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Semi-confluent mappings and their inyariants,
by
T. Maékowiak (Wroclaw)

Abstract. A continuous mapping f of a continuum X onto ¥ is said to be semi-
confluent if for every subcontinuum @ in ¥ and for each two components ¢, and 0, of
the inverse image f™(@) either F(0y) Cf(C,) or f(0,) CF(0y). It is proved in the paper
that the property of being a A-dendroid, a dendroid, a fan, a dendrite or an arc is an
invariant under a semi-confluent mapping.

§ 1. Introduction. In this paper we present a new kind of continuous
mappings, called semi-confluent. The class of semi-confluent mappings
comprises confluent mappings, whence also interior and monotone ones.
Some theorems on confluent mappings will be generalized to semi-con-
fluent mappings. In particular, theorems concerning the invariance of
A-dendroids proved for confluent mappings in [2] hold also for semi-
confluent mappings. Moreover, dendroids, dendrites, arcs and fans (see [3],
p. 32) are invariants under semi-confluent mappings.

The author is very much indebted to dr. J. J. Charatonik, who contri-
buted to these investigations.

§ 2. Preliminaries. Recall that a continuous mapping f of a topological
space X onto a topological space Y is said to be

(i) inderior if f maps every open sef in X onto an open setin ¥ (see[11],
p. 348),

(ii) monotone if for any subcontinuum @ in ¥ the set (@) is a con-
tinuum in X (see [7], p. 123), or, which is equivalent provided X is a con-
tinoum, if the inverse image of each point of ¥ is a connected set in X
(see [14], p. 127),

(iii) quasi-monotone if for any subcontinuum @ in ¥ with a non-
vacuous interior the set f~(@) has a finite number of components and f
maps each of them onto Q (see [12], p. 136),

(iv) weakly monotone if for any continuum @ in ¥ with a non-vacuous
interior each component of the inverse image f~(Q) is mapped by f onto Q
(see [12], p. 136, where these mapping are called quasi-monotone and the
spaces considered are loeally connected continua, see also [10], p. 418),
18 — Fundamenta Mathematicae, T. LXXIX
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(v) confluent if for every subcontinuum ¢ of ¥ each component
of the inverse image f~%(Q) is mapped by f onto @ (see [2], p. 213).

Adopt the following definition. A continuous mapping f of a topo-
logical space X onto a topological space Y is said to be

(vi) semi-confluent if for every subcontinuum @ in ¥ and for each
two components ¢, and C, of the inverse image f~(@) either f(0;) C f(0,)
or f(G,) Cf(C).

As an easy consequence of the definitions we have

ProrosrTioN 2.1. Any confluent mapping is semi-confluent.

It is knowp (sefa [2], p. 214) that any monotone mapping is confluent,
and that any interior mapping of a compact space is confluent. Thus it
follows from Proposition 2.1 that

PROPOSITION 2.2. Any monotone mapping is semi-confluent.

PROPOSITION 2.3. Any inferior wmapping of a compact space is semi-
confluent.

It is proved (see [12], Theorem (2.1), p. 137 and Theorem (2.3),
p. 138, see also [2], p. 214 and IX, p. 215) that if u mapping f is defined
on a loqally. connected continuum, then the following conditions are
’eqmva,lent: (i) f is weakly monotone, (i) f is quasi-monotone, (iii) f is
confluent. Hence we conclude by Proposition 2.1 that .

‘ ‘PROPOS‘ITION '2.4. Any quasi-monotone mapping of & locally connected
. continuum is semi-confluent.

i

.PROPOS‘ITION ‘2.5. Any weakly monotone mapping of a locally connected
continuum 8 semi-confluent.

The class of semi—co_nﬂuent mappings is essentially larger than the
class of confluent mappings even for locally connected continua. This
can be seen by the following
@ Exawpim 2.6. Define f(t)= |f| for each te[—1,2]. Thus f maps
L :,} seégﬂnent [—=1,2] onf,o' the segment {0,2]; it is semi-confluent, but
not confluent; moreover, it is neither weakly monotone nor quasi-monotone.

Hofweverz the class of semi-confluent mappings fails to contain the
Glae]ass of quasi-monotone mappings, and hence also fails to contain the

88 of weakly monotone mappings. This can be shown by

phn:ﬂXAMPLE 2.7. Put, in the Cartesian rectangular coordinates in the

X={ M = gl :,L_
@ 9): y Smw’o<w<1}u{(0,y>: —1<y=<1}.

- 'fh_us (.)X is the closure of the graph of sin(1/z)-function. Let ¢ = (0,1)
and G-;t( , —1) be tl?e end-points of the limit segment in X. Define f to
ontinuous mapping on X which identifies  and b. Therefore F(X) is

-/ ©
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the union of a circle and @ ray which approximates it. It is immediately
geen that f is quasi-monotone and weakly monotone, but is not semi-

confluent.

§ 3. Properties of semi-confluence. In this section we prove S0me
properties of semi-confluent mappings, which are similar to properties
of confluent ones (see [2], pp. 213-215) and which are needed to prove
some theorems in Sections 4 and 5.

Henceforth the topological spaces under consideration will be as-
sumed to be metric continua.

LA 3.1. Let a semi-confluent mapping f map a continuun X onto Y.
For each subcontinuum Q of ¥ and for each family C of components of FYQ)
such that the union | {0: C e G} is closed in X there exists a component O’
belonging to C whose image under f is mawimal in the sense That f(C")
= f(U{C: C e}

Proof. According to Theorem 1 in [6], § 24, VII, p. 263 and to the
definition of a semi-confluent mapping we can supply each component (0}
belonging to the family G with an index te [0,1] in such a way that
1, < t, implies f(C, ) Cf(C,) and f(Cy) # f(C,). Denote by T the set of
indices which correspond to all members of the family C, and let t' be the
least upper bound of 7. Take a sequence of indices t, converging to ¢
such that the sequence {C, } is convergent. Then its limit i a continuum
([7), § 47, II, Theorem 6, p. 171) which is contained in a component
0 eC:

Lim C,, C ¢,
N—>00

because the union of all members of the family C is closed by assumption.

We shall show that for every component C'' e C of f~(@) such that
F(0") # f(LU{Cs t<T}) there is a natural n, such that if n > n,, then
F(0"yCf(C,,), where C;, is a component from the sequence mentioned
above. In fact, let ¥ e f({J{C;: t € TY\F(C"'). Thus there is a member C,,
of € such that y e f(C,)\f(0"). Since f is semi-confluent, we have f(C"')
C f(C,,). Thus the index ¢ of C” must be lesy than ¢, and thus less than ¢'.
Therefore there is a natural n such that if % > n, then t<<t, < ¢ and
consequently f(C') C f(C,,).

This implies that if y e f(LJ {C;: t e T}), ie., if y € f(C;) for some te T,
then either ¢, is mapped onto the whole union | f({C;: t e 17}) or there
is for each n >m, & point ®, e C,, With f(z,) = y. Since Lim0, C (",

n~>00
the limit # of a convergent subsequence of {#.} is a point of C’. There-
fore f(z) =1y by the continuity of f, and y ef((C’), which shows the
required equality.

18*
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CORROLLARY 3.2. Let a semi-confluent mapping f map a continuum X
onio a continuum Y. Then for each subcontinuum @ of Y there is a com-
ponent O of the set Q) such that f(0)=@.

Indeed, for the family C of all components of the set Q) there is
a component ¢’ such that for each C ¢ C we have f(0") = f({{C: C <€}
=f(f@)) = @ according to Lemma 3.1.

TreorREM 3.3. If @ mappine f, is confluent and a mapping f, is semi-
confluent, then f= ff; is semi-confluent.

Proof. Let a confluent mapping f; map a continuum X onto ¥,
and let a semi-confluent mapping f, map ¥ onto Z. Let @ be a continuum
in Z. For each two components O, and O, of the inverse image f~%(()
either f,(0,) = fi(Gs) or fi(C;) ~ f(C,) = @ holds by the confluence of f;.
Hence f;(C;) and f,(C,) are components of the set f;*(@). Since f, is semi-
confluent, we have either fz(fl(ol)) sz(f1(az)) or fa(fl(oz)) Cf2(f](01))!
ie., either f(CL) Cf(C) or f(Cy) Cf(Cy).

A superposmon of two semi-confluent mappings need not be senn—
confluent. This can be seen from the following

Exampie 3.4. We define a mapping f;, which maps the segment
[—2, 2] of reals onto the segment [0, 3], and a mapping f,, which maps
the segment [0, 3] onto the segment [0, 2], as follows: fi(t) = [t+1| and
folt) = [i—2|. Both these mappings are semi-confluent, but their super-
position f= f,f, is not.

TeBoREM 3.5. If f=fof, is semi-confluent, then f, is semi-confluent.

Proof. Let f; map a continuum X onto ¥, and let f, map Y onto Z.
Let @ be a continuum in Z, and let €, and C, be components of the
set f;X(Q) in ¥. Then, for ¢= 1,2, the family G; of all components of
the seb f7(C) in X is also a family of components of the set f~%(Q) and
the union of members of C; is closed. Thus Lemma 3.1 can be applied
and we conclude that for ¢ = 1,2 there is a ) such that

0= fU{0: Cecy).
Observe that
140 = RA(FTHC0) = ff7(C0) = F(U{0: Oecy),
and thereby
O =f(C) for i=1,2.

_ Since f is semi-confluent, either f(0) Cf(€5) or F(C.)C f(CL); thus
either f,(C,) C £o(Co) or f5(C,) C£y(Cy), which completes the proof.

If f=fuf, is semi-confluent, then f, need not be semi-confluent.
This can be seen by
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ExAMPLE 3.6. Put fi(x) = sinz for z e[—3m, 2x] and

E if ]m]
sgne i Jale($,1].

2 9

folz) =

Thus f: [—2=,2a]>[—1,1] and f;: [—1,1]->[—1%, 1], both f; and f;
are onto, f,f, is semi-confluent (since it is monotone even) while f; is not.
THEOREM 3.7. If f is a semi-confluent mapping of X onto ¥, B is a sub-
set of ¥, and A is the union of some components of f~*(B), then the partial
mapping g=fl.4 is a semi-confluent mapping of A onio f(4).
Proof. Let Q be a subcontinuum of f(4) and let ¢; and C, be com-
ponents of g~*(@). Since

1 ) =AY,

¢, and C, lie in the components C; and C; of f~*(Q), respectively. It follows
from ¢, C A and C,C A that

@) O£0=AnCCANC,

and

(3) G #C=4n0CANC,.
Moreover, it follows from @ Cf(4)C B that

(4) C;CfYB) and C,CfYB).

According to the hypothesis regarding 4, conditions (2), (3) and (4)
give ¢ C A and 0,C 4, whence C; C ¢7%(Q) and C;C ¢7%(Q) by (1). Thus
¢,=0C, and COj= Oy hence g(C,)=F(Cy)=F(C}) and ¢(Cy)=f(C;)
= f(C,). This implies that either g(C;) C g(C,) or g(C;) C g(C,) holds by
the semi-confluence of f. Thus g is semi-confluent.

A set AC X is said to be inverse set under a mapping f: X =Y if
A = f(f(4)) (see [14], p. 137). Theorem 3.7 implies

.CORROLLARY 3.8. If f is a semi-confluent mapping of X and A is an in-
wverse set under the mapping f, then the partial mapping g = f |4 is a semi-
confluent mapping of A onto f(4).

As a direct consequence of Whyburn’s factorization theorem (see [13],
(2.3), p. 297) and Theorem 3.5 we obtain the following

TaroREM 3.9. If X is a continuum and if f is a semi-confluent mapping
of X onto Y, then there ewists a unique factorization of f into two semi-
confluent mappings

f(&) = fofi(x) for each we X,

where f, is monotone and f, is such that dimf; (y) = 0 for each y e X¥.
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§ 4. Mappings onto a triode and omto a circumference. This section
contains some lemmas used in the next section to prove theorems which
are the main results of this paper.

To begin with, recall that a triode is the union of three arcs which
have pairwise only the end-point in common. Let the end-points of
a triode T be #, ¥, 2. Then we denote T' by xyz. Further, we denote by u the
common end-point of the three arcs forming the triode. The arc joining
points @ and b will be denoted by ab. We have the following

LeumA 4.1; There is no semi-confluent mapping of an arc onto a triode.

Proof. It suffices to show that there is no semi-confluent mapping
of the unit interval I= [0, 1] of reals onto a triode. Suppose, on the
contrary, that a semi-confluent mapping f maps I onto a triode 7. Put

e=inf{te[0,1}: f(H)=a}, b=inf{te[0,1]: f(t)=y}
and
¢ =inf{t e [0,1]: f(t)=2}.
Thus by the continuity of f we have
(5) fla)=2, f®)=y and flc)=z2.

Without loss of generality we can assume a<b<e. Put

p=sup {tea, b): f(t)=a} and ¢ = sup{te[b,c]: f({) = or f(t) = y}.

Therefore f(p) = 2 and f(q) € {z, y} by the continuity of f. Consider two
cases (see the figure). :

Y
1 flo)=uy. According to the definitions of points p and b we have
(6) f([p, b)) = ay2', where &' eui\{z},
and by the definitions of points ¢ and ¢
M ey =2o'yz, where o cus\(w}.

e ©
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Take points @ and #, such that @ exo\{z, 2] and 2 c2'\{z,2'}. -
Thus

(8) @ § Yz,
and
(9) % ¢ oYz’

Since ; e xy2’, there is a t; € [p, b] such that f(,) = #, by (7), and
since z e x'yz, there is a £, e[q, ¢] such that f(4,) = 2z, by (8). Consider
components €, and C, of the set f~'(w2,) such that % ¢ €, and 1, e Cs.
Since f(p) = @, we have by (5)

(10) t,e C,Clp,d].
Similarly, f(¢) =y and (5) imply that
(11) tae O, Clg,e].

The mapping f being semi-confluent, either f(C,)Cf(0,) or f(C,)
CF(Cy). T £(Cy) Cf(Cy), then &y = f(1,) € f(C1) C £(C) C f([g, 6]) = a'yz by
(11) and (7), which contradicts (8). If f(C,) C f(0,), then 2, = f(%,) e f(Cy)
Cf(C) Cf([p, b)) = xyz’ by (10) and (6), which contradicts (9). )

2° f(q) = #. Then, as above, we obtain f([p, b]) = ayz’ and fllg, e
= gy’z. Take points y, and 2, such that ¥, e yy’\{y, ¥’} and 2, ¢ 2z"\{z, #'}.
Since y, € zyz’ and # € xy’z, there are points #; and i, such that # [p, b],
1, (g, ¢], f(#1) = ¥, and f(¢;) = #,. Let C; and 0, be components of f~*(y,2,)
such that #; « C; and 1, e C,. As in case 1°, we have C,C[p,b] and C,
Clg, ¢}, and in the same way we obtain a contradiction of the semi-
confluence of f, which completes the proof.

Lemma 4.2. Let a continuous mapping f map the unit interval I = [0, 1]
of reals onto a circumference S and let Aimf~Yy)= 0 for each y < S. Let
{a, B] be a closed interval in I such that f([a; f]) = pg C 8 and pg # 8. If
teInt([a, BI) 48 a point such that f(t) = p, then the one-point set {t} is
a component of f~(px) for each arc pxC S\pg.

Proof. According to the assumption there exists a neighbourhood U
of ¢ in [a, ] with the property f(U)C pg\{g}. Take an arc pz C S\pg.
Let A be a component of f~'(px) which contains ¢. Thus 4 is a closed
interval and we have te¢d ~ U. Since f(A ~ U)Cf(U)Cpg\{g} and
f(A~TU)Cf(4)Cpm, we have f(4 ~TU)C{p}. But dimf(p)=10 by
assumption and therefore A ~ U reduces to the point p. Since U is open
and 4 is a closed interval, we conclude that A = {¢}. In other words,
the one-point set {t} is a component of f(pz).

We have also

LemwmA 4.3. There is no semi-confluent mapping of an arc'onto a circum.-
Serence.
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Proof. Suppose, on the contrary, that a semi-confluent mapping
f maps the unit interval I = [0, 1] of reals onto a circumfersnce S. It is
well known that a monotone image of an are is an arc (see [14], (1.1),
. 165); hence we can assume that dimf~(y) = 0 for each y ¢ S, by Theo-
rem 3.9. Further, let @ be a proper subcontinuum of § such that
{f(0), f(1)} CIntQ. Put B = S\@. The intersection @ ~ R consists of two
points; denote them by e and b. Put

(12) t, = inf{t ¢[0,1]: f(f) = a or f(f) = b},
(13) t = sup{t e[0,1]: f(t) = a or f(i) = b}.

Obviously, f(#)e{a,b} and f(¢) e {a,b} by the eontinuity of f.
Consider two cases.

1° f(t,) # f(&). It follows by (12) and (13) that
(Inb@\f(t;, 1]) ~f([0,2]) #@ and  (IntQ\f([0,%]) ~Ff([1, 1)) #D.

Hence we can take an are # 2, such that

(14) ) 2,2, CIntQ ,
(13) 2 € [0, tINF((t:, 10)
(16) 2 € f({t:, IPNS([0, 1) .

Thus there are points «; ¢ [0,?,] and @, e[t;, 1] such that f(z,) = 2
- and f(m,) = 2. Let C{ and 0, be components of f~(z,2,) such that =, ¢ C;
and #z, € G,. By (12) and (14) we conclude that

1n me 0 CI0,4],
and by (13) and (14) that .
(18) w,e 0, C[t,1].

Since f is semi-confluent, either f(C,)Cf(C,) or f(0,) Cf(Cy). If
f(C)CS(Cy), then =z = fla)ef(C)Cf(C)Cf(lt;,1]) by (18). It -is
a contradiction of (18). If f(C,) Cf(C,), then # = f(x,) e f(C,) CF(Cy)
Cf([0,t]) by (17), which contradicts (16).

2 flt) = f(t). Assume f(t) = f(1}) = & (if f(1,) = f(£}) = b, then the
proof is the same). First we show that [0, ¢,] and [t;, 1] are components
of the set Q). Since f([0, #,]) is a proper subcontinuum of Q (observe
that b e Q\f([0, t,])), it is an arc ac= f([0,#,]) C Q\{b}. Therefore there
exists a point =, €[0,%] such that f(2,) = ¢. Take the are be C Q and
consider B be. Then R v be= S\ac, and hence by Lemma 4.2

(19)  ‘the one-point set {z,} is a component of F YR v be).

Now let €, be a component of f~%(Q) such that [0,t]C C,. Take
& point 4, with the property ¢, = [0, #,]. To show that [0,¢] is a com-
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ponent of f7X@), ie., that [0,#]= C,, assume, or the contrary, that
<ty I f([t,%]) C f([O #]) = a¢, then by Lemma 4.2 the one-point
set {¢,} is a component of f~(R u be). Since f(x,) = ¢ # a= f(3,), we have
a, contradiction of the semi-confluence of f by (19). It £([0, ¢t,1) C f([t:, fl),
then we consider a point @; = inf{¥ ¢ [t;, {]: f(¥) = ¢} and a closed interval
[0, #,]. Since %, e Int[0, ;] and R v be C 8\f([0, #]), by Lemma 4.2 the
one-point set {t,} is a component of (R u be). This contradicts the semi-
confluence of f by (19). Thus

(20)  the closed interval [0,%] is a component of f~(Q)
Similarly we infer that
(21)  the closed interval [t;,1] is a component of f~4Q)

Each component of the set {7 (R) and of the set f7(Q) is a closed
interval [a, ] which can reduce to a point if ¢ = §. Remark that if a # 0
and g # 1, then

(22) {f(a), f(B)} C {a, b} .
Observe that

(23)  there is no component €= [a, f] of f~YR) such that f(a)= f(B)
=a and a # B.

In fact, assume on the contrary that there is a component € = [a, £]
of f~YR) such that f(a) = f(8)= a and a # B. Then f([a, B]) is an arc
adC R and d # a because dimjf~*(a)= 0. Therefore there is a point
Yo € Int([a, B]) such that f(y,) = d. Take an arc db C R and consider an

arc db « be, where ¢ = f(w,) as before. Since db U be C S\ad, by Lemma 4.2
(24) the one-point set {y,} is a component of f~(dbu be).

Since db v be C S\ae¢, by Lemma 4.2 the one-point set {z,} is a com-
ponent of f~X(db v be), but f(y,) = d # ¢ = f(x,) we have a contradiction
of the semi-confluence of f by (24).

Notice also that

L]

(25)  there is no component €= [a, f] of f~%(Q) such that f(a) = f(B)
=b and a # f.

In fact, assume on the contrary that there is a component 0 = [a, f]

of f~4@) such that f(a) = f(B)= b and a # f. Since f(t,) = a and [0, t,]
is a component of f~HQ) by (20), and b¢f([0,t]), we have f([0,t])
Cf([a, f]) by the semi-confluence of f. Therefore a ¢ f([a, 1), and thus
there is a point 2, e Int([a, A1) such that f(z) = a. Let 2, = sup{t ¢ [a, #]:
f)=1¢ and 2, =inf{t e[z, pl: f(f)=c}. Then z c¢Int((z,z2]) and
fl#, 2]) = f([0,%]) = ac C Q. Since R v be= S\ac, by Lemma 4.2 the
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one-point set {2} is a component of f~*R w be). This contradicts the
semi-confluence of f by (19), because f(z) = a # ¢ = f(x,).
‘We now show that

(26)  the set fY(R) has only a finite number of components with a non-
empty interior.

Indeed, let ¢ = [a, 8] be a component of f~(R) such that Int C % @,
If f(a) # f(B), then f([a,f])= R by (22). Since for each component
C =[a, fICfYR) such that f(C) = R we have f—a > ¢ for some £ > 0
by the continuity of f, the number of all components € = [a, 8] of f(R)
with f(a) 5 f() is finite. If f(a) = f(8), then f(a)=>b by (23). Let (¢
= [a, f] be a component of f(R) such that f(a) = f(B) = b. Take com-
ponents 4, and 4, of f~(Q) such that a € 4, and e 4,. Since f is semi-
confluent, f([0,t,]) Cf(4,) and f([0, t,]) C f(4,) by (20). Therefore f(4,)

= f(4,) = Q. But for each component B = [y,§] of f%(Q) such that _

f(B)= @ we have y—3d > for some 5 >0 by the continuity of f. Thus
diam 4; as well ag diam 4, are greater than #. Thereby we have shown
that for each component € = [a, f] of f~R) with f(a) = f(8) = b there
are two components 4, and 4, of f~%@) having diameters greater than
7 >0 and such that 4, v 0 u 4, is a closed interval. It follows that the
number of such components ( is finite. Therefore the set f~YR) has only
a finite number of components € such that IntC # @.

Put T'=[0,1\U{C: O is a component of f~(R) and IntC # @}.
Since the set 7' has only a finite number of components by (26), also

(27)  the set T has only a finite number of components.

. Observe that if ¢ ¢ Int R, then for each t e f7Y(e) there is a connected
neighbourhood @ of ¢ sueh that f(G)CIntR. Thus @ is contained in
& component C of f{R) and IntC +# @. Therefore ¢ e \f(T) by the

definition of 7. Thereby f(T)C @, and thus f(T) Cf(T)C § = Q. Hence
it i3 easy to see that

(28)  each component of the set 7 is a component of the set ),
because f(fQ) ~f(R))= {a,b} and dimfY(a)— dimfY(b) = 0 by
assumption. :

Notice also that

(29) esz},:;_ component ¢ of f~(Q) such that IntC = @ is a ‘componenb
of 7. .
. Iﬁ'ﬁact, if € is a component of f1(Q) such that Int ¢ # O, then there
%s a,.pomt‘ telth and ‘each component of FYR) with a non-empty
Interior fails to contain ¢. Therefore ¢ T, and thus ¢ belongs to some
. component- 4 of T. It follows by (28) that ¢ — A.

e ©
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According to (26) we can supply each component C of f~(R) having
a non-empty interior with an index ¢=1,...,n in such a way that C;
= [ai, fil, C5 = [ay, fs] and i <<j implies f;<< ay.

It follows by (20), (21) and (29) that [0, ¢,] and [¢;, 1] are components
of 7. Therefore by the definition of 7' we see that

(30) au=1 and f,=1.
‘We shall prove by induction that
(31) flai)=a and f(Bi)=0>b for eachi=1,..,%.

Indeed, since f(a;) = f(f,)= a by (30), we have f(f) =0 by (22)
and (23). Assume that f(ax) =@ and f(fr) = b. We show that then
flag.y) = a and f(B;,,) = b. Namely, since f(§;) = b and a closed interval
[Bry a1l is & component of f~(Q) by (28), we have f(a;,;) = a by (22)
and (25). Therefore f(f;.,) = b by (22) and (23). Thus (31) is true. It
follows from (31) that f(B,) = b, but by (30) f(8,) = f(t;), which contra-
diets the assumption that f(i;) = a.

Let 8 be the circumference |z| = 1, and let R denote the real line.
Recall that & continuous mapping f of a separable metric space X into § is
said to be inessential if it belongs to the same component of the functional
space 8 as the mapping fy(x) = 1, where x ¢ X. It is known (see [2], XI,
p. 217) that

PROPOSITION 4.4. Every continuous mapping of a hereditarily de-
composable and hereditarily unicoherent continuum into a circumference is
messential.

A hereditarily decomposable and hereditarily unicoherent continuum
is called a A-dendroid (see [4], Theorem 1, p. 16). The following theorem
will now be proved.

THEOREM 4.5. There is no semi-confluent mapping of a 2A-dendroid
onto a circumference.

Proof. Let X be a A-dendroid and suppose that f is a semi-confluent
mapping of X onto a circumference. Since f is inessential by Proposition 4.4,
there exists by Eilenberg’s Theorem 1 in [5], p. 162, a continuons mapping
@: X R such that f(z)= ¢ for each z < X. Thus f can be factored
into two mappings v and g, ie., f(#) = y(p(x)) for © ¢ X, where y (1) = ¥
for ¢t = p(x) e R. The image p(X) is a segment. Since f is semi-confluent
by hypothesis, by Theorem 3.5 u is a semi-confluent mapping which
maps the segment onto a circumference. But this contradicts Lemma 4.3.

§ 5. Semi-confluent images of 1-dendroids. First we have the following

TeEEOREM 5.1. The hereditary decomposability of continua is an in-
variant under semi-confluent mappings.
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In fact, let @ be an indecomposable subcontinuum of a semi-confluent
image f(X) of a continuum X. Then there is a component C of f~(Q)
by Corollary 3.2 such that f(C) = @. Therefore ¢ would contain an inde-
" composable subcontinuum by Kuratowski’s theorem proved in [7], § 48,
V, 4, p. 208. '

Now we have the following

THEOREM 5.2. 4 semi-confluent image of a A-dendroid is a - dendroid.

Proof. Let X be a 1-dendroid, and let f be a semi-confluent mapping
of X. It follows by Theorem 5.1 that a continuum f(X) is hereditarily
decomposable. Suppose that f(X) is not hereditarily unicoherent. Thusg
there is a subcontinuum M of f(X) which is hereditarily decomposable
but not unicoherent, and therefore contains (see [9], Theorem 2.6, p. 187)
a subcontinuum N which has an upper semi-continuous decomposition
on mutually disjoint continua N; such that the hyperspace of this de-
composition is the circumference S§. This means (see [14], (3.1), p. 125)
the existence of a monotone mapping ¥ of N onto §. By Corollary 3.2
there is a component ¢ of f~(¥) such that f(0) = N. Hence by hypo-
thesis O is a A-dendroid. According to Theorem 3.7 the mapping f}C is
semi-confluent. Since the mapping # is monotone, it is confluent, and
thus the superposition 9(f|C) is semi-confluent by Theorem 3.3. A mapp-
ing #(f|C) maps C onto S, which contradicts Theorem 4.5, because O is
a A-dendroid. :

Recall that a dendroid is an arcwise connected and hereditarily
unicoherent eontinuum (see [1], p. 239). Since every dendroid is hereditarily
decomposable (see [1], (47), p. 239), and since arcwise connectedeness is
an invariant under an arbitrary continuous mapping (see [14], p. 39),
by Theorem 5.2 we have the following

CoRROLLARY 5.3. Every semi-confluent image of a dendroid is a dendroid.

Moreover, since a dendrite is a locally connected dendroid, and since
the local connectedness is an invariant under arbitrary continuous
mapping, we conclude from Corollary 5.3 that

CORROLLARY 5.4. Hvery semi-confluent image of @ dendrite is a dendrite.
As for confluent mappings (see [3], Corollary 20, p. 32), we have
TEmoREM 5.5. Hvery semi-confluent image of am arc is an are.

Proof. Let a semi-confluent mapping f map an are X onto a con-
tinunm Y. Since X is a dendrite, ¥ is a dendrite. Suppose that ¥ containg
a triode T, By Corollary 3.2 the arc X contains an arc ¢ such that flo)
= T, but & mapping f|C is semi-confluent by Theorem 3.7 .Therefore we
have a semi-confluent mapping f|C of an are ¢ onto a triode, which

contradiets Lemma 4.1. Thus the dendrite Y contains no triode, whence
it is an are.

2] © !
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A point p of a dendroid X is called a ramification point (in the
classical sense) if it is the common end-point of three (or more) arcs in X
whose only common point is p. A dendroid having exactly one ramifi-
cation point is called a fan (see [3], p. 6). The ramification point of a fan
is called its top.

‘We now prove a theorem which is similar to Theorem 12 in [3], p. 32.

THEOREM 5.6. A semi-confluent image of a fan is a fan (or an arc),
and the top of the model is mapped on the top of the image.

Proof. Let X be a fan with the top ¢, and let f be a semi-confluent
mapping of X. Since X is a dendroid by definition, f(X) is a dendroid
by virtue of Corollary 5.3. Suppose that there are in f(X) two different
ramification points a and . So one of them, say a, is different from f(¢).
Thus there is a triode @ of f(X) such that a €@ C f(XN{f()}. So f4Q)
C X\{t}, whence every component of f~(Q) is an are. Let 4 be the com-
ponent of f71(Q) such that f(4)= @, which does exist by Corollary 3.2.
But f| A is semi-confluent by Theorem 3.7, consequently @ is an arc by
Theorem 5.5, @ contradiction.

A fan X with the top ¢ is said to be smooth provided that if a se-
quence {a,} of points of X tends to a limit point @, then the sequence of
arcs {ta,} is convergent and Limia, = ta (see [3], p. 7). A confluent image

n—co
of a smooth fan is a smooth fan (see [3], Theorem 13; p. 33). But semi-
conf nent mappings of fans do not preserve smoothness in general. This
can be seen from the following

Exampre 5.7. Put in the Cartesian coordinates in the plane a,
= (27", —1), by = (27", 0), ¢z = (3:27®, 0) and d, = (3-27"*Y, 1). Join
consecutively @y, bn, ¢, dn and the point (0, 2) by straight line segments
and take the closure of the union of polygonal lines obtained in this way.
The resulting continuum M is a smooth fan with (0, 2) as the top. Define
f(z,y) = (w, |y]) for each point (@, y) ¢ M. Thus the mapping f is semi-
confluent and the image f(M) is a non-smooth fan.

A tree is a one-dimensional polyhedron containing no simple closed
curve. Clearly, trees are dendrites having a finite set of end-points.
A continuum X is said to be tree-like (arc-like) if for each ¢ > 0 there exist
a tree (an arc) ¥ and a map f from X onto ¥ such that diamf(y) < e
for every ye Y.

McLean [8] proved that confluent images of tree-like curves are
tree-like. We have the following

QUESTION b.8. Is a semi-confluent image of a tree-like (are-like) curve
tree-like (arc-like)?
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There is no universal totally disconnected space

by
R. Pol (Warszawa)

Abstract. From the results of this note it follows that there is no universal space .
in the class of all separable metrizable totally disconnected spaces.

1. In this note we shall prove the following

TrEorREM. Let m be an infinite cardinal and let X be a completely
reqular space of weight m and cardinality 2™. If a completely regular space M
of weight m contains topologically every completely regular space of weight <m
which admits a one-to-one mapping onto X, then M contains topologwally
all completely regular spaces of weight <m.

From the theorem we obtain the following.

CoRrOLLARY. There is mo universal space in the class of all totally dis-
connected, completely reqular spaces of weight <m = .

The proof of our theorem is based on a construction of Hilgers that
we recall in section 2. This construction gives also an interesting example
of a totally disconnected, metrizable, separable space that we describe
in section 5.

Our terminology and notations are as in [1] and [3] In pa.rtmular,
the symbol f: X>¥ and the word “mapping” always mean “continuous
function”. The symbol X C Y means that X is topologically contained

in ¥. Finally I"™ and D™ denote the Tychonoff Cube and the Cantor Cube
of weight m, respectively. By a totally disconnected space we mean a space
which is not connected between any pair of points, in other words such

that every quasi-component consists of a single point. '

2. The Hilgers construction (cf. [2]; [3], § 27, IX). Let 8 be a topo-
logical space, T C 8§, and let % be a family of subsets of the produet §x S.
Suppose that there exists a function ¢ which establishes a one-to-one
correspondence between the elements of 7' and . For every fe T let
us choose an element f(f) ¢ 8 such that (¢, f(t)) e {t} X S\g(s) if this ig
possible and an arbitrary f(t) e § in the opposite case. We denote the
graph {(t, f (t))| te T} by H and call it the Hilgers set for the family % and
the set T. Let us observe that
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