

A type of βN with s_0 relative types

by

R. C. Solomon (London)

Abstract. βN is the space of ultrafilters on N, the integers. If $p,q\in\beta N-N$, and φ is a homeomorphism from βN into $\beta N-N$ such that $\varphi(p)=q$, then write p<q. Question: How many distinct (up to isomorphism) predecessors can an ultrafilter have in this ordering? It has been shewn that there ultrafilters with 2^{s_0} predecessors and (assuming the continuum hypothesis) for every $n\in\omega$ there are ultrafilters with n predecessors. This paper gives a construction of an ultrafilter with n predecessors, assuming the continuum hypothesis.

1. Introduction. βN is the space of all ultrafilters on N, the integers. Its topology is generated by clopen sets of the form $W(E)=\{q\colon E\in q\}$ for each $E\subset N$.

We identify $n \in N$ with the principal ultrafilter generated by n. Let $N^* = \beta N - N$. N^* is the space of all non-principal ultrafilters on N.

If π is a permutation of N, and $p \in N^*$, write $\pi(p) = \{\pi[a]: a \in p\}$. This is also an ultrafilter, isomorphic to p. Put $p^* = \{q: \pi(p) = q \text{ for some permutation } \pi\}$. p^* is called the type of p.

If φ is a homeomorphism of βN into N^* , and $p \notin N$, $\varphi(p) = q$, then p^{\sim} is called a *relative type* of q^{\sim} .

In [2], Z. Frolik shewed that every type of N^* has at most 2^{\aleph_0} relative types.

The continuum hypothesis implies that for every finite n there are types with precisely n relative types. If a type has no relative types, it is called minimal.

In [4], A. K. and E. S. Steiner shewed that there is a type with exactly 2^{\aleph_0} relative types. They stated at the end of the paper that they did not know if a type could have precisely \aleph_0 relative types. This paper gives a construction of one such, assuming the continuum hypothesis.

2. Preliminaries. We will use X, Y, Z etc., with or without superscripts such as X^n etc., to denote countable subsets of X^* . The *n*th member of X is written X_n .

If X is a countable subset of N^* , we say X is discrete if there are sets $\{c_n\}_{n\in\omega}$ such that $c_n\in X_n$ and $n\neq m$ implies $c_n\cap c_m=\emptyset$.

If X is a countable discrete subset of N^* , and $p \in N^*$, write

$$\Sigma[X, p] = \{a: \{n: a \in X_n\} \in p\}.$$

If $q \in \overline{X}$, (the closure of X), write

$$\Omega[X, q] = \{a \subset \omega : \text{ for all } b \in q, \exists n \in a, b \in X_n\}.$$

Say q > p if there is a countable discrete set X such that $q = \Sigma[X, p]$. We also put $q^{\sim} > p^{\sim}$ whenever q > p.

The basic facts we shall need are in the following lemma.

LEMMA. 1) If $X \cup Y$ is discrete and countable and $p \in \overline{X} \cap \overline{Y}$, then $p \in \overline{X} \cap \overline{Y}$.

- 2) $\Sigma[X,p]$ and $\Omega[X,p]$ are ultrafilters, and $\Sigma[X,\Omega[X,p]]=p$, and $\Omega[X,\Sigma[X,p]]=p$.
 - 3) q > p iff p^{\sim} is a relative type of q^{\sim} .
- 4) If $X \cap Y = \emptyset$, and $p \in \overline{X} \cap \overline{Y}$, then there are subsequences $X' \subset X$, $Y' \subset Y$, $p \in \overline{X}' \cap \overline{Y}'$, and either $X' \subset \overline{Y}'$ or $Y' \subset \overline{X}'$.
- 5) q > p iff there are countable discrete sequences X and Y such that $\Sigma[X, p] = \Sigma[Y, q]$ and $X \subset \overline{Y}, X \cap Y = \emptyset$.
 - 6) > is a total ordering on $\{p^{\sim}: p^{\sim} < q^{\sim}\}$.
 - 7) A type p^{\sim} is minimal iff for no countable discrete set X does $p \in \overline{X} X$. The proofs are in [1] and [3].
- **3.** Theorem. Assuming the continuum hypothesis, there is an ultrafilter q such that q^{\sim} has precisely κ_0 relative types.

Proof. Let a_m^n , n, $m \in \omega$, be infinite subsets of ω such that

- i) $a_m^n \cap a_{m'}^n = \emptyset$ for $m \neq m'$.
- ii) $\bigcup a_m^n = \omega$ for all n.
- iii) $a_m^{n+1} = \bigcup_{r \in f_n(m)} a_r^n$, where $f_n(m)$ is an infinite subset of ω .
- (i.e. $\{a_m^n\}_{m \in \omega}$ is a partition of ω , and $\{a_m^{n+1}\}_{m \in \omega}$ is coarser than $\{a_m^n\}_{m \in \omega}$.) Now let X_m^1 be minimal types s.t. $a_m^1 \in X_m^1$ for all m.

We will define X_m^n for all n. Suppose we have defined X_m^n for some n and all m. Let Y_m^n be minimal types such that $f_n(m) \in Y_m^n$, and let $X_m^{n+1} = \Sigma[X^n, Y_m^n]$.

Thus we can define X_m^n for all n, m. From the construction, $a_m^n \in X_m^n$, and $X^{n+1} \subset \overline{X}^n - X$.

Our aim is to construct an ultrafilter $q \in \bigcap_{n \in \omega} \overline{X}^n$; such that if $p_n = \mathcal{Q}[X^n, q]$, then the only relative types of q^{\sim} are the p_n^{\sim} .

First we state a few facts about the construction:

- B) $p_n = \Sigma[Y^n, p_{n+1}].$
- C) If $p_n \geqslant p \geqslant p_{n+1}$, then either $p^{\sim} = p_n^{\sim}$ or $p^{\sim} = p_{n+1}^{\sim}$.
- D) If $a \in X_m^{n+1}$, then for infinitely many r, $a \in X_r^n$.
- E) If $p_n > p$ for all n, then there is a p' and a countable discrete set $X' \subset \bigcup_{n \in m} X^n$ such that $q \in \overline{X}'$ and $p_n > p'$ for all n and $p' = \Omega[X', q]$.

Proofs. A, B, C and D are routine applications of the Lemma. To prove E, assume $q = \Sigma[X, p]$, where we can assume that $X \subset \overline{X}^1$. Let $X = Y \cup Z$, where $Y \subset \bigcap \overline{X}^n$ and $Z \cap \bigcap \overline{X}^n = \emptyset$.

Case 1. $q \in \overline{Y}$. Let Y be made discrete by $\{c_n\}_{n \in \omega}$. Let

$$X' = \{X_m^n : c_n \in X_m^n\}.$$

Case 2. $q \in \overline{Z}$. Let Z be made discrete by $\{c_n\}_{n \in \omega}$. Let

$$X' = \{X_m^n \colon Z_r \in \overline{X}^n - \overline{X}^{n+1} \text{ and } c_r \in X_m^n\}$$
 .

In both cases it is routine to check that X' is a countable discrete set such that $q \in \overline{X}'$, and for each n, there is $X'' \subset X'$, s.t. $q \in \overline{X}''$ and $X'' \subset \overline{X}^n$. So if we let $p' = \Omega[X', q]$, then $p_n > p'$ for all n.

From the facts C and E above, to ensure that the only relative types of q^{\sim} are the p_n^{\sim} , it suffices to shew that for every countable discrete subset X of $\bigcup X^n$, either $q \notin \overline{X}$ or else $q \in \overline{X \cap X^n}$ for some n.

Enumerate (C.H.) the countable discrete subsets of $\bigcup_{n < \alpha} X^n$ as $\langle X^{\alpha} \rangle_{\alpha < \alpha_1}$.

At each stage a we will add a set d_a to q, s.t. either $d_a \notin X_m^a$ for any m, or else for some fixed n, $d_a = \{a_m^n : X_m^n \in X^a\}$. The first case will ensure that $q \notin \overline{X}^a$, and the second that $q \in \overline{X}^a \cap X^n$. In the latter case $(\Omega[X^a, q])^{\sim} = p_n^{\sim}$.

INDUCTION HYPOTHESIS. At each stage a we will construct a filter F_a s.t. for $a \in F_a$, and any n, $\{m: a \in X_m^n\}$ is infinite.

Stage 0. Let $d_0 = \omega$.

Stage a Suppose we have constructed d_{β} , and F_{β} for $\beta < a$. Let $\bigcup F_{\beta}$ generate a filter F. F is countably generated, so assume it is generated by $\{e_n\}_{n \in \omega}$, where $e_{n+1} \subseteq e_n$.

For each n, write $h_n = \bigcup \{a_m^n : X_m^n \in X^a\}$.

Case 1. For some n, the filter generated by h_n and F obeys the induction hypothesis. Then let $d_a = h_n$.

Case 2. Otherwise.

Define sets a_n as follows: h_1 cannot be added to F. So for some n, $e_1 \cap a_{n_1}^1 \in X_{n_1}^1$ and $X_{n_1}^1 \notin X^{\alpha}$. Let $a_1 = a_{n_1}^1 \cap e_1$.

Suppose we have defined a_i for i < j. $h_1 \cup ... \cup h_j$ cannot be added

R. C. Solomon

212

to F. Hence for some n, $e_j \cap a_{nj}^j - (h_1 \cup ... \cup h_j) \in X_{nj}^j$. (Otherwise $h_1 \cup ... \cup h_j$ would already be in F). Let $a_j = e_j \cap a_{nj}^j - (h_1 \cup ... \cup h_j)$.

Let $d_a = \bigcup_{n \in \omega} a_n$. For each $n, m \in \omega$, $e_n \cap d_a \in X_r^m$ for infinitely many

r's. Hence if F_a is generated by d_a and F, F_a obeys the induction hypothesis. However, if $X_m^n \in X^a$, $d_a \cap a_m^n$ is contained in the union of finitely many a_r^p s, for j < n. By the contrapositive of D, $d_a \cap a_m^n \notin X_m^n$. Hence if q contains d_a , $q \notin \overline{X}^a$.

Finally, let q be the unique ultrafilter containing F_a for every a, and $q \in \bigcap \overline{X}^n$. Then the only relative types of q^{\sim} are the p_n^{\sim} .

References

- [1] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), pp. 1-24.
- [2] Z. Frolik, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), pp. 87-91.
- [3] M. E. Rudin, Types of ultrafilters, Wisconsin Topology Seminar. (1965).
- [4] A. K. Steiner and E. F. Steiner, Relative types of points in βN N, Trans. Amer. Math. Soc. 159 (1971), pp. 279-286.

DEPARTMENT OF MATHEMATICS BEDFORD COLLEGE, London

Recu par la Rédaction le 5. 4. 1972

Almost continous functions on In

by

Kenneth R. Kellum (Birmingham, Ala.)

Abstract. Suppose n and m are positive integers and let I denote the closed unit interval [0,1]. It is proved that there exists a pair of almost continuous functions $f\colon I^n\to I^m$ and $g\colon I^m\to I^n$ such that the composed map $gf\colon I^n\to I^n$ has no fixed point and is not almost continuous. The function f is a dense subset of I^{n+m} .

The main purpose of this paper is to give a partial answer to a question posed by J. Stallings [2]. Unless otherwise stated, all functions considered have domain and range I^n , where I denotes the closed unit interval, [0,1], and n is a positive integer. No distinction is made between a function and its graph. If each open set containing the function f also contains a continuous function with the same domain as f, then f is said to be almost continuous. Stallings introduced almost continuity in order to prove a generalization of the Brouwer fixed point theorem. He asked the following question. "Under what conditions is it true that if $f\colon X\to Y$ is almost continuous and $g\colon Y\to Z$ is almost continuous, then the composed map $f\colon X\to Z$ is almost continuous?" In the present paper it is shown that there exists a pair of almost continuous functions $f\colon I^n\to I^m$ and $g\colon I^m\to I^n$ such that gf has no fixed point. Since each almost continuous function on I^n has a fixed point, it follows that gf is not almost continuous

Suppose $f \colon A \to B$. The statement that the subset C of $A \times B$ is a blocking set of f in $A \times B$ means that C is closed relative to $A \times B$, C contains no point of f and C intersects g whenever g is a continuous function with domain A and range being a subset of B. If no proper subset of C is a blocking set of f in $A \times B$, C is said to be a minimal blocking set of f in $A \times B$. If the set C is a minimal blocking set of some function $g \colon A \to B$, then C is said to be a minimal blocking set in $A \times B$.

Suppose D is a subset of $A \times B$. Then $p_A(D)$ will denote the projection of D into A and $p_B(D)$ will denote the projection of D into B. If K is a subset of $p_A(D)$, then $D \mid K$ denotes the part of D with A-projection K.

THEOREM 1. Suppose $f\colon I^n\to I^m$ is not almost continuous. (To simplify notation, we denote I^n by A and I^m by B.) Then there exists a minimal blocking set C of f in $A\times B$. Further, $p_A(C)$ is a non-degenerate continuum and $p_B(C)=B$.