if € is a decomposition satisfying (i), (i) and (iii), then D < &
(i.e., D refines §&).

Moreover, the decomposition space X/op of D is a smooth dendroid,
@(p) is an initial point of X/op and each element of D has a void interior.

The following corollary can be drawn from (2.9).

(2.10) If a continuum X is smooth at a point p, then the canonical
map g: X—>X/pp is closed.

Further,

(2.11) If a continuum X is' smooth at a point p, and I(z,y) is an
srreducible continuum between z and y in X, then I{z,y) Cpzv py.

Indeed, if ¥ is a subcontinuum of X such that p € N, then for each
subcontinuum H of X the intersection N ~H is & continuum (see [7],
Theorem 3.3, p. 55). Thus if we take N = px v py and H = I(x,¥), We
see that N ~ H is a continuum contained in I(x,y). Moreover, N n H
contains both # and y; thus by the irreducibility of I(z,y) we have
I(z,y)= N~ H, since N ~HC pxru py, and hence I(z,y)Cpzv py.

§ 3. Characterizations of smooth continua. In this section we study
various properties of continua hereditarily unicoherent at a point which
are equivalent to the smoothness of those continua.

A. The quotient space. It follows from Theorem (2.9) that if
o continuum X is hereditarily unicoherent at a point p and if gp is the
equivalence relation on X defined by (2) in § 2, then the smoothness
of X in p implies that the quotient space X/op is @ smooth dendroid
having @(p) 28 an initial point. It can be proved that this condition is
not only neeessary but also sufficient for X to be smooth at p. Namely
we have the following

(3.1) TEEOREM. Let a continuum 1X be hereditarily umnicoherent @t
a point p. X is smooth at p if and only if the quotient space X[op s & smooth
dendroid and ¢(p) € P(X/op)-

Proof. If X is smooth at p, then X/pp is a smooth dendroid and
o(p) € P(X[op) by Theorem (2.9).

Conversely, suppose that X/op is a smooth dendroid at the point ¢(p).
Then the canonical map g is closed and hence monotone by Corollary (2.5);
therefore for each z ¢ X we have p(px) = ¢(p)p(x) (see [7], Theorem 4.1,
(ii), p. 56). Suppose that X is not smooth at the point p. Then there exist
sequences {am} and {b;} such that () {ay} converges to a, (ii) {bm} comn-
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verges £0 b, (iii) by € pan for each m and (iv) b ¢ X\pa (see [7], Theorem 2.3,

p. 33). Since the map ¢ is continuous, properties (i) and (ii) imply
lim ¢ (@) = p(a) and 1im g (bn) = (b). Property (iii) gives ¢(bn) ¢ p(paum)
00 Mm—>00

m-

= ¢{p)p(an). This leads to p(b) € p(p)p(a) = ¢(pa) because the dendroid
Xjop is smooth at the point ¢(p). Thus o 'p(b) C ¢~ 'p(pa), and hence
[b]Cpa by (2.2), and be[b] implies bepa. This is a contradiction
of (iv).

(3.2) ExamriE. Joining the points of the Cantor set ¢ which lay
in & natural way in the unit segment [0, 1] with the point ¢ = (%, %) we
obtain the Cantor fan. The Cantor fan is a quotient space X/op of a con-
tinwem X for which the canonical map ¢: X — X/op is defined by the
properties p(p)= (0,0) e ¢ and

a circle , it y=t,
one-point set, if ys£t
(see the figure).

Obviously the continuum X is not smooth, although X/, is a smooth

dendroid (at the' point £, but not at ¢ (p)). Hence we see that the assumption
@(p) € P{X]gp) in Theorem (3.1) is essential.
B. The weak cutpoint order. A relati
) cutp . ation < on a set X is said
to be a guam-order )f' it is reflexive and transitive. A quasi-order < on
a topological space X is said to be monotone if the set L(z) = {y ¢ X: y\< x}
18 connected for each point zeX. A quasi-order ol

. ) < on a topological
space X is called - s alosed
e closed if the set {z,9) e I X: 2 g ¥} is closed in

icm
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If a continoum X is hereditarily unicoherent at a point p, then the
quasi-order <, on X defined by

2<,y if and only if zepy

is said to be a weak cutpoint order with respect to p (see [9], Section 1).

(3.3) The weak cutpoint order <, is monotone. Moreover, the point
p is the unique minimal element in X with respect to <p.

Indeed, since L(z) ={y e X: y <pa} = {y ¢ X: y e px} = pz, L(o) is
connected for each x € X, i.e., <, is monotone. Let ¢ be a minimal element
in X with respect to <p. It follows by the definition of a minimal element
that if # <p ¢, then ¢ <y x. Take p = z. Since p € pg, we have p <p g,
which implies g <, p and hence ¢ = p. :

The following theorem, proved in [9] as Theorem 3.1, gives a charac-
terization of smooth continna in terms of the weak cutpoint order.

(3.4) TeEOREM (Gordh). Let a continuum X be hereditarily unicoherent
at a point p. X is smooth af p if and only if the weak cutpoint order <, is
closed.

C. The T-relation. Let X be a continuum. For points z and y
of X define » T y if and only if every subcontinnum of X which contains y
in its interior also contains 2. Put T;={y e X: 2 Ty}. It is known
([51, p. 115) that

(3.5) The relation T is closed, and the set T, is a continuum for
every z e X. '

The following is proved in [4], Theorem 4, p. 301.

(3.6) Let a monotone, closed quasi-order < on a continuum X be
given such that for each two minimal elements p and ¢ of X (with respect
to <) the conditions p < ¢ and ¢ < p hold. Then 2z <y for each v e X
and each y e T;.

We have the following characterization of smooth continua.

(3.7) TemoREM. Let a continuum X be hereditarily wunicoherent at
a point p. X 4s smooth of p if and only if % € py for each x ¢ X and each y € T.

Proof. If X is smooth at p, then <, is a closed, monotone quasi-
order with the unique minimal element by (3.3) and (3.4). It follows
by (3.6) that z e py for each z e X and each vy ¢ T;. Conversely, suppose
that z € py for each 2 ¢ X and each y ¢ T;. To show that the continnum
X is smooth at the point p, it suffices by Theorem (3.4) to prove that
the weak cutpoint order <, is closed, i.e., that the complement of the
set {(z,y): #<py} is open in XX X. Let & Ly, ie, let e X \py.
Therefore, by hypothesis, ¥ ¢ X\T;. Hence there is a continuum K con-
taining y in ity interior which fails to contain #. Then K’'= K v py is
also a continuum containing y in its interior which fails to contain z.
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Hence V = (X\E’)x Int K is an open set in X X X which contains (z, y).
Let (2, w)eV. Then we Int K C K CEK' and p € K'; thus pw C K'. Since
ze XNE', we have zeX\pw, ie., 2 < w, which completes the proof.
As a consequence of Theorem (3.7) we have the following corollary
(see [9], Corollary 3.3).
(3.8) CorOLLARY. Let o continuum X be hereditarily umnicoherent at
a point p. X is smooth ot p if and only if
{b) prT,Clz] for each weX .

Proof. Let X be smooth at p. If y e px ~ Ty, then in particular
ye Ty, whence # ¢ py by Theorem (3.7 ). Since y e pi, we conclude that
py = px and hence y e [].

Conversely, suppose that condition (b) holds. By Theorem (3.7) it
suffices to prove that if y Tz, then « e py. Let y « T';. Hence Tenpy #+9,
and thus the union 7T u py is 2 continuum which contains the points p
and z by (3.5). This leads to px C Ty v py. Therefore px C (T px)w
o (py ~ po). The inverse inclusion being obvious, we have the equality
px = (Txn pz) U (py ~ px). Since pz is connected and the sets Tz mpw
and py ~ px are closed, there is a point z ¢ X such that ze Ty~ py N po.
Hence according to (b) we have 2 e{«] and since z € py, we have [#] C py
by (2.2), i.e., # < py, which completes the proof.

(3.9) CoROLLARY. Let a continuum X be smooth at a point p. If
Ty + D, then y € pa.

In fact, if 2 € pz, then pz C px. If 2 € Ty, then y e pz by (3.7). Hence
zepw ~ Ty implies y e p2 C p2.

Theorem (3.7) and Corollary (3.8) imply

{3.10) Let a continuum X be smooth at a point p. If Ty = Ty,
then # ppy.

-(8.11) Let a continuum X be hereditarily unicoherent at a point p.
If T,C[«] for each point # ¢ X, then X is smooth at p.

(3.12) THEOBEM. If a continuum X is smooth at a point p, then

{c) for any two points x,y € X and for each continuum I (x,y) irreduc-
ible between x and y we have either I(w,y) ~ Ty Cla] or I(2,y) N
n Ty Clyl.

?roof. Let # and y be points of X and let I(z, ) be an arbitrary
continuum irreducible between # and y. It follows from (2.11) that I (z, ¥)
C pz v py. Consider two ecases.

L If y e px, then py C pa; thus pe v py = px, and therefore I(z, y)
Cypz. Hence I(z,y) ~ T2 C pr~ T, Clz] by (3.8).
2. I yeX pw, then pr~T,=0 by (3.9). Hence I(z,y) Ty
Clpz v py) o Iy = (po ~ Ty) v (py ~ Ty) = py ~ Ty C [y] by (3.8).

icm
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Condition {e) in Theorem (3.12) does not characterize smooth con-
tinua. The continnum X need not be smooth even if this condition is
satisfied for each point p at which the continuum is hereditarily uni-
coherent, and, moreover, if the inclusions in (c) are replaced by equalities.
This can be seen from Example (3.2). Namely the continuum X defined
there is hereditarily unicoherent at each point ¢ which does not belong
to the cirele contained in X. If we admit [#] to be the equivalence class
of the point # with respect to the equivalence relation g,, condition (e)
holds for each ¢, but X is not smooth at any of its points. However, if
the continnum X is a dendroid, then condition (e) implies the smoothness
of X (see [4], Theorem 6, p. 302).

D. Mapping characterizations. We recall that a metric d on
a dendroid X is said to be radially convew with respect to a point p ¢ X
provided that # ¢ py and z = y implies d(p, x) < d{p,y). This is proved
in [4], Theorem 10, p. 310 (see also [1], p. 229) that

(3.13) A dendroid X is smooth with an initial point p if and only
if X has a metfrie which is radially convex with respect to p.

Tebt a continnum X be hereditarily unicoherent at a point p and
let oy be the equivalence relation on X defined by (a) in § 2. A continuous
map fp: X—>[0, co) is said to be radially convex with respect to p if the
following conditions are satisfied:

(i) if #epyNyl, then fylx) < fo(y),

(ii) it ye[a], then fp(2)= fo(y)-

(3.14) TEEoREM. Let a continuum X be hereditarily unicoherent at
a point p. X -is smooth at p if and only if there ewists on X a mapping which
s radially comvexr with respect to p.

Proof. To begin with assume that the continuum X is smooth at p.
Then by Theorem (3.1) the quotient space X/oyp is a smooth dendroid, thus
according to Theorem (3.13) X/gp has a metric d which is radially eonvex
with respect to the point ¢(p). Put fo(2) = dlp (), @(®)). The map fp is
continuous. Indeed, if #,—x in X, then ¢(@m)—>p(2) in X/op; hence
dp(p), p(@n) >dlp(p), ¢@), i-e, fol@n)>fp(x). Obviously, the map fp
satisfies conditions (i) and (ii). i )

Next, assume that there exists on X a radially convex map fp with
respect to p. We show that X is smooth at p. According to Theorem (3.8)
it suffices to prove that pz ~ T, C[z] for each zeX. Let rzeX and
suppose that geps~[z]. Then fp(q)<fs(z) by condition (i). Define
K= {2 X: fo2) < folg)+ ¢}, where ¢ = }(fz(2)—fn(g)) > 0. Take z ¢ K. It
4 € pz, then fy(y) < fz(#) by (i) and (ii). Hence, by the definition of the
set K, we have y e K; thus pz C K, and we conclude that the set K is
connected. We show that it is also closed. Indeed, if 2, ¢ K, then fp(2n)
< folg)+e; hence if z,->z, then — by the continuity of f, — we have
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fol2) < folg)+¢, ie. ze¢ K. Thus the set K is a continuum. Moreover,
K contains ¢ in its interior and does not contain z. Indeed, suppose that
g« X\Int K. Then there exists a sequence ¢,—g with ¢, ¢ X\K, i.e., f5(qn)
>fp(q)+¢; hence by the continuity of f, we have fu(g)> fp(q)-]-e7
a contradiction. Further, since fp(x)—fp(q) = 2¢, we have fp(2) = fp(q)+
+2¢ > fp(q)+¢, and thus 2 ¢ X\K. Therefore, by the definition of the
set 7;, we eonclude that ge X \T';, and the proof is complete.

Let F: X~ Y be a multivalued function defined on a space X with
values in a space Y, i.e., a function which assigns to each x € X a closed
set F(z) C Y. We assume that F maps X onto ¥, i.e., that for each y ¢ ¥
there exists & point # ¢ X such that y ¢ ¥ (). Adopt the following notation,

for which ACX and BCY: F(Ad)= | J{F@): 24}, FFI (B)={weX:

Plz) n B # 0} and F7Y(B) = {w ¢ X: F(x) C B}.
By the definition of F(4) we have
(3.15) LevyA. If A, A, and A, are subsets of X, then
(i) T\F(X\4)C F(4),
(ii) if 4, C 4,, then F(4,) C F(4,).

) A multivalued function F: X+ Y is said to be upper semi-continuous
if 1‘301- each open set BC XY the set F;Y(B) is open in X. In other words,
F i3 upper semi-continuous if and only if for each closed set BC ¥ the
set F~(B) is closed in X.

Lef, continua X and Y be hereditarily unicoherent at points p and q
respectively. Let an upper sémi-continuous function F: X— Y map X
01}130 Y such that F (2.3) = {¢}. The mapping F is called order-preserving
with respect to p (or simply <p-preserving) if and only if » < ¥ implies
that r < s for each s F(z) and each s¢F(y).

Denote by ¢ the Cantor fan with the top ¢. The following theorems
are proved in [4], p. 309-311.

(3.16) If a dendroid X is smooth at p, then there is an < i
. ; - preservin,
(single-valued) function f from ¢ onto X such that (@) =\;. ¢
. (3‘1(17) dIi f és ng-preserving (single-valued) function of a dendroid X
onto a dendroi and p is an initial point of X, th i initi
ot ot 1 D , then f(p) is an initial

We Wﬂl prove similar theorems for continua hereditarily unicoherent
at some point and for multivalued functions,

(3.18) THEOREM. Let a continuum X be i
exisis a multivalued function F which maps O g::zo? s/;daif ZZZth I:,imfhew
M F@) = {p}, ’
(i) éf 2 € F(z), then F(x) = [],
(i) F is <;-preserving.

©
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Proof. Since the continnum X is smooth at p, aceording to Theo-
rem (3.1) the quotient space X[pp is a smooth dendroid at the point ¢(p).
Therefore there exists by (3.18) a <-preserving function f: C->X/g,
such that f(t) = ¢(p). Put F(z)= q)‘l(f(w)) for each ze (. The multi-
valued function-F maps € onto X and satisfies the required conditions.
Indeed, F (1) = ¢ Yf(#)) = ¢~ Yp(p)) = {p}. For each point # ¢ C its image
f(#) is a point in X/pp; thus cp“(f(w)) is an equivalence class of the re-
lation g, in X, thus (ii) follows by the definition of F(z). If 4 is a closed
subset of X, then by (2.10) the set F~Y(A)=f"p(4)) is closed in C.
Hence F is upper semi-continuous. We show now that F is an <,-preserving
function. Let # <y, r e F(z) and s ¢ F'(y). Therefore by (ii) it follows
that o(r) = f(z) and ¢(s) = f(y). Since f is an <-preserving function,
2<,y implies f(2) <pf(¥), L. F(2) <unf(®); thus g(r) <, @(8). It
follows that @(r) € p(p)@(s). Since X is smooth at p, the canonical map ¢ is
closed by (2.10); thus it is monotone by (2.5). Hence p(p)p(s) = ¢(ps)
(see [7] Theorem 4.1, (ii), p. 56), and thus @(r) € p(ps). Therefore r € o p(r)
C o Yp(ps) = ps by (2.2), whence r <z s.

(3.19) THEOREM. Let continua X and Y be hereditarily unicoherent al
points p and q respectively. Let F be a multivalued funclion of X onto ¥
such thai

(i) F(p) = {g}
(i) F(x) is connected for each xe X,
(iii) F is <p-preserving.
If p is an initial point of the continuum X, then q is an initial point
of the continuwm Y.

Proof. To show that ¢ is an initial point of ¥ it suffices to prove,
according to Theorem (3.8), that for each y ¢ ¥ we have gy ~ Ty Cly],
where [y] denotes an equivalence class of the weak cutpoint order with
Tespect to the point ¢ in Y. Since p is an initial point in X, by (3.4) the
graph of the relation <, i.e., the set W= {(a,d) e XX X: a <p b}, i8
closed in X x X. Let z e qy\[y]. Then y e Y\go. Let Q =FYy) and Z
= F~Y(2). By the upper semi-continuity of ¥ the sets @ and Z are closed,
and thus compact. We show that (@X Z) ~ W =@. Indeed, if (s,?)
eQxZ and s<pt, then yeF(s), zeF(f) and y <, %, and thus yezg.
Therefore there exist sets U and V which are open in X and such that
QX ZCUxV and (UXV)nW=0. Let K= {zeX: o <pv for some
2eV} Let 2 ¢ K and t e px. Then t <\ @ <p v Tor some v ¢ 7, which implies
the inclusion pz C K. Hence the set K is connected. We show that it is
closed. Let oy ¢ K and #n,—>». Then @, <p v, for some v, ¢ V. Take a con-
vergent subsequence {v, } of the sequence {vs}. This subsequence con-
verges to some v eV and we have @, <ps,. Since the weak cutpoint
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order <p is closed by Theorem (3.4), we have & = lim @,,, <plim v, =9
" .
m—>o0 m—>o0

Therefore K is a continuum. Moreover, ZC ¥V C ¥V C K and thus Z C Int K.
If t e K, then t<pv for some v e ¥; hence (t,0) e W, if 1@, (¢,v) e Ux
XV ~W. This contradiction proves that @ ~n K ='0.

It follows by [16], Lemma 3, p. 161, that F(K) is a continuum. We
will show that F(K) contains 2z in its interior and y e Y\F(K). Since the
set V is opem, X\V is compact, and thus F(X\V) is eonipaet by [13]
Corollary 9.6, p. 180. If ZCV, then by (3.15) (ii) we have F(X\V;
CP(XZ)=F({we X: 2 ¢ F(2)}) C Y \{z}, and thus 2 ¢ F(X\V). Therefore
there exists an open set & such that z¢ @ and G ~F(X\V) = 0; thus
?aeca,}lse V C K, by (3.15) we have z ¢ @ C I\F(X\V) C F(V) C F(K). This:
implies that zeIntF(K). Since 3=Q " K=K~ FYy)= K ~ {reX:
Ye 17’ ()}, we have y ¢ F(K). Thus we have proved that F(K) is a continuurr;
which contains z in its interior and fails to contain y, whereby 2 ¢ T,
Therefore the inclusion gy ~ T, C [y] is proved. "

‘(%ZO)XG'OROLLARhY. Let a continuum X be hereditarily uwicoherent at
a pownt p. X 1s smooth at p if and only if there ewists a multivalued ]
from C onio Y such that wpindtion &

W) F@) = {p},

(ii) F(x) is connected for each ¢ C,

(i) F is <p-preserving.

Indeed, according to Theorem (3.18) the
R ¢ . smoothness of X at
implies that there is such a function F, because the equivalence clagses [gi

are continua for each z¢ X (see (2.9)). If X is an ima
1 ch 9)). ge of € by such
a function F, then it is smooth at » by Theorem (3.19). v

E. Other characterizations. The #wo characterizations of

smoothness which we give here are connected wi :
subsets of the continmum. Wwith the structure of some

o .
(3.21) THEOREM. Let a continuum X be hereditarily unicoherent at

@ poind p. X s smooth o p if and only if for t
i each
following conditions are satis fiod: Yy if f oh sequence Lp—>x the

@) M paa C pa,
fr=1

s el
(i) the set px o |\ pa, is a continuum,

n=1

Proof. Let X be smooth at . If 2y -1, then ﬁ pa C Limpay, = px;
thus condition (i) holds. Put K = paw | ) pz,. Then the set & is con.
n=1

Eﬁt‘;e;dh;b:?;sef each member of the union contains the point p. We will
is closed. Let y,—y and Yn € K. Consider two cages:

icm®
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1. There exists a subsequenee {y,,} of sequence {y,} such that y,, epzy, -
Then y = lim ¥;, € Limpz,, C Limps, = po C K. ’
N0 n—>00 n—>00

2. There exists a subsequence {y,} of sequence {y;} such that y;, ¢ p2,,-
Then obviously ¥y € pan, C K.

Conversely, suppose that X is not smooth at p. Then there exist
some sequences {an} and {bns} such that @m—>a, bm—>Db, bme€pan and
b« X pa (see [7], Theorem 2.3). Take M = {m: b ¢ pam}. If the set M is
finite, then we take a subsequence {a,}, Where s, is not in M. Obviously.

a,,,—> a6, and thus the set K = pa v U pa,,, is a continnum by (ii); there-
m=1

fore the conditions b, —b and b,, <pa,, CK imply be XK; hence

b e E\U pa,,, by the definition of the set M. Thereby b e pa, a contra-

m=1

diction. If M is infinite, take a subsequence {a, }, where fim ¢ M. Obvi-
ously a,, —>a and b € [ pa,, by the definition of M. Thereby condition (i}

m=1
implies b « pa and we obtain a contradiction as above.

A continuum X is said to be couniably generated provided X is ir-
reducible about a countable closed subset 4 of X. If the set 4 has n cluster
points, where n is either finite or countably infinite, then X is called
n-couniably generated (cf. [4], p. 303).

(3.22) TarEorEM. Let a continuum X be hereditarily unicoherent at
a point p. X is smooth at p if and only if

(d) every 1-countadly generated subcontinuum of X containing p is smooth
at the point p.

Proof. The smoothness of X at p gives (d) aceording to (2.8). Con-
versely, suppose that (d) is satisfied. Take a sequence #p—>% and put
o0

K = pz v | px,. Then K is a continuum whieh is irreducible about
n=1

a st {p, &y, &y, s, ...}, and thus it is 1-countably generated; thereby Kis
smooth at p by (d). Applying Theorem (3.21) to the continuum K and
to the sequence {#}, we conclude that conditions (i) and (i) are gatisfied
in K, and thus they hold in X. Using Theorem (3.21) once more, we obtain
the smoothness of X at p.
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