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Homogeneous algebras are simple
by
B. Ganter (Darmstadt), J. Plonka (Wroclaw), and H. Wemer (Darmstadt)

Abstract. Homogeneous algebras were defined by E. Marczewski (see [1]). Here we
prove that, with one exception (namely the 4-element Swierczkowski algebra), all
homogeneouns algebras are simple. Some additional remarks connected with this topic
are added.

In his paper [1] Marczewski investigated homogeneous algebras,
i.e. algebras with the full symmetrie group as the group of automorphisms.
In this note we proove that, with a single exception, all nontrivial homo-
geneous algebras are simple.

Let us first recall some definitions used here: An operation p: A" 4
is called
trivial (or a projection)<> (i e {l, ..., n})(Vay ... 2, € A)D (@, -.\ @) = @5,

quasitrivial < (Va, ... £,)P(@y, vy $,) € {@y,y ooy T},
idempotent < (Ve e A)p(z, ..., s) = o.

An algebra U = (4, F) is called #rivial (quasitrivial, idempotent) iff
all polynomials (i.e. algebraic operations) on U are trivial (quasitrivial,
idempotent).

An algebra B = (B, @) is called the idempotent reduct of the algebra
A = (4, F) iff the polynomials in B are exactly the idempotent poly-
nomials on 9, and in particular 4 = B holds. The algebra A = (4, F)
is called simple, iff the only congruences on U are id4 and 4 X A.

THEOREM. For a nontrivial homogeneous algebra N = (A, F') then either

(1) A is simple, or

(2) A is the idempotent reduct of a 2-dimensional vector space over
the 2-element field (or, in other words, the four-element algebra of Swierce-
kowski, see [3], p. 94).

LevMma 1. Let g be a quasttrivial polynomial on the homogeneous algebra
A = (A, F), where |A| # 2; then either g is trivial or A is simple.

Proof. Let ¢ be nontrivial, then the algebra B = (4,q) is non-
trivial, hence by Swierczkowski [3] (Th. 1, p. 94) B possesses nontrivial
polynomials of arity less than or equal to |A]. Let p be a nontrivial
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polynomial on B of minimal arity . As the composition of quasitrivial
operations is again quasitrivial, we infer that p is quagitrivial, and
_moreover (see [1], 1.2 (v)):

(1.0)  p(&yy ey tn) = I all @y, ..., &n are different, for some
ie{l,..,n}; say i=1.

As p bas minimal arity, any identification of variables leads to a pro-
jection, but as p is nontrivial, not each of those projections can be the
first projection. So we have three cases:
(1.1) Py y Byy Byy oory Ln) = Tiy 1€{3,...,n}, say i=1"n,
(L.2) (&4, ey Biy Bty ovy Tu) = Bay © 4e{2,..,n}, say i=2,
(1.3) P&y coey By Biy ooy @) = By, 1, J {2,000y m}y 0],

' » say i=2 and j=n.
In this case we have n = 4.

Let 8 # id4 be a congruence on B and a 6 b for some a # b. Whenever
a,b, a, ..., an are different, we have:
" in cage (1.1)

a=7pla,b,a,, ..,a)0p(a,a,a,..,0,)=a,,

hence 6= 4 X 4;
in case (1.2)

Ay =D(ag, 0y b,y Qyy ey ) 00 (a5, 0,0, 4y, ...,0,)=a,

hence 0 = A X 4;
in ease (1.3)

Uy = D(0gy @y B, Qyy ooy @) O D0y, @y 0, 0yy ey @) = ay

hence A—{a, b} is contained in one 0-class.

If 4 << |A]| we get in case (1.3) also 6 = A X 4, and so only the case
(1.3), where |A]= 4, remains. Let us assume that %3 is not simple. Then
we have |A] =n=4 and p(w, , 2, ) cannot equal z or », as by (1.1)
we would have simplicity. So we have the equations p(», z,2,u) ==
and p(x,¥y,y, ) = u. For different a,b ¢ A we get a = p(a, a,a,b) =1,
which is a contradiction. We have now proved that B is simple. As B is
a reduct of U, U also has to be simple. )

Lemma 2, Let A= (4, F) be a homogeneous algebra. If |A| # 4 and
A is not gquasitrivial, then Y is simple.
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Proof. By [1] 1.2(iv) 4 has to be finite and there is an n-ary
polynomial s on U such that n = |4]—1 and s(2,, ..., &,) = #,,, Whenever
{&y, ..y Tyys} = A. The polynomial s(z,, @, 2,, ..., &,_,) has to be quasi-
trivial (see [1], 1.2 (i)), and so we have, for different z,, ..., #,_;, either

(2.1) (g, &1y Bay ooy Tyy) = @y, OF
(2.2)  8(y, Byy Byy very Tyq) = L5, 1€{2,...,n—1}, say i=n—1.

In this case we have n > 3.

Let 6 # ids be a congruence on U and a 6b for some a #b.
A={a,b,a,,..,a,} and we have

in case (2.1)

U= 8(Cy b, Oy eeey B y) 08(ay 8,85, 058, ) =a,
hence 6= 4 x A4;
in case (2.2)

U= 8(0y 0, Qo ooy @y ) 08(0,y 0y Uyy eny By g) = By

hence 4— {a, b} is contained in one 6-class.
Because of |4| # 4 and % >3 in case (2.2) we get 6 = A X 4 even
in that case.

LemMA 3. Let A= (4, F) be a nontrivial homogeneous algebra. If A is
not simple, then A is the idempotent reduct of a 2-dimensional veclor space
over the 2-element field.

Proof. By Lemma 1 9 cannot have quasitrivial polynomials which
are not trivial. By Lemma 2 we have |4| = 4 and there is a ternary
polynomial s(z,y,#) satisfying s(z,y,2)=u if A={z,y,2,u} and
s(x,x,y) = s(@,y,x) = s(y,, ) =y, as otherwise by (2.1) the algebra
would be simple.

Define on A an operation +: A42->A4 such that B = (4,4) is the
2-dimensional vector space over the 2-element field. It is an easy
computation that s(z, ¥, 2) = #+y-+2 In % we have a congruence which
is @ partition of 4 into two 2-element classes. As any permutation of 4 is
an automorphism of %, any such partition is a congruence on 2. So the
algebras A and B have the same congruences.

By [4] 6.5 the algebra B is affine complete, which means that any .
operation which preserves the congruences of % is an algebraic fune-
tion on B.

m
The algebraic functions on % are of the form } @;+a. Every

i=1
polynomial of ¥ preserves the congruences of B and moreover is idem-
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mn
potent, and so it is of the form > @i, where m is 0dd. All these operations

i=1
are generated by the polynomial s(z, ¥, 2) = s+y+%, and so A is the
idempotent reduct of B.
By these three lemmas the theorem is proved.
We wish to add another fact about quasitrivial homogeneous oper-
ations, namely
TemorEM. Every quasitrivial homogeneous operation on @ finite set is
generated (by composition) by the ternary discriminator
' 2 if @y,
if @=y.
Proof. If the set X is finite, then by [2] the algebra U = (X,d)
is quasi-primal, which means that any operation preserving subalgebras
and isomorphisms between subalgebras is a polynomial on U As any

subset of X forms a subalgebra of 9, that means that any quasitrivial
homogeneous operation on X is & polynomial on A

d(z,y,2) =
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Addition and correction to the paper *‘Diagonal algebras”,
Fund. Math. 58 (1966), pp. 309-321

by
Jerzy Plonka (Wroclaw)

In the paper quoted in the title the second part of Theorem 2 was
formulated wrongly. That was observed by Dawid Kelly (Ludwigshafen).
In this note we correet this mistake, namely the following is true:

Let Dy, ag, .y ity = (Alx e X Agy @(T1y eeny :c,,)) be an n-dimensional
diagonal algebra. Then the minimal cardinal number of seis of generators
0f gy as, ..., 4, 18 €qual 10 MAX(ay, Gay .., an), where ap = [dg| (p =1, ..., n).

Proof. If G is a set of generators, it must contain at least one element
of each coset in each direction (see [1]). Hence,

|G] > max (g, tsy ey @) «

‘We can assume without loss of generality that if a; < o7, then 4; C 4;.
Let us fix gped n Ay~ ...~ 4y, For any acd;vd,v..vd, we
define the n-tuple [q,, ¢sy -5 ¢u] a8 follows: gg=a if acd; and =g
if @ ¢ A;. Let G, be the set of all possible n-tuples [g, ¢, -, gu]. Then,
by (i) from [1], G, is the set of generators of D4, 4, ., 4, a0d

|G| = max (o, y, ...y an) . Q.e.d.

Additionally we show an interesting example of a diagonal algebra.
We say that an algebra %, = (4; F) is a reduct of algebra %, = (4; F,)
it F, C A(3;). We have :

THEOREM. For each n = 2 there exists an n- dimensional proper diagonal
algebra which is a reduct of some abelian group.

Proof. Let py, Py, ..., Pn be a sequence of different prime integers.
Let = (G -, ™) be an abelian group with the exponent m = p,Ps ... P,
ie. ® satisfies 2™ =1 and does not satisfy any equality 2" = 1, where
k< m.
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