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A type of s¥ with s, relative’ types
by
R. C. Solomon (London)

Abstract. BNV is the space of ulérafilters on N, the integers. If p, g ¢ BN— N, and
@ is a homeomorphism from BN into BN— N such that ¢(p)=g¢, then write p < ¢.
Question: How many distinet (up to isomorphism) predecessors can an ultrafilter have
in this ordering? It has been shewn that there ultrafilters with 2 predecessors and
(assuming the eontinuum hypothesis) for every n ¢ w there are ultrafilters with n prede-
cessors. This paper gives a construction of an ultrafilter with &, predecessors, assuming
the continuum hypothesis.

1. Introduction. N is the space of all ultrafilters on N, the integers.
Tts topology is generated by clopen sets of the form W(E) = {¢: E<q}
for each ECN.

We identify # ¢ N with the principal ultrafilter generated by =.
Let N* = pN—XN. N* is the space of all non-principal ultrafilters on N.

If x is a permutation of N, and p e N*, write =(p) = {n[a]: aep}.
This is also an ultrafilter, isomorphic to p. Put p~ = {¢: 7(p) = ¢ for
some permutation z}. p~ is called the type of p. ]

If ¢ is a homeomorphism of BN into N*, and p ¢ N, ¢(p)=¢, then
p~ is called a relative type of ¢~

In [2], Z. Frolik shewed that every type of N* has at most 2% rela-
tive types.

The continuum hypothesis implies that for every finite n there are
types with precisely = relative types. If a type has no relative types,
it is called minimal. :

In [4], A. K. and B. 8. Steiner shewed that there is a type with
exactly 2% relative types. They stated at the end of the paper that they
did not know if a type could have precisely % relative types. This paper
gives a construction of one such, assuming the continuum hypothesis.

2. Preliminaries. We will use X, Y, Z etc,, with or without super-
seripts such as X" ete., to denote countable subsets of N*. The nth member
of X is written X,.

If X is a countable subset of N*, we say X is discrete if there are
sets {0 ne, SuCh that ¢ e Xn and n # m implies ¢, N on = 0.
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If X is a countable discrete subset of N* and p ¢ N*, write
I[X,pl=|a: {n: ae Xn}ep}.
If ge X, (the closure of X), write
Q[X,q1={aCow: for all beg, Hnea, belXy}.

Say g >p if there is a countable discrete set X such that ¢= 2[X, pl.
We also put ¢~ >p~ whenever ¢ > p.

The basic facts we shall need are in the following lemma.

Lewya. 1) If X o Y is discrete and countable and p e X n Y, then
peIAY.

2) Z[X,p] and Q[X,p] are ulirafiliers, and X, Q[X,pll=»,
and Q[X, Z[X, pl| = ».

3) ¢>p iff p~ is a relative type of ¢~

L) If X~ Y=0,and peX 7, then there are subsequences X' C X,
YCY¥ peX' nY, and either X’ C Y or ¥Y'CX".

5) q>p iff there are countable discrete sequences X and Y such that
I[X,p]l=2[¥Y,q] and XCY, Xn Y =0.

6) > is a total ordering on {p~: p~ < ¢~}

7) A type p~ is minimal iff for no countable discrete set X does p ¢ X— X. -

The proofs are in [1] and [3].

3. THEOREM. Assuming the continuum hypothesis, there is an ultrafilter ¢
such that ¢~ has precisely », relative types.

Proof. Let a,, n, m ¢ 0, be infinite subsets of » such that

i) @, nay, =@ for m # m’.
i) Jay = o for all n.
mew

iii) a%'=|J a where fu(m) is an infinite subset of w.

r€fn(m)

(i.e. {a}}y ., is 2 partition of w, and {a"}, ., is coarser than {al},,...)

Now let X}, be minimal types s.t. ab, ¢ X%, for all m.

We will define X7}, for all n. Suppose we have defined X2, for some n
and all m. Let ¥}, be minimal types such that f,(m) e Y%, and let X%
= J[X", Y71

Thus we can define X7, for all n, m. From the construction, ay, e Xo,,
and X" C X" X.

Our aim is to construct an ultrafilter ge) X"; such that if ps
new

= Q[X", q], then the only relative types of ¢~ are the Py -
First we state a few facts about the construction:

@
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A) q=D > P> . >Dn > ...

B) p,= 2[Y" ppial

C) If Pn>D > Dnsy, then either p~ = p7 or p~ = p7.,.

D) If ae X%, then for infinitely many r, a e X%

E) If p, >p for all n, then there is a p’ and a countable discrete set
X'C () X" such ihat g e X' and pn >p’ for all n and p’' = Q[X, q].

Proofs. A, B, C and D are routine applications of the Lemma.
To prove E, assume ¢= X[X,p], where we can assume that X C X.
Let X=Y o Z, where YC{) X" and Zn ) X*=0.
Case 1. ge Y. Let ¥ be made discrete by {c,},.,. Let
X' ={X%: ¢, e X0}
Case 2. g¢ Z. Let Z be made discrete by {Cutnew- Let
X' ={X": Z, e X"~ X" and ¢, e X7} .

In both cases it is routine to check that X’ is a countable discrete set
such that ¢ € X', and for each n, there is X' C X", s.t. g« X" and X" C X",
So if we let p' = Q[X’, ¢], then p, > p’ for all n.

From the facts C and E above, to ensure that the only relative types
of ¢~ are the p}, it suffices to shew that for every countable discrete
subset X of (_| X", either ¢ ¢ X or else g ¢ X ~ X" for some 7.

new

Enumerate (C.H.) the countable discrete subsets of | | X" as (X*
new

At each stage o we will add a set d, to g, s.b. either d, ¢ X2, for any m,
or else for some fixed n, d,= {a%: X" e X°}. The first case will ensure
that g ¢ X% and the second that g e X* ~ X™. In the latter case (R[Xe q))~
= Py

INDUCTION HYPOTHESIS. At each stage o we will construct a filter T,
s.t. for a e F,, and any n, {m: a e X%} is infinite.

Stage 0. Let d, = o.

Stage a. Suppose we have constructed d;, and ¥, for < a. Let { F,
generate a filter P. F' is countably generated, so assume it is generated
by {é,}ncwy Where e, , Ce,.

For each n, write h, = {J{al: X7 « X°. :

Case 1. For some n, the filter generated by h, and F obeys the in-
duction hypothesis. Then let d, = ,,.

Case 2. Otherwise.

Define sets a, as follows: h; cannot be added to ¥. So for some %,
ena, e X, and X; ¢ X° Let a, = al ~e,.

Suppose we have defined a; for ¢<<j. b, w ... u k; cannot be added

>u<w1‘
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to F. Hence for some n, ¢; ~ a),— (b © .. v hy) € XZL?. (Otherwise kb, u ...
... w k; would already be in F). Let a;=¢; af— (g v o By).
Let d,= | a,. For each n,mew, &, N d, e X™ for infinitely many

r's. Hence if F:sl; generated by d, and F, F, obeys the induetion hypothesis.

However, if X% ¢X®, d,nay 18 contained in the union of finitely
many as, for j< n. By the contrapositive of D, d,~a} ¢ X . Hence
if ¢ contains d,, g ¢ X%

Finally, let g be the unique ultrafilter containing #, for every a,'

and g e/) X* Then the only relative types of ¢~ are the p;.
n

£w
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Almost continous functions on I"
by
Kenneth R. Kellum (Birmingham, Ala.)

Abstract. Suppose o and m are positive integers and let I denote the closed unib
interval [0, 1]. It is proved that there exists a pair of almost continmous functions
f: In>Im and g: Im->I* such that the composed map gf: I"—I" has no fixed point
and is not almost continuous. The function f is a dense subset of Intm.

The main purpose of this paper is to give a partial answer to a question
posed by J. Stallings [2]. Unless otherwise stated, all functions considered
have domain and range I", where I denotes the closed unit interval, [0, 1],
and = is a positive integer. No distinetion is made between a function
and its graph. Tf each open set containing the funetion f also contains
a continuous function with the same domain as f, then f is said to be
almost continuous. Stallings introduced almost continuity in order to
prove a generalization of the Brouwer fixed point theorem. He asked
the following question. “Under what conditions is it true that if f: X-Y
is almost continuous and ¢: ¥ - Z is almost continuous, then the composed
map gf: X—Z is almost continuous?” In the present paper it is shown
that there exists a pair of almost continuous functions f: I"—I™ and
g: I™—>I" such that gf has no fixed point. Since each almost continuous
function on I has a fixed point, it follows that gf is not almost continuous.

Suppose f: A->B. The statement that the subset C of AXB is
a Dlocking sel of f in A x B means that € is closed relative to 4 X B,
¢ containg no point of f and € intersects g whenever g is a continuous
function with domain A and range being a subset of B. If no proper sub-
set of € is a blocking set of fin 4 x B, C is said to be a minimal blocking
set of f in A x B. If the set ¢ is a minimal blocking set of some function
g: A—B, then C is said to be a minimal blocking set in A X B.

Suppose D is a subset of A X B. Then p4(D) will denote the projection
of D into A and ps(D) will denote the projection of D into B. If K is
a subset of pa(D), then D| K denotes the part of D with A-projection K.

THEOREM 1. Suppose f: I"—I™ is not almost continuous. (To simplify
notation, we denote I™ by A and I™ by B.) Then there exists a minimal
blocking set C-of f in A X B. Further, pa(C) is a non-degenerate continuum
and pg(C) = B.
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