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This fact is even more apparent in Corollary 3.6. Indeed, we have
already seen, Lemma 3.7, that for each proper subset J CI, B, = ran§,
for any projection = whose essential domain is equal to J. Thus, (J7)-(J;)
are statements describing the properties of the sets ranS, and ker8, for all
projections 7 e I*. Consequently, if % is a polyadic algebra, then the
quantifier structure of %, as well as the connections between the quantifier

structure and the transformation structure of 9, may be described entirely

in terms of the sets ran g, and ker 8, for all projections v ¢ IZ. These, then,’

are the chief structural components of every polyadic algebra.
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Locating cones and Hilbert cubes
in hyperspaces

by
Sam B. Nadler, Jr. (*) (Charlotte, N. C.)

Abstract. Let X be a metric continuum. Let O(X) denote the space of all non-
empty subcontinua of X. It is shown that if X is decomposable, then (¢ (X) coutains
a 2-cell. This result is then used in several ways. For example, a characterization of
hereditary indecomposability is obtained answering a question of B. J. Ball in a strong
way. Also, for certain X, n-cells are located in C(X) where they were not known to
be previously, and necessary conditions are obtained in order that the cone over X be
homeomorphic to C(X). A general result, which locates Hilbert cubes in € (X), is proved
and then applied to show that certain classes of continua X have the property that O (X)
contains a Hilbert cube or the cone over X. Some unsolved problems are stated.

Key words and phrases. Chainable, circle-like, composant, decompos-
able continuum, dimension, indecomposable continuum, local dendrite,
multicoherence degree, order of a point, ramification point, segment
(in the sense of Kelley), upper semicontinuous decomposition.

1. Intreduction. A continuwum is a nonempty compact connected
metric space. The term nondegenerate will be used to mean that a space
has more than one point. A continuum is said to be decomposable if and
only if it is the union of two £ its proper subcontinua, indecomposable if
and only if it is not decomposable, and hereditarily indecomposable it and
only if each of its subcontinua is indecomposable. For definitions not
given in this paper, we refer the reader to the texts listed in the references.

The hyperspace of a continuum X will mean, thronghout this paper,
the space of all (nonempty) subcontinua of X with the. topology induced
by the Hausdorff metric H (see [7] or [10, p. 47]); it is denoted by C(X).
Recognizing when and where (C(X) contains the cone over X or over
other continua has proved to be useful information (see [12]). Much
work has been done, especially recently (see [2], [15], and [17]), relating
the space C(X) and the cone over X. For example, J. T. Rogers, Jr. [15]
investigated necessary conditions in order that O(X) be homeomorphic
in a “nice way” to the cone over X. We note that, in [2] and [15], the

(*) The author expresses his appreciation to Tulane University for lending him
office space during the summer that this manuseript was prepared.
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anthors point out that if ¥ is an hereditarily indecomposable continuum,
then the cone over ¥ is not homeomorphic to ¢(¥). However, Rogers [15]
showed that there is always a monotone open mapping of the cone over
any hereditarily indecomposable continuum onto its hyperspace (the
mapping is not arc-preserving as claimed in Theorem 9 of [15]). Recently,
B. J. Ball posed the following question to the author: If Y is an hereditarily
indecomposable continuum, then does the hyperspace C(Y) ever contain
a topological copy of the cone over Y?

In section 2 we prove what is apparently a very useful result (Theo-
rem 1), namely that the hyperspace of a decomposable continuum containg
a 2-cell. We show that the answer to B. J. Ball’s question above is no;
in fact, we obtain a stronger result (Theorem 2) which, by Theorem 1,
has a converse. Theorem 2 and its converse provide a characterization
(Theorem 3) of hereditary indecomposability. We give an example near
the end of section 2 of some decomposable continua ¥ such that no hyper-
space of any such ¥ contains a topological copy of the cone over ¥ (each
such hyperspace does contain a 2-cell and, hence, cones over other
continua). We note that, by results in [3] (also see [5]), there are heredi-
tarily indecomposable continua Y such that C(Y) is infinite-dimensional;
yet; by Theorem 2 below, G(Y) does not contain a topological copy of
the cone over any nondegenerate continuum (recall [7] that C(¥Y) is
arcwise connected). In contrast to this, ((X) may contain, or even be
equal to, the cone over X when X is indecomposable. For example,
Rogers [17] showed that ¢(X) is homeomorphic to the cone over X when
Z is a solenoid; also, Rogers mentioned in [15] that the indecomposable
chainable continuum in [10, p. 205] has the same property. In section 3
we obtain, among other results, some necessary conditions for a continuum
in order that its hyperspace and cone be homeomorphic.

In section 4 we give a result (Theorem 6) which shows that, under
certain very general conditions, ¢(X) contains a Hilbert cube. Further-
more, Theorem 6 shows where such a Hilbert cube is located and gives
an explieit homeomorphism bebween it and the standard Hilbert cube.
In 5.1 of [7], Kelley determined the infinite-dimensionality of the space
of all nonempty compact subsets of any nondegenerate continuum by
showing that it always contains a Hilbert cube. The question — when
does C(X) contain a Hilbert cube? — has not, until this paper, been
investigated. Some results in the literature (see, for example, 5.3 of [7]
and [16]) show that C(X) is infinite-dimensional for certain types of
continua X by showing that C(X) contains an n-cell for each n. It is
important to note the fact that a hyperspace containing an n-cell for
each n does not, in general, imply that the hyperspace contains a Hilbert
eu.be (see the example in section 5). However, using our Theorem 6, we
will show (see Corollary 1 of section 4 and see section 5) that the continua
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with infinite-dimensional hyperspace, in section 5 of [7] and in [16], all
have the property that their hyperspace contains a Hilbert cube. In
section 4 we also show that the hyperspace of any locally connected
continuum L contains the cone over L (see Theorem 8).

We make some comments about the dimension-theoretic consequences
of some of our results. In [5] we answered to some extent the question
implieit in 7, p. 22] of the global dimension of the hyperspace of a non-
locally connected continuum; this question was investigated further in
[16]. In fact, results in [5] and [16] solve the problem of the global di-
mension of C(X) for most continna X. The question of the dimension,
at certain points, of a hyperspace is of interest (see 5.3 of [7], [8], and [13]).
Locating 2-cells as in section 2 (Theorem 1 and Example 1), Hilbert
cubes as in section 4, ete. is useful in determining the dimension of
a hyperspace at certain points and in constructing a geometric model
for a hyperspace (see Example 1 and Example 2).

The following pertinent definitions and notation are not completely
standard. A figure “T” is a space homeomorphic to {(#,y) e R* =10
and 0<y<1}u{(z,y) e R —1<o< +1 and y =1}, where R* de-
notes the cartesian product of the reals with themselves. Let (X, d) be
a continuum. The cone over X, denoted by Cone(X), is the decomposition
space of the upper semicontinuous decomposition X x [0, 1]/X x {1}. The
base of Cone(X) is X x {0} and is denoted by B(X). The vertex of Cone(X)
is the point X X {1} in Cone(X). We remark that if X is nondegenerate
and if X contains no are, then the base of Cone(X) and the vertex of
Cone(X) are topologically determined. If A is & nonempty compact subset
of X and >0, then W(e, d)={w e X: d(»,a)<<e for some aed}.
The definition of segment, as we use it in this paper, appears in [7, p. 24).
Now assume X is locally connected. A point p ¢ X is a point of order n
i X if and only if n is the smallest natural number such that p is the
common noncut point of at most »n ares 4;, 4,, ..., 4» in X such that
Ay~ Ay= {p} for ¢ # j; p is of infinite order in X if and only if p is not
of order # in X for any n=1, 2, ... A point p ¢ X is a ramification point
of X if and only if p is of order greater than or equal to three in X.
Throughout this paper, let I, denote the countably infinite cartesian
product of the interval [0, 1] with the product topology. A continuum
homeomorphic to I, is. called a Hilbert cube.

Let X be a nondegenerate hereditarily indecomposable continuum.
For each 4 and B in ((X) such that ACB and 4 # B, let a(4,B)
= {D e ((B): ACDC B} Using the proof of 2.3 of [7], in particular 2.4
and 2.5, it is easy to see that a4, B) is an arc in ((B) with noneut points
A and B.

In [19] Whitney showed that a continuous “sizing” function u: ¢(X)
~[0,1] can be defined, for any nondegenerate continuum X. Since
17 — Fundamenta Mathematicae, T. LXXIX
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Whitney’s “sizing” function is used in virtually all the papers on hyper-
spaces referenced in this paper, we say no more about it here except to
mention that, throughout this paper, x denotes a continuous function
from C(X) onto [0,1] satisfying 1.3 and 1.4 of [7].

Throughout this paper the symbol § means the closure of § and
the symbol x will denote cartesian product.

2. Hereditarily indecomposable continua. We first prove the followmg
lemma to be used in the proof of Theorem 2.

Lmama 1. Let M be an hereditarily indecomposable continuum. If A
and B are two disjoint subcontinua of M which are contained in the same
composant of M, then a(4, M) v a(B, M) is a figure “I” whose point
of order three is not M.

Proof. It is easy to see, using just the indecomposability of M and
the conditions on 4 and B, that there is a proper subcontinuum P of M
eontaining both 4 and B. Let K C P be a subcontinuum of M irreducibly
containing A v B. Now, using the hereditary indecomposability of M,
it is easy to see that

ald, Myva(B, M)=0a(4,K)v a(B, K) v a(K, M)

(note that K # M so that oK, M) is defined). Therefore, since K is
a proper subeontinuum of M irreducibly containing 4 v B, it follows
that a(d, M) v a(B, M) is a figure “T” with K ¢ M ag its point of
order three. This proves Lemma 1.

TueorEM 1. If D 48 a decomposable continuum, then C(D) contains
& 2-cell.

Proof. Let D be a decomposable continuum and let 4 and B be
proper subcontinua of D such that D = A v B. We will consider two cases.

Case I. A~ B is connected; in this case let ¢: [0,1]- C(D) be
a segment (in the sense of [7, p. 24]) from A ~ B to A and let o,: [0,1]
-C(D) be a segment from A ~ B to B; note that oy(t) C 4 and oy(t) CB
for all £e[0,1]. Define f: [0, 11X [0, 1] C (D) by f(s, 1) = a3(8) w aat),
for any (s,?) €[0,1]x[0,1] (f(s,?) e C(D) for any (s,?)e[0,1]x[0,1]
beeause 0y(8) moy(t)= A ~ B and, therefore, oy(s) ~oy(t) # @ for any
(8,8) €[0,1]x [0, 1]). It is easy to verify that f is continuous. It is easy
to show, using that o,(s) N 0,(t) = A ~ B, that f is one-to-one. Therefore,
f 18 a homeomorphism which proves that € (D) containg a 2-cell.

Case II. A ~B is not connected; let K and L be two distinet
components of 4 ~ B and let U and ¥ be open subsets of D such that
ECU,LCV,and U~V =@. Let B denote the component of U ~ A

containing K and let F denote the component of V ~ 4 containing L.
‘We remark that, by 10.1 of [20, p. 16], K is a proper subset of & and I is
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a proper subset of F. Now, Case I applies by simply noting that Buw B
and B o F satisfy the conditions 4 and B satisfied in Case I. This com-
pletes the proof of Theorem 1.

Remark. The proof of Theorem 1 shows where certain 2-cells
in 0(X) are located (ef. part (2) of section 3).

TueoREM 2. If X is a nondegenerate continuum and Y is an hereditarily
indecomposable continuum, then Cone(X) can not be (topologically) em-
bedded in C(Y).

Proof. We can obviously assume Y is nondegenerate. Suppose
Cone(X) can be embedded in C(Y) and let Z C C(Y) be homeomorphic,
by a homeomorphism &, to Cone(X). Let M = | ] Z ( elearly, by 1.2 of [7],
M is a continuum). Then:

(1) ZC C(M) and M e Z. The first part is obvious, so we now prove
M ¢ Z. Since M is indecomposable, there are points # and y in different
composants of M. Leb Ay, AyeZsuehthat e A andy e dy. If A, = 4y,
then 4,= M = A, (because # and y are in different composants of M)
and M ¢Z. Thus, we assume A, # A,. Since Z iz arcwise connected,
there is an are y C Z with noncut points 4, and 4y. From 1.2 of [7],
{7 is a subcontinuum of M. Therefore, since #,y « (| Jy) and = and y
are in different composants of M, | |y = M. Hence, by 8.1 of [7], M e y.
Thus, M ¢ Z. This completes the proof of (1).

(2) If Ke¢Z and KCLeC(M), then LeZ. Assume K # M (the
cagse when K = II is taken care of by (1)). Note that L e o(K, M). Since
M is hereditarily indecomposable, it follows from 8.4 of [5] that a(K, M)
is the only arc in C(M) with noncut points K and M. Since Z is arcwise
connected, we now have, using (1) above, that «(K, M) C Z. Hence L ¢ Z.
This proves (2).

(3) The continuum X does not contain an arc. To see this, suppose X
contained an arc. Then Z, hence C(M), would contain a 2-cell. Thus,
C (M) would not be uniquely arcwise connected. This contradiction to 8.4
of [5] proves (3).

(4) ALl figures “I” in Z have M as their point of order three. In
view of (3) and geometric properties of cones, it suffices to show that
there are arbitrarily small arcwise connected open subsets of Z to which M
belongs. Let >0 and let B(M,e)= {4 eC(X): H(M, A)< e} Let
%y = u(M), where p denotes Whitney’s function discussed in the Intro-
duction. First we prove

(#) there exists >0 such that

[lu;l((tﬂ—"?: to+7) N Z)] CB(M,e).

17*
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Suppose not so that, for each n=1, 2, ..., there exists
Ay e [ (f—1[n, Ty +1/n) )~ Z]

such that H(M, A,) = e By compactness of Z, the sequence {4},
has o subsequence {4, )%, converging to some 4, e Z. By the continuity
of u, u(d,) =1, Hence, u(d,)= u(M) which, by the fact that any
member of Z is contained in M and by 1.3 of [7], implies 4, = M. How-
ever, since {4,)%, converges to A, and H(M, A,)>¢ for each
i=1,2,.., we have that H(M, 4,) > e This contradlcmon proves (#).
Next note that gince any member of Z is contained in M,

(%) g Y(t—0,t+08) nZ=p(t—0,%])~Z for any 6>0.

Now, let # >0 be fixed such that the containment in (#) holds. Let
W = p~Y(ty—n,t,+n)) ~ Z. Then, W is an open subset of Z, MeW,
and W C B(M, ¢). Furthermore, using (2) above and (# #), it is easy to
see that W is arcwise connected. This proves (4).

(8) It K, LeZ, then K and L are in different composants of M or
at least one of K or L is contained in the other. Assume K ¢ L and I ¢ K;
then, since Y is hereditarily indecomposable, K ~ L =@. Suppose K
and L were in the same composant of M. Then, by (2) and Lemma 1,
a(K, M) v a(L, M) would be a figure “T” in Z whose point of order
three would not be M. This contradicts (4). We have now proved (5).

Now, to ecomplete the proof of Theorem 2, let

I'={FcZ: if BEcZ and BCF, then = F}.

We show that I'= h{B(X)). Let A ¢ h(B(X)). Since (by (3)) B(X) does
not contain an are, A is not a cut point of any arc in Z. Suppose 4 ¢ I'".
Then there would exist ¥ ¢ Z such that C A and E # A. This implies
that 4 is a eut point of a(X, M). Since, by (2), «(B, M)C Z, A is a cut
point of an are in Z, a contradiction. Thus, 4 ¢ I" and we have proved
that A{B(X))CI. Conversely, let F eI Then, since M is hereditarily
indecomposable and since F = M, it follows that F is not a cut point
of any arc in Z. Thus, Fe¢h(B(X)) which proves I'Ch(B(X)). This
completes the proof that I'= h(B(X)). Let F,F’ eI such that F # F'.
By (5) and the definition of I, F and F' are contained in different com-
posants of M; also, since I' is a continuum (because I'= (B(X))), [ J I'is
& continuum (use 1.2 of [7]). It now follows that | I'= M. Now let Fy e I"
(note that F. ¢ M). Let y, be in the composant of M determined by F,
such that y, ¢ Fy,. Since | jI'= M, there is a member F, ¢ I’ such that
Yo F,. By (5), F; CF, or F, CF,. Therefore, since F,, F, « I, it follows
that F,= F,. This contradicts the fact that Yo € (F,—F,) and completes
the proof of Theorem 2.
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Combining Theorem 1 and Theorem 2, we see that the property

(#) O(Y) does not contain a topological copy of the cone over any
nondegenerate continuum

actually characterizes hereditary indecomposability. We state this obser-
vation as Theorem 3.

THEOREM 3. A continuum Y is hereditarily indecomposable if and only
if C(X) does mot (topologically) contain the cone over any nondegenerate
continuum.

Remark. For a continuum Y, let (xx) be the statement

(#+)  C(Y) does not contain a topological copy of Cone(Y).

Tf Y is hereditarily indecomposable, then (*x) holds —in fact, this is
the exact answer to B. J. Ball’s question stated in the Introduction.
However, (*+) does not imply ¥ is hereditarily indecomposable, as the
following example shows.

Exampre 1. Let ¥ be (the topological sum of) two nondegenerate
hereditarily indecomposable continua ¥, and ¥, joined together at one
and only one point of each. We denote this “wedge” point by w. The
continuum Y is obviously decomposable; we show Y satisties (+x). This
is dome in several steps. Suppose Cone(Y) can be embedded in C(Y¥)
and let Z C ¢(Y) be homeomorphic to Cone(Y). Let Ou(¥) = {4 ¢ C(¥):
we A}

Step 1: Cu(Y) is a 2-cell and C(Y)—[0(Y;) v C(¥,)] is an open
subset of O(Y) whose closure (in C(Y)) is the 2-cell Cy(X). The proof of
this step uses techniques similar to those used in Theorem 1 above. Let
0,2 [0, 1] Cu(¥) be a segment from {w} to ¥, and let ay: [0, 11> 0u(X)
be a segment from {w} to ¥,. Define f: [0,1]1x[0,1]-Cu(T) by

f(s, 1) = oy(s) v ay(t) for all (s,?) e[0,1]%x[0,1].

It is easy, using that (K » ¥)e 0(¥y) for each K e Cu(Y) and each
i=1 or 2, to verify that f is a homeomorphism of [0,1]x [0, 1] onto
Ou(Y). Hence, Cu(Y) is a 2-cell. Let U= f((0,1]x(0,1]). It is easy
to see that U= O(Y)—[C(¥y) v C(Y,)] and that U= Cyu(¥). This
completes the proof of Step 1.

Step 2: If AeZ, then 4 eC(Yy) or AeC(Y,). To prove this we
will use the following lemma. Its full statement is not really necessary
here but we include it for the sake of completeness.

LevuA 2. If K and L are nondegenerate continua such thai E X L is
embeddable in the plane, then either K and L are both arcs or one of them is
an arc and the other is a simple closed curve.
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Proof. Assume K X I is embeddable in the plane. Let N be a non-
degenerate subcontinuum of K. Since K X L is embeddable in the plane,
L is embeddable in the plane. Therefore, by Theorem IV3 of [6, p. 44]
and the faet that K is nondegenerate, L is one-dimensional. Therefore,
N XL is 2-dimensional (use the Remark in [6, p. 34] and the fact that
N x L is embeddable in the plane). Hence, since N X L is 2-dimensional
and embeddable in the plane, N X L contains a nonempty subset U such
that U is homeomorphic to an open subset of the plane (use Theorem TV 3
of [6, p. 44]). Clearly, since K x L is embeddable in the plane, U iz an
open subset of K X L. Since UC N x L, we now have that N x L is nof
nowhere dense in K X L. Therefore, ¥ is not nowhere dense in K. Since N
was an arbitrary nondegenerate subcontinuum of K, we conclude from
Theorem 2 of [10, p. 247] that (i) K iz locally connected. Similarly,
(@) L is locally connected. Observing that the cartesian product of
a figure “I” and an arc is not embeddable in the plane, we have that,
since K x L is embeddable in the plane and L contains an arc (use (ii))
K does not contain a figure “7”. Similarly, L does not contain a figure “7”.
It is easy to prove that a nondegenerate locally connected continuum
which contains no figure “7” must be an arc or a simple closed curve
(if such a continuum contained no simple closed curve, then it would
be a dendrite [20, p. 88] containing no figure “7”, hence an arc; if such
a eontinuum contained a simple closed curve as a proper subcontinuum,
then arcwise connectivity could be used to show it contained a figure “77).
Hence, K and I are each an arc or a simple closed curve. Since the
cartesian product of two simple closed curves is a torus and, therefore,
not embeddable in the plane, we have now proved Lemma 2.

Now, to complete the proof of Step 2, suppose there is an A e Z
such that 4 ¢ C(Y,) and 4 ¢ 0(Y,). Note that, as a general fact, any non-
empty open subset of a cone over a continuum contains the cartesian
product of a nondegenerate subcontinnum of the base of the cone with
a nondegenerate subinterval of [0, 1] (use 10.1 of [20, p. 16]). Now, since

AelZn(0(X)-[0(Ty) v 0(T,)]),
Z A (0(T)—[0(TY) v 0(Y,)]) is a nonempty open subset of Z and,
hence, contains a cartesian product KxJ of a nondegenerate sub-
continuum K of ¥ with an arc J. Hence, by Step 1, K x J lies in a 2-cell.
This is a contradiction to Lemma 2 (because K, being a subcontinuum
of ¥, can not even contain an arc!). This completes the proof of Step 2.

Step 3: Completion of the proof that ¥ satisfies (**). Note that
C(Yy) v ¢(Y,) is connected and that, by Step 2, ZC[0(Y,) v O(Y,)]
Also nqte that [C(Y:)w €(Y,)]—{w} is not connected and, in fact, is
the union of the f:VYO disjoint nonempty open sets ¢ (Y)— {w} ;nd
C(¥,)— {w}. Now, using Theorem 2, Z ¢ C(Y) and Z ¢ C(X,). Hence,

e ©
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Z ~[C(¥)—{w}] # O for each =1 and 2. Since Z is connected, it
follows that {w}eZ. Hence, Z—{w} is not connected. However, this
contradicts the general fact that no point of the cone over a non-
degenerate continuum is a net point of the cone. Thus, Cone(Y) can not
be (topologically) embedded in O(Y), ie., Y satisfies (¥x).

ProsrEM 1. Can C(Y) ever contain a topological copy of X x[0,1]
when Y is an hereditarily indecomposable continuum and X is a non-
degenerate continuum? More generally, can C(Y) ever contain the car-
tesian product of two nondegenerate continua when Y is hereditarily
indecomposable? If the answer to these questions is no, then these pro-
perties would be equivalent, by Theorem 3, to hereditary indecompos-
ability of Y.

3. Theorem 1 — further comments and applications. We used Theorem 1
above to prove Theorem 3. Theorem 1 seems to be quite useful in other
connections. For example:

(1) In [5] we answered to some extent a dimension question implicit
in [7, p. 22] and we answered the question completely for certain special
cases which have been of interest to mathematicians (see [14] and [18]).
Among other results, we showed, in Theorem 1 of [5], that the dimension
of O(X) is at least two for any nondegenerate continuum X. For the
class of those continua which contain a decomposable subeontinuum,
Theorem 1 above is a much stronger result than Theorem 1 of [5].

(2) Techniques used to prove Theorem 1 above can be applied to
prove the following result (note: these techniques show where certain
n-cells in C(X) are located and, hence, may be used to determine infor-
mation about the dimension of C(X) at certain points).

THEOREM 4. If a continuum X contains two subcontinua A and B
such that A ~ B contains n components, then CO(X) contains an n-cell.

(3) As observed in [15], there are several chainable continua, some
indecomposable and some decomposable, such that their hyperspace is
homeomorphie to their cone. Also, [15] and [17], some non-chainable
continua have this property. Recognizing certain spaces of nonempty
gubcontinua as cones has proved fruitful in determining properties of
those spaces. For example, in [12] we used this to answer a question
of Knaster by showing that there is a continnum with the fixed point
property whose space of nonempty subcontinua does not have the fixed
point property. These comments lead us to the foliowing problem.

PrOBLEM 2. Which continua N have the property that C(N) is
homeomorphie to Cone(N)% Some chainable continua have this property
and some do not (obviously, the pseudo-arc). Which chainable continua
have the property that their hyperspace is homeomorphic to their cone?
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From Theorem 5 of [16] we can conclude immediately that if X is
a finite-dimensional continuum whose cone and hyperspace are homeo-
morphic, then the dimension of X is less than or equal to two. Actually,
we can prove a much stronger result which we state as Lemma 3.

Lemma 3, If X is o finite-dimensional continuum such that Cone(X) is
homeomorphic to O(X), then X does not contain a nondegenerate hereditarily
indecomposable continuum. Thus, X 1is one-dimensional.

We do not prove Lemma 3 here except to mention that the second
part of it is & consequence of the first part by a result of Bing [3].

Using Lemma 3 and Theorems 1 and 4 above, progress can be made
on Problem 2 for the class of decomposable continua. For example, we
have the following result.

THEOREM 5. If N is a decomposable continuum such that C(N) is
homeomorphic to Cone(N), then N contains an arc; furthermore,

(a) r(8) <1 for all subcontinua S of N (where »(8) denotes the multi-
coherence degree of 8 [20, p. 831) and

(b) N is a-triodic.

Proof. Assume N is decomposable. Then, by Theorem 1 above,
C(N) contains a 2-cell. Thus, since ¢(N) and Cone(N) are homeomorphic,
Cone(XN) contains a 2-cell. It follows that N must contain an arc.

(a) If there were a subcontinuum § of N such that r(S) > 1, then,
by Theorem 4, C(N) would contain a 3-cell. Hence, since C(N) and
Cone(N) are homeomorphic, Cone(N) would contain a 3-cell. But, by
Lemma 3 above, N is one-dimensional so, by a result in [6, p. 34], the
dimension of Cone(¥) is exactly two. This contradiction proves (a).

(b) Since C(XN) is homeomorphic to Cone(¥N) and since, as observed
in the proof of (a), the dimension of Cone(N) is two, we have that the
dimension of C(¥) is two. By Corollary 2 in [15], ¥ is a-triodic.

Remark. The first part of Theorem 5 seems especially interesting
since there are hereditarily decomposable chainable continua which do
not contain an arc (see, for example, [1]). We also remark that (a) and (b)
of Theorem 5 might seem to suggest that an hereditarily decomposable
continuum, whose hyperspace is homeomorphic to its cone, must be
chainable or circle-like. However, in [15], Rogers showed that the hyper-
space ‘of a particular “circle-with-a-spiral” is homeomorphie to its cone.

4. A general result and some applications. In this section we prove
a general theorem (Theorem 6) which shows that certain subspaces of C(X)
form a Hilbert cube. Then we apply this result to locally connected
continua. Recall {20, p. 67] that a sequence {4}, of subsets of a metric
space (X, d) is called a null sequence if and only if given & > 0 there exists
a natural number N such that, fori = N , the diameter of A, is less than e.
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THEOREM 6. Let (X, d) be a continuum and let Y be a subcontinuwum
of X. For each = 1,2, ..., assume Y; is a subcontinuum of X such that

1) Y nY#O and Y, ¢ Y for any i=1,2, ..

(2) (Yi—X) (XY= X) =@ for i # j;

(8) the sequence {¥Y 35, is o null sequence.

For each i=1,2, ..., let 0;: [0,1]>C0(X) be a segment from ¥ to ¥ v ¥q.
Then, for each (t;, 15, ..., b3y ...) e I,

(Uoit)) e C(X) and o I,~C0(X),
=1
given by
Oty oy veny iy o) = (U oults)  for each  (fy,45, ., ts,.0) €1,

=1 o 9
i8 a homeomorphism.
Proof. It is easy to verify, using condition (3), that

(U oit)) e O(X) . for each (t,tyy ..o, biy..) e Ly .

Te=1
Also, it is an easy consequence of condition (2) and 2.2 of [7] that o is
one-to-one. We show that ¢ is continuous. Let = (¢, fyy .., sy «..) € Iy
and let {i"};_, be a sequence in I, such that {f*}3>, converges to i,
= (%, &, ..., 1%, ...). We show that {o(#*)}_, converges to o(t). Let ¢ > 0.
Using (3) choose a mnatural number N such that if 7> N, then
diam (Y;) < e. Next, using the continuity of o; for ¢ =1, 2, ..., N, choose
a natural number K such that if ¥ > K, then

H(o,(t%), o,(t;))<e for each i< N

(where H denotes the Hausdorff metric). Now let k¥ > K and let @ ¢ o(i¥).
If x¢ Y, then @ € oy(t;) for each i=1,2, ..., i.e,, € ¢(t). Assume z ¢ 7.
Then there exists 4, such that @« ¥,. Since ¢ (¥, —¥), we have from
condition (2) that e oy (t%). If 4, < N, then, since

H("i.,(tlfo)a U'in(tiu)) <&, Ze W(E; O’io(ti.,))i

hence, z ¢ W(s, a(t)). If 4, > N, then, because of the first part of (1) and
the choice of N, there is a point y ¢ ¥ such that d(z, y) < e. Therefore,
since YCo(t), ze W(e, a(t)). In any case, we have shown that o(t*)
C W(e, o(t)). The same type of argument shows that o(t)C W(e, o(t).
Hence, H(o(t%),o(t))<< e for all k= K. This proves o is continuous.
We have now shown that o is a homeomorphism of I, into O(X). This
completes the proof of Theorem 6.

Now we give an example of how to use Theorem 6 to “compute”
a specific hyperspace.
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Exawpre 2. Let X be the continuum pietured in Figure 1 below;
X is the union of countably infinitely many “shorter and shorter” ares
Y,,Y,, ... emanating from a common point p and disjeint outside p.

Y,
%
13
Fig. 1

For any subcontinuum Z of X such that pe Z, let Cp(Z) = {4 € 0(Z):
ped} Let ¥ = {p} and let oy, i=1,2, ..., and o be as in Theorem 6.
Since each Y; is an are, O5(Y;) is an arc and ¢4([0, 1]) = Cp(Y;) for each
1=1,2,... Furthermore, C,(X) is a Hilbert cube and, in fact, o(I)
= (Op(X). Clearly,

01) = 0 w 1) (%)

and, for each ¢ =1,2, ..., 0(¥,) is a 2-cell [4] such that C(¥;) ~ Op(X)
= Cp(Y;). Hence, C(X) is a Hilbert cube together with the infinitely
many “smaller and smaller free 2-cells” C(Y;) intersecting the Hilbert
cube in the arc Cp(Y;). Using o™ to coordinatize the members of Cp(X)
a8 the points of I,, we have for each i=1,2, ...,

(@) Y0 Yoy v X)) = {(ooey By tiy bipay ) el =10 for
j=<% and for j >1{4-2}, the 3-cell denoted by @; in Figure 2;

(B)  oH{ON ) = {(0,...,0,%,0,...) €L ;=0 for j+£4}, the arc
denoted by 4; in Figure 2;

{¢) e ¥s}={(...,0,1,0,..): 1L appears only in the 4th coordinate and 0
appears in all other coordinates};

(@ o {p}) = {(0,0,...,0, O

A cross-section for this topological model of 0(X) is in Figure 2.

In the rest of this section we use Theorem 6 to obtain sorme results
about locally connected continua.

A linear graph is a continuum which is the union of finitely many
arcs and which contains only finitely many simple closed curves. In 5.4
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of [7], Kelley showed that if a locally connected continuum is not a linear
graph, then its hyperspace is infinite-dimensional. This was done (see
the proofs of 5.3 and 5.4 of [7]) by showing that its hyperspace containg
an m-cell for every n. Our next result, Theorem 7, improves this by
showing that such a hyperspace actually contains a Hilbert cube.

- \
J ()i'+2) \\\

-1
oy,
\
i+2 N

AN A
: \
At

C(Vyyp)

(%)
oy

TFig. 2

TrEOREM 7. If X is @ locally connected continuum which is not a linear
graph, then C(X) contains a Hilbert cube.

Proof. The proof is, in spirit, motivated by the proof of 5.2 of [7];
however, more needs to be shown. We will take two main cases.

Case I: The space X contains infinitely many ramification points
(see the definition at the end of section 1 above). For this case we consider
two possibilities, Case I.1 and Case L.2.

Cage I.1: Given any arc in X, only finitely many ramification points
of X lie on that arc. Let {a;} be a sequence of distinet ramification points
of X which, without loss of generality (by compactness of X), converges
to a point p ¢ X (also assume p s# a; for any ¢ =1, 2, ...). Choose 4, such
that p and a,, lie together in a connected open subset of X of diameter
less than one. Using 5.2 of [20, p. 38], let ¥, be an arc in X with noncut
points p and a; such that the diameter of Y, is less than one. Assume
inductively that we have defined n ares Yy, ¥,,..., ¥, in X such that
YinY;={p} for i #j and such that, for each ¢{=1,2,.., %, the
diameter of Y, is less than 1/i and p is a noncut point of ¥;. Let U be
& connected open subset of X such that p e U, the diameter of U is less
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than 1f(n+1), and such that if a;¢ U, then any arc y C U with noncut
n

points » and «; has the property that y ~ (|J¥:) = {p} (if no such U
=1

existed, then consideration of smaller and smaller connected open sets
containing p would produce infinitely many ramification points of X lying
on one of the ares Yj, ¥y, ..., ¥n, a contradiction). Let a;,, e U. Using

Int1

5.2 of [20, p. 38], let Y,,,, be an arc in U with noncut points p and Gy
Letting ¥ = {p}, we see that Y, Y;, Y,,.. satisfy conditions (1)
through (3) of Theorem 6. Hence, by Theorem 6, C(X) contains a Hilbert
cube. This completes the proof for Case I.1.

Case I.2: Some arc Y in X contains infinitely many ramification
points of X. Let {b,}7, be a sequence of distinet ramification points of X
such that, for each 4= 1,2, ..., b; ¢ ¥. Then, a simple induction argument
shows that there are ares Yy, Y, .., ¥i,.. such that (i) for j # %,
Yin Yr=0 and (ii) for 1=1,2, ..., ¥y~ ¥ = {b;} and the diameter
of ¥; is less than 1fi. It is clear that ¥, ¥, ¥,, ... satisfy conditions (1)
through (3) of Theorem 6. Hence, by Theorem 6, C(X) contains a Hilbert
cube. This eompletes the proof for Case 1.2 which completes the proof
of Case L.

Case IL: The space X containg only finitely many ramification
points. If each ramification point of X were of finite order in X , then
X would be a linear graph. Hence, some point p ¢ X ig of infinite order
in X. Let U be an open subset of X such that p e U and such that no
ramification point of X, other than p, belongs to U. Let ¥, be an are
in U such that p is & noncut point of ¥; and the diameter of ¥, is less
than one. Assume inductively that we have defined » arcs Y, Xy oy, ¥y
in U such that ¥i~ ¥;={p} for ¢ #j and such that, for each
t=1,2,..,n, the diameter of ¥; is less than 1fi and P i8 a noneut point
of Y;. Since p is of infinite order in X, there are n--1 arcs Zyy Zyy eeiy L yy
in U such that p is a noncut point of each and such that Z; ~ Z; = {p}
for ¢ #j. Since’ U contains no ramification points of X other than p,
at least one of the ares 7, Z,, ..., n+1 TOUSE contain a subare, call it S,
with the property that § ~ ¥; = {p} for each i=1,2, ..., n. Let Y.
be a subare of § such that p is a noneut point of Y, ., and the diameter
of ¥y, is less than 1/(n+1). Letting ¥ = {p}, we see that Y,Y,,Y,, ..
satisfy conditions (1) through (3) of Theorem 6. Hence, by Theorem 6,

C(X) containg a Hilbert cube. This completes the proof for Case 1T and
Theorem 7 is proved.

C“,OROLLA]‘R.Y 1. Let X be a locally conmected contimuum. Then © (X)
contains & Hitbert cube if and only if X is mot o linear graph.

Proof. Use Theorem 7 above and 5.4 of [71.
‘We now state and prove one of our main applications of Theorem 6.
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TerorEM 8. If L is a nondegenerate locally connecied continuum,
then. C(L) contains a topological copy of Cone(L).

Proof. First, assume that the dimension of C(L) is not finite. Then,
by 5.4 of [7], L is not a linear graph. Hence, by Theorem 7 above, C(L)
contains a Hilbert cube and, therefore, the cone over any continuum.
Next assume that the dimension of C(L) is finite. Then, by 5.4 of [7],
L is a linear graph. Assume O(L) does not contain a 3-cell; then L does
not contain a figure “T”. Thus, as pointed out near the end of the proof
of Lemma 2, L must be an arc or a simple closed curve. In either case
C(L) is homeomorphic to Cone(L) (see [4]). Hence, we assume C(L)
containg a 3 -cell. If L is embeddable in the plane, then Cone(L) is embed-
dable in a 3-cell, hence in C(L). Assume L is not embeddable in the plane.
Note that any linear graph is a local dendrite (for the definition of local
dendrite see [10, p. 303]; the statement just made is an obvious con-
sequence of Theorem 4 of [10, p. 303-304]). Hence, since we are assuming
T is not embeddable in the plane, Theorem 7 of [10, p. 305-306] applies
showing that L topologically contains at least one of the two skew curves
in Figure 11 of [10, p. 305]. However, it is easy to show (see the proof
of 5.3 of [7]) that the hyperspaces of nonempty subcontinua of these two
skew curves each containg a 4-cell (actually, one contains an 8-cell and
the other a 12-cell). Since any linear graph is one-dimensional, L is
embeddable in a 3-cell [6, p. 56]. Hence, Cone(L) is embeddable in
2 4-cell and, therefore, in O(L). This proves Theorem 8.

Remark. A proof of Theorem 8 can be done which does not use
results on local dendrites. It involves the two cases of whether or not C(L)
containg a 4-cell; but, the details are somewhat cumbersome.

5. Other - applications of Theorem 6. In [16] Rogers proved several
results which showed that the dimension of the hyperspaces of certain
types of continua is infinite. This was done by showing that such hyper-
spaces contain an n-cell for each n. We give improvements of these
results by showing that the hyperspaces Rogers investigated in [16]
contain Hilbert cubes. First we give an example, as mentioned in the
Introduction, of a continuum whose hyperspace contains an n-cell for
each n but does not contain a Hilbert cube (this can not happen for locally
connected continua by Theorem 7 above and 5.4 of [7]).

Examrre 3. This example is due to B. J. Ball. Let X be the
continuum represented in Figure 3 below. A brief description is as
follows: X is composed of a sequence {4,}> , of mutually disjoint n-odds

in the plane converging to a point p ¢ (| Aa) together with a sequence
n=1

L), of mutually disjoint topological chies of the real line such that
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{Lulney converges to p ¢ (ULn), (ULu) ~({U4n)=9, and 4, WL, u
n=1

n=1 n=1 ,
v d,,,, foreach n=1,2, .., is a compactification of L, with 4, v 4, i
as the remainder. Since 0(4,) contains an (n--2)-cell foreachn = 1,2, .

C(X) contains an n-cell for every n. For each k=1,2, ..., let

k+1 k
M= (U 4n) o (ULn).
n=1 =1

Clearly, for any k=1, 2, ..., there is an open subset W of C(X) such
that C(Mx)C WC C(M,,,). From this and the finite-dimensionality of

L

C(My) for all k= 1,2, ..., it follows eagily that no subcontinuum of
X—{p} can be a point of a Hilbert ecube in C(X). Now, let

Op(X)={K e C(X): peK}.

It is easy to see that (5(X) is an are in ¢ (X). It now follows easily that
C(X) does not contain a Hilbert cube.

Tt is also worthwhile pointing out, in the context of this section
that there are infinite-dimensional hyperspaces which do not even contairi
& 2-cell (see [3] and 8.4 of [T71).

Since the techniques used in [16] are all modified in a similar Way‘
to obtain onr results below, we only prove the first of them.

Our first theorem improves Corollary 2 of [16].

TerorEM 9. If X is a continuum which contains topologiocal copy

of th.e cartesian product of two nondegenerate continua, then C(X) contwins
a Hilbert cube.

P.rooi. It suffices to prove Theorem 9 for the case when X is the
cartesian product of two nondegenerate continua. So, assume X = K X I
where K and L are nondegenerate continua. Let w, ¢ & and let {#:} 52
be a sequence in L of distinet points. For each i=1,2, ..., let K: 11:;

icm®
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2 nondegenerate subcontinuum of K containing w, and of diameter less
than 1/i (sueh continua K; exist by 10.1 of [20, p. 16]). Letting ¥ = {w,} xL
and ¥y = Kix {2} foreach i =1, 2, ..., we see that ¥ and the continua ¥;
satisfy conditions (1) through (3) of Theorem 6 above. Hence, 0(X)
contains a Hilbert cube. This completes the proof of Theorem 9.

Our next theorem improves Theorem 2 of [16]. We say that a sub-
continuum A of a continunum X is continuumwise accessible from a sub-
set § of X provided there is a nondegenerate subcontinuum K of X such
that EnA #3, En8S#@, and KECSu 4. :

TaEOREM 10. If X 4s a continuum such that some subcontinuum K
of X contains infinitely many mutually disjoint subcontinua each of which
is continuumawise accessible from X— K, then C(X) contains a Hilbert cube.

Our next theorem improves Theorem 3 of [16].

TaeorEM 11. If X is a continuum which contains a subcontinuum K
such that

(i) K contains infinitely many arc components and

(iiy K is contained in an arc component of X, then C(X) contains
a Hilbert cube.

The next theorem is a direct consequence of Theorem 11 above and
improves Corollary 3’ of [16].

TarorEM 12. If an arcwise connected continuum X conlains a non-
degenerate indecomposable subcontinuum, then C(X) contains a Hilbert cube.

Our next theorem is a consequence of Theorem 12 above and Theo-
rem II of [11]; it improves Corollary 3'' of [16].

TrmorEM 13. If X is an arcwise comnected continuum of dimension
greater than ov equal to two, then C(X) contains a Hilbert cube.

We remark that the following theorem can be proved using Theo-
rem 10 above and 10.1 of [20, p. 16]. The result is related to Theorem 4
above.

TueorEM 14. If o continuum X contains two subcontinua A and B
such that A ~ B contains an infinite number of components, then C(X)
contains o Hilbert cube.
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Semi-confluent mappings and their inyariants,
by
T. Maékowiak (Wroclaw)

Abstract. A continuous mapping f of a continuum X onto ¥ is said to be semi-
confluent if for every subcontinuum @ in ¥ and for each two components ¢, and 0, of
the inverse image f™(@) either F(0y) Cf(C,) or f(0,) CF(0y). It is proved in the paper
that the property of being a A-dendroid, a dendroid, a fan, a dendrite or an arc is an
invariant under a semi-confluent mapping.

§ 1. Introduction. In this paper we present a new kind of continuous
mappings, called semi-confluent. The class of semi-confluent mappings
comprises confluent mappings, whence also interior and monotone ones.
Some theorems on confluent mappings will be generalized to semi-con-
fluent mappings. In particular, theorems concerning the invariance of
A-dendroids proved for confluent mappings in [2] hold also for semi-
confluent mappings. Moreover, dendroids, dendrites, arcs and fans (see [3],
p. 32) are invariants under semi-confluent mappings.

The author is very much indebted to dr. J. J. Charatonik, who contri-
buted to these investigations.

§ 2. Preliminaries. Recall that a continuous mapping f of a topological
space X onto a topological space Y is said to be

(i) inderior if f maps every open sef in X onto an open setin ¥ (see[11],
p. 348),

(ii) monotone if for any subcontinuum @ in ¥ the set (@) is a con-
tinuum in X (see [7], p. 123), or, which is equivalent provided X is a con-
tinoum, if the inverse image of each point of ¥ is a connected set in X
(see [14], p. 127),

(iii) quasi-monotone if for any subcontinuum @ in ¥ with a non-
vacuous interior the set f~(@) has a finite number of components and f
maps each of them onto Q (see [12], p. 136),

(iv) weakly monotone if for any continuum @ in ¥ with a non-vacuous
interior each component of the inverse image f~(Q) is mapped by f onto Q
(see [12], p. 136, where these mapping are called quasi-monotone and the
spaces considered are loeally connected continua, see also [10], p. 418),
18 — Fundamenta Mathematicae, T. LXXIX
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