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Decomposable cardinals
by
G. P. Monro (") (Ferny Creek, Victoria)

Abstract. An infinite cardinal m is decomposable if there exist cardinals p,q< m
such that p+ g = m. Well-orderable cardinals are not decomposable, so in the presence
of the axiom of choice there are no decomposable cardinals. Let N be the Halpern-Lévy
model for the independence of the axiom of choice from the Boolean prime ideal theorem.
We show that in ¥ every non-well-orderable cardinal is decomposable; in particular,
N |=2% is decomposable.

An infinite eardinal m is decomposable if there exist cardinals p, ¢<< m
such that p-+g¢= m. Alephs are not decomposable, so in the presence
of the axiom of choice there are no decomposable cardinals. In this paper
we prove that in the Halpern-Lévy model for set theory without the
axiom of choice every non-well-orderable cardinal is decomposable; in
particular 2° is decomposable in the model.

The Halpern-Lévy model is described in [1]; we give here another
version of the model. If » is an aleph we define

S(4) = {XCA: |X|< s}
and

H(A, B) = {f a function: dom(f) e §,(4) and ran(f) QB.} .

Let M be a countable transitive model of ZF4-V =1L, and let & be
H,(woX w,2)-generic over M. For i< o define

Gi={{n, kp: {Ki,n, By} e G} .

Then each @ is an element of “2. Set ¢* = {Gi: i < o} and N = (L(G%)",
N is our version of the Halpern-Lévy model. We note that every element
of N is constructible from @, some @, , ..., G; and an element z ¢ M.

(*) The results here are taken from the author’s Ph. D. thesis (University of
Bristol 1971), which was supervised by Dr F. Rowbottom. The author was supported
by a Monash University Travelling Scholarship.
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TamoreM 1. Let y be a ZF-formula, e M. Then N |[=if 7,71, ., Tn
e G and (G, 71y ooy Ty &, ) and v ¢ {T1, «..y Tn} then there is heH,(w,2)
sueh that D and for all "' DM

P e G (G¥ Ty ey Tuy 3, 77)

Proof. See [1], p. 133. The proof there is easily adapted to our
version of the model. ‘ )

TaroREM 2. If y e N there is a unique smallest subset a of G such
that y is constructible from G, a and some ©e M.

Proof. See [1], p- 137. Of course a is finite.

We call a the support of y, written supp(y).
Tt is an immediate consequence of Theorem 1 that G*, and thence “2,

cannot be well-ordered in N.
Tor the rest of the paper X is a fixed element of N such that X cannot.

be well-ordered in N. We will work in N- throughout.
We observe first that ’

(1) {supp(#): # e X} is infinite.

For if {supp(z): # € X} is finite it can be well-ordered, and any such well-
ordering immediately induces a well-ordering on X. (See [1], p. 138)..
Write ax for supp(X). From ax we define an injection

f: X—>SQ(G*~—aX) x ON
as follows. For ze X

0 (x) = <supp(#)—ox, &
where « is the least ordinal such that « is the ath set constructed from:
supp(#) v ax and G*. Set ¥ = 0"X; we note that Y is constructible
from ax and G*. Set ;

A= J{ae8,(G): (Ha)(<a, o> e X)}.

It follows from (1) that A is infinite. Clearly A4 is constructible from ax:

and G*, and A nax= @. So by an application of Theorem 1 (to the
sentence “r e A”) we have

@)  (Vred)|Ep cH,(0,2)(rdp and (Vse@)(sDp—>se ).

We now define by induction two sequences (A,),<n, 204 (Byplnen,
of subsets of 4 and a sequence (p,),<x, 0f elements of H (w, 2). (Here n, is
either finite or equal to w.) Let o be a particular well-order in type
of H (o, 2).

P, is the p-first element p of H, (e, 2) such that for all 7 e @, rDp
—>re A (such p exist, by (2)). We set

Ay={reG: rDpy}, By=A—A4,.
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Pni: 18 the g-first element p of H,(w, 2) such that
(Vre@)(rDps>reBy).

Such exist if B, is non-empty, because if s € B, by (2) there is some p such
th.at $Dp and (Vre G*)(r Dp—>red). Now extend p to p’ incompatible
with each of py, ..., p,. Then

rOp’»rédyv..ud,,

50 re@ and 7 Dp'—>re B,. We set
An«l—l = {7‘ € G%: "2?n+x} ]

If B, is empty we stop. Clearly 4, < ny>4i " Aj=0 and (J4,= A.
n<ng

We now split 4 into two halves H,, H, as follows. Set m, .
= (um)(dom(p,) Cm). Then

B,,,= B,— Apgr-

CHy o An = {re Az (um = ma)(r(m) = 1) is even},
H, ndp = {redn: (pm=ma)(r(m) = 1) is odd} .

‘We use H, anfi H, to split ¥ into two halves ¥,, ¥, thus. If a ¢ 8, (G —
— {0} we write q, for the lexicographically first' element of a. Take
{a,areX,
e=0>{a,a)e¥,,
a# @ and g eHy>{a,aye’,,
a#0 and aqeH,><{a,ad>eY,.
Levma 3. |Y,| and |X,} are incomparable.
Proof. Suppose that f: ¥,—¥, is an injection and f has support

celS,(G%). Set d=c—4, e==c~ A. Then e, e 4, for
R . some 7 << ng, 80 -
€ 2 Pa. It is clear that o e 5

(3) in A, there are elements of both H, and H, which lexicographically
precede ¢,.

Wg choose .<a, ay e ¥ sueh that ay<ye; €, and a, € Hy. (Here <, is the
lexicographic order on “2.) This implies that <a, a> « Y,, so set

(4) J(Ka, @)= <b, B> .

If a,¢b we may hold b, ¢ and a— {a,} fixed and apply Theorem 1
to (4) to move a,. We conclude that f is not 1:1, contrary to our hypothesis.
If ay ¢ b, certainly ag = by (as ay e Hy, by e Hy). So b, <jex %y Whence
by¢c and b, ¢ a. Thus we may hold a, ¢ and b— {bo} fixed and apply
Theorem 1 to (4) to move b,. We conclude that f is not a function, again
a contradiction.
.
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This shows that |¥,| % |¥;]. A similar proof shows that | Y| & |Y,l.
THEOREM 4. N |=every non-well-orderable cardinal can be decomposed

into incomparable cardinals.
Proof. Suppose ¥ |=X is not well-orderable. Then in the notation

used above, |X|=|¥|=|¥,|4 [Ty Since ¥, Y. CX, | Yo, | Tl < |X].

However |Y,| # |¥| (for otherwise |Y,| < |¥,|, contradicting Lemma 3),
and similarly |¥,| # |Y|.

IH is not a theorem of ZF that every decomposable cardinal can be
decomposed into ineomparable cardinals. For it is cons_istent with ZF
that there exist infinite sets X with only finite and cofinite subsets..}:?‘or
such X, |X| is decomposable but the two cardinals of a decomposition
are always comparable. .

Tt is not a theorem of ZF (at any rate if the existence of an inacces-
gible cardinal is consistent) that every non-well-orderable camd%'nal is
decomposable. For in [2] a model of ZF is constructed (assuming an
inaccessible) in which 2 is neither an aleph nor decomposable.
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Models of zr with the same sets of sets of ordinals
by
G. P. Monre (*) (Ferny Creek, Victoria)

Abstract. In 1967 Vopénka and Balcar showed that if M, and M, are transitive
models of Zermelo-Fraenkel set theory (ZF) and one of M,, M, satisfies the axiom of
choice, then M, = M,. Jech then constructed two distinct models of ZF with the same
sets of ordinals. In this paper we exhibit an w-sequence of transitive models of ZF such
that the kth and (k--1)st models have the same sets of sets of sets... (% times) of ordinals.
The construction is by the method of forcing, each model being a generic extension
of its predecessor in the sequence.

Introduction. In this paper we exhibit an w-sequence of transitive
models of Zermelo-Fraenkel set theory (ZF) such that the kth and
(E+1)-st models have the same sets of sets of sets... (k times) of ordinals.
The construction of the sequence of models proceeds by foreing, each
model being a generic extension of its predecessor.

Vopénka and Balear showed in [5] that if M, and M, are transitive
models of ZF with the same sets of ordinals and one of M,, M, satisfies
the axiom of choice, then M, = M,. Jech [2] then constructed two distinet
transitive models of ZF with the same sets of ordinals. The models are
symmetric submodels of F-models. Jech left open the problem of con-
structing two distinet symmetrie models with the same sets of sets of
ordinals. Since the models in this paper are not symmetric models Jech’s
problem is still unsolved.

A conditfon for two models with the same sets of sets of ...of ordinals to be
equal. We begin by introducing some weak axioms of choice. If X is
a proper class, denote by S(X) the class of all subsets of X. We set

S(ON)= ON, S§*YON)= S(S*ON)) for
We define KWP* as the axiom
(Vo) (If) (f: 2~ 8% ON) and f is 1:1).

E<o.

(*) The results here are taken from the author’s Ph. D. thesis (University of
Bristol 1971), which was supervised by Dr F. Rowbottom. The author was supported
by a Monash University Travelling Scholarship.
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