

Homogeneous algebras are simple

bу

B. Ganter (Darmstadt), J. Plonka (Wrocław), and H. Werner (Darmstadt)

Abstract. Homogeneous algebras were defined by E. Marczewski (see [1]). Here we prove that, with one exception (namely the 4-element Świerczkowski algebra), all homogeneous algebras are simple. Some additional remarks connected with this topic are added.

In his paper [1] Marczewski investigated homogeneous algebras, i.e. algebras with the full symmetric group as the group of automorphisms. In this note we proove that, with a single exception, all nontrivial homogeneous algebras are simple.

Let us first recall some definitions used here: An operation $p \colon A^n \to A$ is called

$$\begin{split} \mathit{trivial} \ \ (\text{or} \ \ & a \ \ \mathit{projection}) \Leftrightarrow (\exists i \in \{1, \, \dots, \, n\}) (\nabla x_1 \, \dots \, x_n \in A) \, p \, (x_1, \, \dots, \, x_n) = x_i, \\ & quasitrivial \Leftrightarrow (\nabla x_1 \, \dots \, x_n) \, p \, (x_1, \, \dots, \, x_n) \in \{x_1, \, \dots, \, x_n\}, \\ & idempotent \ \Leftrightarrow (\nabla x \in A) \, p \, (x, \, \dots, \, x) = x. \end{split}$$

An algebra $\mathfrak{A}=(A\,,F)$ is called trivial (quasitrivial, idempotent) iff all polynomials (i.e. algebraic operations) on \mathfrak{A} are trivial (quasitrivial, idempotent).

An algebra $\mathfrak{B}=(B,G)$ is called the *idempotent reduct* of the algebra $\mathfrak{A}=(A,F)$ iff the polynomials in \mathfrak{B} are exactly the idempotent polynomials on \mathfrak{A} , and in particular A=B holds. The algebra $\mathfrak{A}=(A,F)$ is called *simple*, iff the only congruences on \mathfrak{A} are id_A and $A\times A$.

Theorem. For a nontrivial homogeneous algebra $\mathfrak{A}=(A\,,F)$ then either

- (1) A is simple, or
- (2) At is the idempotent reduct of a 2-dimensional vector space over the 2-element field (or, in other words, the four-element algebra of Świerczkowski, see [3], p. 94).

LEMMA 1. Let q be a quasitrivial polynomial on the homogeneous algebra $\mathfrak{A} = (A, F)$, where $|A| \neq 2$; then either q is trivial or \mathfrak{A} is simple.

Proof. Let q be nontrivial, then the algebra $\mathfrak{B}=(A,q)$ is nontrivial, hence by Świerczkowski [3] (Th. 1, p. 94) \mathfrak{B} possesses nontrivial polynomials of arity less than or equal to |A|. Let p be a nontrivial

Homogeneous algebras are simple

219

polynomial on \mathfrak{B} of minimal arity n. As the composition of quasitrivial operations is again quasitrivial, we infer that p is quasitrivial, and moreover (see [1], 1.2 (v)):

(1.0)
$$p(x_1,...,x_n) = x_i$$
 if all $x_1,...,x_n$ are different, for some $i \in \{1,...,n\}$; say $i = 1$.

As p has minimal arity, any identification of variables leads to a projection, but as p is nontrivial, not each of those projections can be the first projection. So we have three cases:

$$(1.1) p(x_1, x_1, x_3, ..., x_n) = x_i, i \in \{3, ..., n\}, \text{ say } i = n,$$

$$(1.2) \quad p(x_1, ..., x_i, x_i, ..., x_n) = x_i, \quad i \in \{2, ..., n\}, \text{ say } i = 2,$$

(1.3)
$$p(x_1, ..., x_i, x_i, ..., x_n) = x_j, \quad i, j \in \{2, ..., n\}, i \neq j,$$

say $i = 2$ and $j = n$.

In this case we have $n \ge 4$.

Let $\theta \neq id_A$ be a congruence on \mathfrak{B} and $a \theta b$ for some $a \neq b$. Whenever $a, b, a_3, ..., a_n$ are different, we have:

in case (1.1)

$$a = p(a, b, a_3, ..., a_n) \theta p(a, a, a_3, ..., a_n) = a_n$$

hence $\theta = A \times A$;

in case (1.2)

$$a_3 = p(a_3, a, b, a_4, ..., a_n) \theta p(a_3, a, a, a_4, ..., a_n) = a$$

hence $\theta = A \times A$;

in case (1.3)

$$a_3 = p(a_3, a, b, a_4, ..., a_n) \theta p(a_3, a, a, a_4, ..., a_n) = a_n$$

hence $A - \{a, b\}$ is contained in one θ -class.

If 4 < |A| we get in case (1.3) also $\theta = A \times A$, and so only the case (1.3), where |A| = 4, remains. Let us assume that $\mathfrak B$ is not simple. Then we have |A| = n = 4 and p(x, x, z, u) cannot equal z or u, as by (1.1) we would have simplicity. So we have the equations p(x, x, z, u) = x and p(x, y, y, u) = u. For different $a, b \in A$ we get a = p(a, a, a, b) = b, which is a contradiction. We have now proved that $\mathfrak B$ is simple. As $\mathfrak B$ is a reduct of $\mathfrak A$, $\mathfrak A$ also has to be simple.

LEMMA 2. Let $\mathfrak{A}=(A\,,F)$ be a homogeneous algebra. If $|A|\neq 4$ and \mathfrak{A} is not quasitrivial, then \mathfrak{A} is simple.

Proof. By [1] 1.2(iv) A has to be finite and there is an n-ary polynomial s on $\mathfrak A$ such that n=|A|-1 and $s(x_1,\ldots,x_n)=x_{n+1}$ whenever $\{x_1,\ldots,x_{n+1}\}=A$. The polynomial $s(x_1,x_1,x_2,\ldots,x_{n-1})$ has to be quasitrivial (see [1], 1.2 (i)), and so we have, for different x_1,\ldots,x_{n-1} , either

$$(2.1) s(x_1, x_1, x_2, ..., x_{n-1}) = x_1, or$$

(2.2)
$$s(x_1, x_1, x_2, ..., x_{n-1}) = x_i, i \in \{2, ..., n-1\}, \text{ say } i = n-1.$$

In this case we have $n \ge 3$.

Let $\theta \neq \mathrm{id}_A$ be a congruence on $\mathfrak A$ and $a \; \theta \; b$ for some $a \neq b$. $A = \{a,b,a_2,\dots,a_n\}$ and we have in case (2.1)

$$a_n = s(a, b, a_2, ..., a_{n-1}) \theta s(a, a, a_2, ..., a_{n-1}) = a$$

hence $\theta = A \times A$;

in case (2.2)

$$a_n = s(a, b, a_2, ..., a_{n-1}) \theta s(a, a, a_2, ..., a_{n-1}) = a_{n-1},$$

hence $A - \{a, b\}$ is contained in one θ -class.

Because of $|A| \neq 4$ and $n \geqslant 3$ in case (2.2) we get $\theta = A \times A$ even in that case.

LEMMA 3. Let $\mathfrak{A}=(A\,,F)$ be a nontrivial homogeneous algebra. If \mathfrak{A} is not simple, then \mathfrak{A} is the idempotent reduct of a 2-dimensional vector space over the 2-element field.

Proof. By Lemma 1 $\mathfrak A$ cannot have quasitrivial polynomials which are not trivial. By Lemma 2 we have |A|=4 and there is a ternary polynomial s(x,y,z) satisfying s(x,y,z)=u if $A=\{x,y,z,u\}$ and s(x,x,y)=s(x,y,x)=s(y,x,x)=y, as otherwise by (2.1) the algebra would be simple.

Define on A an operation $+: A^2 \rightarrow A$ such that $\mathfrak{B} = (A, +)$ is the 2-dimensional vector space over the 2-element field. It is an easy computation that s(x, y, z) = x + y + z. In \mathfrak{A} we have a congruence which is a partition of A into two 2-element classes. As any permutation of A is an automorphism of \mathfrak{A} , any such partition is a congruence on \mathfrak{A} . So the algebras \mathfrak{A} and \mathfrak{B} have the same congruences.

By [4] 6.5 the algebra ${\mathfrak B}$ is affine complete, which means that any operation which preserves the congruences of ${\mathfrak B}$ is an algebraic function on ${\mathfrak B}$.

The algebraic functions on $\mathfrak B$ are of the form $\sum_{i=1}^m x_i + a$. Every polynomial of $\mathfrak A$ preserves the congruences of $\mathfrak B$ and moreover is idem-

icm[©]

potent, and so it is of the form $\sum_{i=1}^{m} x_i$, where m is odd. All these operations are generated by the polynomial s(x, y, z) = x + y + z, and so $\mathfrak A$ is the idempotent reduct of $\mathfrak B$.

By these three lemmas the theorem is proved.

We wish to add another fact about quasitrivial homogeneous operations, namely

THEOREM. Every quasitrivial homogeneous operation on a finite set is generated (by composition) by the ternary discriminator

$$d(x, y, z) = \begin{cases} x & if \quad x \neq y, \\ z & if \quad x = y. \end{cases}$$

Proof. If the set X is finite, then by [2] the algebra $\mathfrak{A}=(X,d)$ is quasi-primal, which means that any operation preserving subalgebras and isomorphisms between subalgebras is a polynomial on \mathfrak{A} . As any subset of X forms a subalgebra of \mathfrak{A} , that means that any quasitrivial homogeneous operation on X is a polynomial on \mathfrak{A} .

References

- [1] E. Marczewski, Homogeneous operations and homogeneous algebras, Fund. Math. 56 (1964), pp. 81-103.
- [2] A. F. Pixley, The ternary discriminator function in universal algebra, Math. Ann. 191 (1971), pp. 167-180.
- [3] S. Świerczkowski, Algebras which are independently generated by every n elements, Fund. Math. 49 (1960), pp. 93-104.
- [4] H. Werner, Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Zeitschr. 121 (171), pp. 111-140.

Recu par la Rédaction le 16. 5. 1972

Addition and correction to the paper "Diagonal algebras", Fund. Math. 58 (1966), pp. 309-321

by

Jerzy Płonka (Wrocław)

In the paper quoted in the title the second part of Theorem 2 was formulated wrongly. That was observed by Dawid Kelly (Ludwigshafen). In this note we correct this mistake, namely the following is true:

Let $\mathfrak{D}_{A_1,A_2,...,A_n} = (A_1 \times ... \times A_n; d^*(x_1,...,x_n))$ be an n-dimensional diagonal algebra. Then the minimal cardinal number of sets of generators of $\mathfrak{D}_{A_1,A_2,...,A_n}$ is equal to $\max(a_1,a_2,...,a_n)$, where $a_p = |A_p| \ (p=1,...,n)$.

Proof. If G is a set of generators, it must contain at least one element of each coset in each direction (see [1]). Hence,

$$|G| \geqslant \max(\alpha_1, \alpha_2, ..., \alpha_n)$$
.

We can assume without loss of generality that if $a_i \leq a_j$, then $A_i \subset A_j$. Let us fix $a_0 \in A_1 \cap A_2 \cap ... \cap A_n$. For any $a \in A_1 \cup A_2 \cup ... \cup A_n$ we define the n-tuple $[q_1, q_2, ..., q_n]$ as follows: $q_i = a$ if $a \in A_i$ and $q_i = a_0$ if $a \notin A_i$. Let G_0 be the set of all possible n-tuples $[q_1, q_2, ..., q_n]$. Then, by (i) from [1], G_0 is the set of generators of $\mathfrak{D}_{A_1, A_2, ..., A_n}$ and

$$|G_0| = \max(\alpha_1, \alpha_2, ..., \alpha_n)$$
. Q.e.d.

Additionally we show an interesting example of a diagonal algebra. We say that an algebra $\mathfrak{A}_1=(A;\,F_1)$ is a *reduct* of algebra $\mathfrak{A}_2=(A;\,F_2)$ if $F_1\subset A(\mathfrak{A}_2)$. We have

Theorem. For each $n \ge 2$ there exists an n-dimensional proper diagonal algebra which is a reduct of some abelian group.

Proof. Let $p_1, p_2, ..., p_n$ be a sequence of different prime integers. Let $\mathfrak{G} = (G; \cdot, \cdot^{-1})$ be an abelian group with the exponent $m = p_1 p_2 ... p_n$, i.e. \mathfrak{G} satisfies $x^m = 1$ and does not satisfy any equality $x^k = 1$, where k < m.