

Table des matières du tome LXXIX, fascicule 2

M. A. R. Qureshi, S-torsion free modules	Pages 87-90
D. M. Olson and T. L. Jenkins, A note on the Levitzki radical of a semiring	91-93
A. J. Boals, Factors of E^{n+3} with infinitely many bad points	95 –99
J. E. Baumgartner, All X1-dense sets of reals can be isomorphic	101-10
J. W. Cannon, A positional characterization of the $(n-1)$ -dimensional	
Sierpiński curve in S^n $(n \neq 4) \ldots \ldots \ldots \ldots \ldots \ldots$	107-11
J. J. Charatonik, On decompositions of continua	113-13
P. Nyikos, The Sorgenfrey plane in dimension theory	131-13
K. Borsuk, On positions of sets in spaces	141-15
S. N. Mukhopadhyay, On essential cluster sets	159-17
T. Mackowiak, Some characterizations of smooth continua	173-18

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange:

FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa 1 (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, 00-068 Warszawa 1 (Pologne)

S-torsion free modules

by

M. A. Rauf Qureshi (Karachi)

Abstract. Let R be a ring with unity element, satisfying left Ore condition on a multiplicatively closed subset S of R. It is proved that there exists a fractional module (ψ_A, A') for an S-torsion free left R-module A, and, if S is contained in the set Q of all right regular elements of R, it follows that (ψ_R, R') exists. Imposing on S the conditions: (1) $S \subseteq Q$, (2) $\psi_R(R)$, S-divisible; it is shown that an S-module (ψ_A, A') exists uniquely for every left R-module A, and that A' is an exact covariant functor of A.

1. Introduction. Throughout this paper we shall suppose that R is a ring with $1 \neq 0$, satisfying the *left Ore property*

$$Rs \cap Sr \neq \emptyset$$
 $(r \in R, s \in S)$,

where S is a subsemigroup of R under multiplication and without zero. Also by a module we shall mean a left R-module.

If S satisfies the left semi-regular condition (i.e., for $r \in R$ and $s \in S$, rs = 0 implies that $\sigma r = 0$ for some $\sigma \in S$), then in [4] it was shown that an S-module (ψ_A, A') of a module A (see Sec. 3) exists, which is unique to within an isomorphism. In particular, the S-module (ψ_R, R') of R turned out to be the ring of fractions with denomenators in S, defined by Gabriel in [2] and [3].

The set

$$Q = \{ \sigma \in R | r \in R, \sigma r = 0 \text{ implies } r = 0 \}$$

of right regular elements of R is a semigroup, called the *right semigroup* of R. If S is a subsemigroup of Q, then it does not necessarily satisfy the left semi-regular condition, and consequently an S-module of A may not exist in general. However, we shall show that a fractional module of every S-torsion free module A with respect to S exists (see Sec. 3). This, in particular, gives a fractional module (ψ_R, R') of R with respect to S. Assuming that (ψ_R, R') is an S-module of R, we shall show that R' is flat as right R-module, and an S-module (ψ_A, A') exists for every module A, and that A' is isomorphic to $R' \otimes A (\otimes = \otimes_R)$.

2. Preliminaries. Let A be a module. An element $a \in A$ is called S-torsion free, if $sa \neq 0$ for any $s \in S$, and a is said to be an S-torsion element, if it is not S-torsion free. If for $s \in S$ there exists an element T-fundamenta Mathematicae. T. LXXIX

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

81 Nu CO 301 ... 0 4 0 1

 $b \in A$ such that a = sb, we say that a is S-divisible. The definitions of S-torsion free, S-torsion and S-divisible modules are clear. We shall write T(A) for the set of all S-torsion elements of A.

It is clear that a quotient of an S-divisible module is S-divisible, and using Ore property of R it follows that T(A) is a submodule of A, and A/T(A) is S-torsion free.

A is called S-injective, if for any left ideal I of R with $I \cap S \neq \emptyset$ and for any homomorphism $f \colon I \to A$ there exists $a \in A$ such that f(u) = ua for all $u \in I \cap S$. In view of Ore property it can easily be seen that every S-torsion free and S-divisible module is S-injective.

2.1. Proposition. Let A be an S-divisible module, and

$$0 \rightarrow A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C \rightarrow 0$$

an exact sequence of modules. Then the sequence

$$0 \rightarrow A/T(A) \xrightarrow{\overline{f}} B/T(B) \xrightarrow{\overline{g}} C/T(C) \rightarrow 0$$

is exact, where \(\bar{f} \) and \(\bar{g} \) are defined in obvious way.

Proof. The fact that B/T(B) and C/T(C) are S-torsion free implies that \bar{f} and \bar{g} are well-defined. Clearly \bar{f} and \bar{g} are respectively monomorphism and epimorphism, and $\mathrm{Im}\bar{f}\subset\ker\bar{g}$.

If $\overline{b} \in \ker \overline{g}$, then there exist $s \in S$, $\overline{a} \in A$ such that sb = f(a), and the S-divisibility of A implies that a = sa' for some $a' \in A$. Hence $s\{b-f(a')\}$ = 0, which gives $\overline{b} = \overline{f}(\overline{a}')$, i.e., $\ker \overline{g} \subset \operatorname{Im} \overline{f}$.

- 3. S-torsion free modules. A fractional module of a module A with respect to S is a pair (ψ, A') such that
 - (1) A' is S-torsion free and S-injective module,
 - (2) ψ : $A \to A'$ is an R-homomorphism, with $\ker \psi = T(A)$,
 - (3) for every $x \in A'$ there exists $s \in S$ such that $sx \in \psi(A)$.

If the pair (ψ, A') satisfies the conditions (2) and (3), with A' S-torsion free and S-divisible, we say that (ψ, A') is an S-module of A. Thus, in view of our earlier remark, every S-module of A is also a fractional module of A with respect to S. Two S-modules (ψ, A') and (φ, B) of A are called isomorphic, if there exists an isomorphism $\theta \colon A' \to B$ such that $\theta \psi = \varphi$.

3.1. Proposition. If (ψ, A') satisfies (1) and (2), with A' S-divisible, then (3) is equivalent to the universal property: for every homomorphism $f\colon A\to B$, where B is S-torsion free and S-divisible, there exists a unique homomorphism $f^*\colon A'\to B$ such that $f^*\psi=f$.

Proof. (i) Suppose that (3) holds. If $x \in A'$, then $sx = \psi(a)$ and sb = f(a) for some $s \in S$, $a \in A$, $b \in B$. Define f^* by $f^*(x) = b$. Using Ore property and the condition $\ker \psi = T(A)$, it can be seen that f^* is well-

defined homomorphism with $f = f^*\psi$. Also by (3) the uniqueness of f^* can be checked.

(ii) Let the universal property hold for the pair (ψ, A') . Then in view of Ore property $A'' = \{x \in A' | sx \in \psi(A) \text{ for some } s \in S\}$ is a submodule of A', and by (i) the diagram

$$A \xrightarrow{\psi} A''$$

$$\downarrow^{\psi^*}$$

commutes. In fact ψ^* is inclusion, and using the universal property of (ψ, A') and the above diagram it follows that ψ^* is isomorphism. Hence A'' = A'.

Thus an S-module of A, if it exists, is a universal object.

3.2. Proposition. If A is an S-torsion free module, H the injective hull of A, and ψ_A the embedding homomorphism, then (ψ_A, A') is a fractional module of A with respect to S, where

$$A' = \{ \varkappa \in H | \text{ there exists } s \in S \text{ with } s\varkappa \in \psi_A(A) \}.$$

Proof. It is clear that H is S-torsion free and A' is a submodule of H. Since every injective module is S-injective it follows that A' is S-injective.

Let Q be the right semigroup of R and $S \subseteq Q$. Then R is S-torsion free as left R-module, and it has a fractional module (ψ_R, R') with respect to S. If every element of $\psi_R(R)$ is S-divisible in R', then it is easy to see that R' is S-divisible and (ψ_R, R') is an S-module of R. From now on we shall suppose that $S \subseteq Q$ and $\psi_R(R)$ is S-divisible in R'.

Identify R in R' by ψ_R , so that every element of R' can be expressed as $s^{-1}a$ ($s \in S$, $a \in R$). Clearly R' is also a right R-module in obvious way.

3.3. PR(ITION. R' is flat as right R-module, and

$$T \cong \operatorname{Tor}_{\mathbf{I}}(K, A) \quad (\operatorname{Tor} = \operatorname{Tor}^{R} \text{ and } K = R'/R)$$

for any module A.

Proof. We employ the modified arguments of Cartan and Eilenberg in [1, Ch. VII, p. 130].

If $s \in S$, then $D_s = s^{-1}R$ is free and it follows that $R' = \lim_{\longrightarrow} (D_s)$ and R' is flat.

Now the exact sequence $0 \to R \to R' \to K \to 0$ of right R-modules yields the exact sequence $0 \to \operatorname{Tor}_1(K,A) \to A \xrightarrow{f} R' \otimes A$. The map $f_s: A \to D_s \otimes A$ $(f_s(a) = 1 \otimes a, a \in A)$ is the combined map

$$A \stackrel{f_{\delta}}{\to} D_{\delta} \otimes A \stackrel{g}{\to} R \otimes A \stackrel{h}{\to} A$$
,

icm©

where h is canonical isomorphism and $g(s^{-1}r\otimes a)=r\otimes a$. Hence $\ker f_s=\ker(hgf_s)=\{a\in A|\ sa=0\}\subseteq T(A),\ \text{and}\ \text{evidently,}\ \bigcup_{s\in S}\ker f_s=T(A).$ Thus

$$T(A) = \lim(\ker f_s) \cong \ker f \cong \operatorname{Tor}_1(K, A)$$
.

3.4. Proposition. For every module A there exists an S-module.

Proof. Write $A_s = R' \otimes A$ and consider the map $\varphi \colon A \to A_s$ ($\varphi(a) = 1 \otimes a$, $a \in A$). Since A_s is S-divisible, therefore $A' = A_s/T(A_s)$ is S-torsion free and S-divisible.

If ψ_A is the combined map $A \stackrel{\varphi}{\to} A_s \stackrel{g}{\to} A'$, where g is the natural homomorphism, then $\psi_A(a) = 0$ implies that $\varphi(a) \in T(A_s)$, i.e., $\sigma \varphi(a) = 0$ for some $\sigma \in S$. Hence by 3.3 $\sigma a \in T(A)$, and it is clear that $\ker \psi_A = T(A)$.

Now every element $x \in A'$ can be written as $g(s^{-1} \otimes a)$, so that $sx = \psi_A(a)$. This completes the proof.

It follows that, if A is S-torsion module, then its S-module is zero.

3.5. Proposition. If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is an exact sequence of modules, then the sequence

$$0 \rightarrow A' \rightarrow B' \rightarrow C' \rightarrow 0$$

is exact, where (ψ_A, A') , (ψ_B, B') , and (ψ_C, C') are S-modules of A, B, and C respectively.

Proof. The exactness of the given sequence implies the exactness of

$$0 \to A_s \stackrel{f^*}{\to} B_s \stackrel{g^*}{\to} C_s \to 0$$
 $(f^* = \mathbf{1}_{R'} \otimes f, \text{ and } g^* \text{ similarly}).$

Since A_s is S-divisible, therefore by 2.1 we obtain the exact sequence $0 \to A' \xrightarrow{\overline{f^*}} B' \xrightarrow{\overline{f^*}} C' \to 0$.

In view of 3.5 and the remark at the end of 3.4 it follows that $A' \cong (A/T(A))'$ for any module A. Furthermore, it is evident that A' is a covariant exact functor of A.

References

- [1] H. Cartan and S. Eilenberg, Homological Algebra, 1956, Ch. VII.
- [2] N. Bourbaki, Algèbre commutative, Paris 1961, pp. 157-168.
- [3] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), pp. 323-448.
- [4] M. A. Rauf Qureshi, S-modules and local rings, J. Nat. Sci. & Math. 9 (1969), pp. 259-270.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KARACHI At present: UNIVERSITY OF LIBYA

Reçu par la Rédaction le 24. 11. 1970

Dwight M. Olson (*) (Lawton, Okla.) and Terry L. Jenkins (Laramie, Wyo.)

Abstract. In this paper the authors prove that the Levitzki radical of an arbitrary semiring S is necessarily a k-ideal of S. A preliminary lemma states that if I is a locally nilpotent ideal of a semiring S then the closure of I is also a locally nilpotent ideal of S. These results strengthen certain of those obtained by E. Barbut [1].

- 1. A set S with two binary operations + and \cdot is called a *semiring* if (R, +) is a commutative semigroup with zero, (R, \cdot) is a semigroup, and both the left and right distributive laws hold for multiplication over addition. It is also required that $0 \cdot x = x \cdot 0 = 0$ for all $x \in S$. A nonempty subsemiring I is called a *right ideal of* S if for all $x \in I$ and $r \in S$, $xr \in I$. Left ideals and (two-sided) ideals are defined in a similar manner. An ideal I of S is called a k-ideal of S [5] if $x + y \in I$ and $y \in I$ implies $x \in I$ for each $x, y \in S$.
- E. Barbut [1] defined the Levitzki radical of a semiring and could prove many results concerning this radical providing the Levitzki radical is a k-ideal. In this note we prove that this radical is necessarily a k-ideal which strengthens many of Barbut's results.
- 2. If I is an ideal of the semiring S, the quotient semiring S/I is the one defined by S. Bourne [2] where for $a, b \in S$,

 $a \equiv b \pmod{I}$ iff there exists $i_1, i_2 \in I$ such that $a + i_1 = b + i_2$.

DEFINITION 1. A semiring S is called *locally nilpotent* if every finite subset F of S generates a nilpotent subsemiring of S, or equivalently, if for each finite subset F of S there exists a positive integer N_F such that every product of N_F elements from F is zero.

DEFINITION 2. [1] The Levitzki radical L(S) of a semiring S is the sum of all locally nilpotent ideals of S.

E. Barbut [1] has shown that L(S) is a locally nilpotent ideal of S which contains every locally nilpotent right or left ideal of S.

^(*) This paper is part of Dwight M. Olson's Ph. D. dissertation prepared under the direction of Professor Terry L. Jenkins at the University of Wyoming, Laramie.