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This shows that |¥,| % |¥;]. A similar proof shows that | Y| & |Y,l.
THEOREM 4. N |=every non-well-orderable cardinal can be decomposed

into incomparable cardinals.
Proof. Suppose ¥ |=X is not well-orderable. Then in the notation

used above, |X|=|¥|=|¥,|4 [Ty Since ¥, Y. CX, | Yo, | Tl < |X].

However |Y,| # |¥| (for otherwise |Y,| < |¥,|, contradicting Lemma 3),
and similarly |¥,| # |Y|.

IH is not a theorem of ZF that every decomposable cardinal can be
decomposed into ineomparable cardinals. For it is cons_istent with ZF
that there exist infinite sets X with only finite and cofinite subsets..}:?‘or
such X, |X| is decomposable but the two cardinals of a decomposition
are always comparable. .

Tt is not a theorem of ZF (at any rate if the existence of an inacces-
gible cardinal is consistent) that every non-well-orderable camd%'nal is
decomposable. For in [2] a model of ZF is constructed (assuming an
inaccessible) in which 2 is neither an aleph nor decomposable.
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Models of zr with the same sets of sets of ordinals
by
G. P. Monre (*) (Ferny Creek, Victoria)

Abstract. In 1967 Vopénka and Balcar showed that if M, and M, are transitive
models of Zermelo-Fraenkel set theory (ZF) and one of M,, M, satisfies the axiom of
choice, then M, = M,. Jech then constructed two distinct models of ZF with the same
sets of ordinals. In this paper we exhibit an w-sequence of transitive models of ZF such
that the kth and (k--1)st models have the same sets of sets of sets... (% times) of ordinals.
The construction is by the method of forcing, each model being a generic extension
of its predecessor in the sequence.

Introduction. In this paper we exhibit an w-sequence of transitive
models of Zermelo-Fraenkel set theory (ZF) such that the kth and
(E+1)-st models have the same sets of sets of sets... (k times) of ordinals.
The construction of the sequence of models proceeds by foreing, each
model being a generic extension of its predecessor.

Vopénka and Balear showed in [5] that if M, and M, are transitive
models of ZF with the same sets of ordinals and one of M,, M, satisfies
the axiom of choice, then M, = M,. Jech [2] then constructed two distinet
transitive models of ZF with the same sets of ordinals. The models are
symmetric submodels of F-models. Jech left open the problem of con-
structing two distinet symmetrie models with the same sets of sets of
ordinals. Since the models in this paper are not symmetric models Jech’s
problem is still unsolved.

A conditfon for two models with the same sets of sets of ...of ordinals to be
equal. We begin by introducing some weak axioms of choice. If X is
a proper class, denote by S(X) the class of all subsets of X. We set

S(ON)= ON, S§*YON)= S(S*ON)) for
We define KWP* as the axiom
(Vo) (If) (f: 2~ 8% ON) and f is 1:1).

E<o.

(*) The results here are taken from the author’s Ph. D. thesis (University of
Bristol 1971), which was supervised by Dr F. Rowbottom. The author was supported
by a Monash University Travelling Scholarship.
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Then KWP? = AC and KXWP? is a form of the Kinna-Wagner Principle
(see [3], or [1], p. 124).

Leama 1. (i) § < k—>S8(ON) C §%(ON). (ii) Bach S*(ON) is tramsitive.

By Seq,(X) we mean the set (or class) of finite sequences of mem-
bers of X.

Lmwya 2. For each k< o there is a canonical coding <...3": Seq,,(S*(ON))
- §¥ON).

Proof. We proceed by induction on k. The lemma is certainly true
for k= 0. Suppose that we have a coding for S¥(ON); we will construct

one for §*¥F1ON).
Let A, .., Ay cS5YON). Then A, ..., 4, CS%ON). For 1< m

< n set
, {{m,a*: acdy} U An#0,
™ o, my# it dn=0.

Set (A, ., AdFt =4 ... U A4,
TEEOREM 3. Let M, M, be two transitive models of ZF swuch that M, |=KVVP’C
and M, ~ 8**YON) = M, » §**(ON). Then M, = M,.
Proof. The proof in [5] of the result of Vopénka and Balcar mentioned
above generalizes easily to this case.
For a set X we define the transitive closure of X (TC(X )) as follows
TCX)={X}vXu(UX) v (UUZX) ...,

TC(X) is the smallest transitive set containing X.

We recall some of the properties of relative constructibility. If M is
2 transitive proper class which is a model of ZF and X is a transitive set,
M(X) is the smallest transitive class N such that M C N, X ¢ N and
N |=ZF. There is a canonical funection

F:_» M x Seq,(X)—=M(X)

which is onto. F' is defined only from M and X and is absolute for any
transitive model containing X and including M; in particular

M(X)|=F: M x8eq,(X)->V and F is onto.
If v e M(X) and @ = F(m, 2) we say x is constructed by m, X and 2. If X is
not transitive we take M(X) to be M(TC(X)).
THEOREM 4. If X ¢ 8%(ON), then L(X) |z KWP%,

Proof. Suppose y e L(X). y is constructed by X an ordinal g and
a {finite sequence <z, ..,w,> of elements of TC(X)—{X}. @, .., %
€ S¥HON); set y = <B, &y, ..., B0* L. We call (ﬁ,wl,. yTny “y’ un-
coded”. Set

= {¢ ¢ 8¥7/ON): y is constructed by X and 2z uncoded}.
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Let B, be the set of elements of A, of least rank. Then B, ¢« $(ON) and
the map y—B, is 1:1, So in L(X) there is an injection of the universe
into S8¥(ON). KWP* then follows immediately.

Construction of the models. Before deseribing the construction of
our promised sequence of models we make some remarks on forcing.

‘We follow the approach of [4], with one exception concerning names
in the forcing language. In general we say that if z ¢« M[G] x shall be
a name for », where x is a symbol which is an element of M. However
if in fact 2 ¢ M we take # as a name for #. This does not introduce any
ambiguity, as if # e M x is interpreted in all M[@QT as . If however the
interpretation of x lies in M[G]— M for some G, then the interpretation
of x will change with G.

Shoenfield restricts himself to the case where the ground model M
satisfies ZFC. However the proof in [4] of the fundamental theorem
applies equally well to the case where M = ZF only. We use |— to represent
the weak forcing relation. The following notation (borrowed from [4]) is
useful for defining notions of foreing.

D4, B)= {f: f is a function, dom(f)| < » and fC Ax B}.

{Here » is an aleph.)

We now give the construetion of the models Let M be a countable
transitive model of ZF+T = L. Set M’ = M J* = w. M**! is obtained
from M* as follows. Let H**' he D (J*xJ%, 2)-generic over M*. For
r e set

HE = {{s, ay <y s, ap e |J(HPY) .

(Then H¥*': J*2.) Set
Jk—i—l — {Hf-{-l: r EJk} , Mk+1 — (Mk(J}c-l—l))Mk[Hk{—l] .

In particular each H} (i < w) is 2 Cohen-generie real, and M* is a version
of the model used by Halpern and Lévy to show that the Boolean prime
ideal theorem does not imply the axiom of choice.

THEOREM 5. M¥ = KWP .,

Proof. M*= M*YJ*)= M°%J*). The result now follows from
Theorem 4 and the observation that-J* is nearly an element of SEYON)
and can easily be converted into an actual element of §**(QN) by the
canonical coding of Lemma 2.

LEMMA 6. Suppose v is a ZF -formula, x e M*™*. Then MP =if ryy ey Pas
Sy ooy Sm € X AN {Pyy ooy Pu} A {815 ooey S} = O and YTE, Ty ey Try By 81y e

sm) then there are fi e D (J*7, 2) (1 < i< m) such that if _A1 {r eJk
ri_)fl} then sieds, i #j—~Aind;= O and

(Vi€ Ay) oo (Vi € Am)p(TE, 1y, ooy Tny @y By eony ) -
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Proof. A proof of the corresponding lemmsa for the model of Halpern
and Lévy is given in [1], p. 133. The proof there may be transferred to M T
with little change. Of course in the above &, ..., $m must all be different.

Ly 7. Suppose P e D (J¥x 5, 2), v is a ZF-formula and
(1) P~ p(J*F, Hfjl’ ) Hl‘:H: 1y ey Sy 0)
WHETE Tyy wovy Ty S1y oes Sm €I and @ € M¥™2. (Here the ground model is M*.)
Then

Pl{rrs ey Tay 81y ooey sm)” |- p (4, Hfjlz ey @)
Proof. Suppose that
QoM (P) C {7y, vy Ty Sy wery Smy by ooy Bg)

where {t, ooy g} A {1y ey Pry 81y oy Smp = @. (1) is a statement of M*,

so we may apply Lemma 6 to it. We obtain f, ..., fz € D,(J*", 2) such
that if d;= {r eJ*: #2f} and t;ed; for 1<i<d then

(2) P(t], oy ) - p(T*HY, HEF, L @)

where P(i], ..., t;) is obtained from P by substituting t; for #; (L < i< d).
Since each A; is infinite (this is easily proved) it follows from (2) that

{Q e DT )T 2): Q -y, HEF, ..., 0)}

[P

is dense below P|{#y, ..., Tn, 815 . s 8w}, and thus that
Pl{t1y ey Py S1y ooey Smd” [P p (TP, HES, L )

TumoreM 8. M* A ¥ }ON) = M** ~ 8% ON).

Proof. We proceed by induction on %. The theorem is clearly true
for k = 1. Suppose it true for k; we will prove it for k+1. In fact we prove
by induction on j that for j <k

¥y - X eS(ON) and XeMFXeM™

(1) is certainly true for j= 0. Assume (1) true for j—1; we will prove
it for j.

Take X e 8(ON) ~ M**'. X is constructed by J**, HEFY, .., HEH
ed¥ 5, ., smed® and ze M*Y, 50 we may write

X={ye SON): W(Jk+15 Hfj% ) Hi:“a 81y ey Smy @y Y)Y -

By (1) for j—1, y e ¥YON) ~ M5y ¢ M* and, by the theorem for
kyye S ON) ~ M* >y e MF (as j—1 < k—1). So

X = {y e STHON) ~» M": (", HEFY L m, 0}

o2
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Now suppose y ¢ X. Then for some P ¢ H*

Py, ., BE, RS

v 3 My 81y ey Smy 8, Y)

(here M* is the ground model). By Lemma 7 in fact
Pl{re, ey Ty 815 oeny S} - w (e, H,]-cl—Hy sy Ty )
So if we seb Po= (IUH*™)|{ry, .oy ay 815 ovvy Sm}

X = {y e §7HON) n M*%: P, || op(JF+, HF, . 2, y).

ry 9

This shows that X is an element of M*. So we have proved (1) for j.
Thus (1) is true for all j < k. The case j = k is just the theorem for
k+1, so the induction step is completed.

. Conclusion. We summarize what we have done. For k< o we have
given a condition on 1M, M, for M, ~ S¥ON)= M, ~ §*ON) to imply
M, = M,, the condition being that one of M, M, satisfies KWP*~. For
k<o we have constructed two models M, = M* and M, = M*' sgch
that M, s 3, but I, ~ S¥ON) = M, ~ SHON). Also M, |- KWPH1,
As a corollary

THEOREM 9. No KWPF is a theorem of ZF. Indeed KWP*+! (K WPE-1,

We close with some remarks on the strength of the axioms KWP%.
KWP? is treated extensively in [1]; among results given there are

KWP'>every set can be ordered,
KWP'+the order extension principle,
EKWP'+>the countable axiom of choice ((°).

For KWP?, consider the following construction. Set
X = {re”2: r differs only finitely from some HY},
N = (M°(X)prE,

Then from Theorem 4 N |= KWP* However D. H. Stewart (unpublished)
has shown that

N |=there is an infinite set which has only
 finite and cofinite subsets .

It follows that in N O and the order priliciple fail, and it can easily be
shown that the principle “there is a choice function for any family of coun-
table sets” also fails in N. 8o for k> 2 KWP*is a very weak axiom.
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Scott sentences and a problem of Vaught
for mono-unary algebras

by
Stanley Burris (Waterloo, Ont.)

Abstract. First we show that there is a countable ordinal a such that if <4, { h
is a mono-unary algebra then one can find a Scott sentence (which describes <4, {f}>
up to isomorphism) whose rank is less than «. Combining this result with Morley’s we
see that if a sentence of 8, , for mono-unary algebras has more than denumerably many
isomorphism types of countable models then it must have continwum many of these
isomorphism types.

We wish to show that for a given countable mono-unary algebra 9%
we can construct a reasonably simple Secoti Sentence py in Lo 1.€. for
any countable mono-unary algebra B, B k gy iff B is isomorphic to 9.
Then we apply the methods of Morley [1] to determine the possible

number of isomorphism types which can be realized among the count-
able models of a £, sentence for mono-unary algebras.

1. The Scott Sentence. In what follows we will always assume €,
involves one non-logical symbol, a unary operation symbol. Let £ be
a subset of £, ,. Define Cy(L) to be the closure of £ under Ay VvV, T E
and V; define C,(£) to be £ union the set of formulas formed by taking
the countable conjunction (or disjunction) of a set F of formulas in £,
where the set of variables which oceur free in members of & is finite.

Define a transfinite sequence £, C £, C ... by the following inductive
procedure:

£y is the usual first-order predicate calculus with one unary oper-
ation symbol,

Le= Uy<el, for limit ordinals ¢, £< o,, and Lerr = Gy Cy(L,) for
&< w,.

Then £,, = Uscmle-

wyw
THEOREM 1. The isomorphism type of a couniable mono-unary algebra
W= A4, {f}> can be defined by a single sentence gy in €, e
Proof. In the following we will introduce the notations which will
be used to construct gy, and following each definition we will state its
meaning as well as an £; to which it belongs. In much of what fo]lows’
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