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corresponding theorem on A-spaces. The proof is on similar lines hence
it is omitted. .

(5.6) THEOREM. Hoery polyhedron (not necessarily finite) with Whitehead
topology is a pAd-space.

Let §4 be the full subcategory of 3 whose objects are metric ANR’s
and polyhedra (with Whitehead topology).

(5.7) TamorEM. The category T4 is admissible.

Proof. Sinece every metric ANR is homotopically dominated by
a polyhedron (an object of 7), it follows from Theorem (5.3) and Theorem
(3.1) that ¥+ is admissible.

In the light of the result of A-spaces [4], a similar theorem on
pd-spaces is as follows.

(5.8) THEOREM. Euvery metric ANR is a ud-space.
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On the insertion of Darboux, Baire-one functions
by
A.M. Bruckner{), J.G. Ceder and T.L. Pearson(?) (Santa Barbara, Cal.)

Abstract. If f and g possess the Darboux property and are in the first class of Baire
on an interval I and if f(x)> g(z) for all z < I, there exists another Darboux function &,
also in the first class of Baire, such that f(z)> h{z) > g{x) for all z. Certain related
statements are also valid.

1. Introduction. Let f and g be two real functions defined on a real
interval I, each with the Darboux (i.e., intermediate value) property.
If g(a)< f(z) for all # in I one can ask whether there exists another
Darboux function h such that g(x) < h(z) < f(x) for all # in I. This
question was answered negatively by Ceder and Weiss in [6]; they found,
howerver, a useful sufficient condition in terms of the way in which f
and ¢ are separated by constant funetions (see Section 4, below). They
showed that this sufficient condition is satisfied when both f and g are
in the first class of Baire. They also posed the problem of whether or nob
there exists a Darboux, Baire-one funetion between two comparable
Darboux, Baire-one funetions.

The purpose of this article is to show that the question has an af-
firmative answer (see Theorem 1). We also show that it is not possible
in general to insert a Darboux function between comparable Darboux
functions even if one is in the first class of Baire and the other in the
second class of Baire. If, however, the first of these functions meets any
of a number of additional “regularizing” conditions, such an insertion is
always possible. We mention in passing that some extensions of results
found in [6] are found in [5].

2. Notation and terminology. The set of real numbers will be denoted
by R and I will be a fixed real interval. For a set ACR, 4 and A° will
denote the closure and interior of 4. We will regard a real function as
identical with its graph. If f is a funetion C R?, B(f) will denote the set
of Dilateral condensation points of f (see [4], Lemma 1), and C(f) will
denote the set of # « R at which f is continuous. Moreover, K*(f,a) and
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E~(f, a) will designate the right-hand and left-hand cluster sets of f at g
{see [2]).

¥ GCI and domain f= @, then we write (1) fe $,(G) provided
HO) is an F, set in I for each open set 0, and (2) f ¢ D(G) if for all z « G,
f@) e E¥(f, ) ~ K~(f, ®). The set of functions of Baire class one on I
will be denoted by %, and the set of Darboux functions on I will be
denoted by D and $, D will be written as D3P, . Likewise D3, is the
class of all Darboux functions of Baire class 2. If ¢ = I, then clearly
B(I)=%,. Moreover, if G=1I, then D(I)~By(I)= DB, (see [2]).
A funetion has (Banach’s) property T, if almost every level set is count-
able. (See [8], page 277.)

Throughout the sequel f and g will be functions having domain I such
that g < f. Associated with f and ¢ and a subset P C I is the countable set

D(P) = [(fIP)—B(f|P)] v [(g|P)—B(g] P)] .

3. The main result. This section is devoted to proving the following
result.

THEOREM 1. Suppose g(x) < f(x) for all x in I and f and g are Darbous,
Baire one functions. Then, there exists a Darboun Baire-one function h such
that g(x) < h{®) < f(z) for all © in I. ]

Before proceeding with the long and involved proof, we mention
that the natural candidate for such a function h, namely the average
of f and g will not, in general, work. In fact, any Baire-one function is
the average of two appropriately chosen functions in DB, (see [3]).

Basic to the proof of Theorem 1 is Lemma 4 below which is itself

preceded by three lemmas. In the statement of each lemma it is as-
sumed that

I is a closed interval,

f and g belong to DB,

{ is a non-empty perfect subset of I having convex hull [a, b],

P consists of the bilateral limit points of P together with « and b,

%, v, ¥, § are real numbers such that u<< g<r< s< f< v on P.

Lemya 1. Suppose b— a<< 5. Then there ewists a partition [e, )
of [a, b] such that if I;= [e;, e;.,] the following hold:

(1) I~ P # O for all i;

(2) ere P o C(f|P)w Clg|P) for 1< i< dm+1;

€ay veny Camyrl

m-—1

(3) each point of (f| P)— D(P) is within ey/2 of some pointof f1( | Iy.y);
3=0
m—

. = 1
(4) each point of (9| P)— D(P) is within &)/? of some point of 10 U Igzps)-
=

Proof. Since F— B(F) is countable for any function 7 C R? (see [4]),
P— P is countable, and ¢/ K

F) is residual in P whenever F e By, it is clear

icm®

that one can construct partitions [ay, a5, ..., ay] of the interval
[a— 3{e— (b—a)), b+ 3(s— (b—a))] and [by, by, ..., by] of [u,»] with the
following properties: -

(1) For 1< i< N, a;e P~ C(f|P) ~ C(g}P).
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(2) bopr—bs< mm(%,s) for all .

(3) It Ry = [as, a541) X [b, by,) intersects (f1P)—D(P) (or (g|P)—
— D(P)), then R}; intersects {f|P)—.D(P) (resp. {g|.P)—D(P)).

Let +# consist of all Ry such that RY; interseets ((f]|P) v (g]P)}— D(P).
Tor each A ¢4 we may pick an (wa, y4) e A [(f|P) v (g|P)]— D(P)
in such a way that 4, # 4, implies x,, # ©4,. We will say that x4 is an
f-point if (wa,ya4)ef and a g-point if (va,ys)eg.

To construct the desired intervals {I;} of [a,b] we will construct
such intervals in each subinterval [a:, a;,,] and juxtapose them in the
obvious way.

Let us fix [a;, a;.,] and let & consist of all those 4 e #£ of the form
A = [ag, a;.,) X [b;, b;,,) for some j. Clearly & @. Now consider the
set B= {ma: A 8. We may pick disjoint closed intervals {M,}7 . in
{a;, a;.;) having the following properties where My = [¢x, di]:

(i) de << ¢y, for each k;

(ii) o, & belong to P ~ C(f|P) ~ C(g|P);

(iii) each M contains only f-points of F or only g-points of Ej

{(iv) if My contains an f-point of ¥, then M, , and M, contain
g-points of F.

) Since W is even or odd and M, contains an f-point or a g-point,
we have four cases to consider.

Case «. W is even and M, contains an f-point. Then we put
I, = las, di, I,= [y 6], Ii=1[cs, dal, I«_iz [dsy €51, Is=1[¢s, ds], -
ey Lygpy—n= e Ay Ly = (6 @41l -
Case B. W is odd and M, contains an f-point. Then we put
I ={a,d], Li=[d, ], Li=[e, ds], Iy =1[ds, 651, Iy=1¢s, d5], ...
weey I:zW—x = EC‘W: dW]: IzW = [dWa dW":_éj: 12W+1 = [dW+5a dW“I‘ 26]: .
) Logrpo= [dp+26, a5,4] ,
where 0 < 6 < a;,,— dp and & is so small that I3, Dy, I, all hit P
and have their endpoints (except a;.,) in P n C(f|P) C(g|P).
Case y. W is even and I/, contains a g-point. Then we put
I={a4,d,— 8], L=[d,—6,¢], Li=[e,d], L=1[d,el], Iy=1[0,ds]; -
ey IW = [ewr dipl, IW+1 = [dy; A1, IW+-2. = [dW’l‘n’ dpr+ 291,

Iy g = [dp+27, 0],
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where 0 < 6 < d,— a; and 4 is small enough so that both 17 and I3 hit P,
and ‘where 0 << 7 < aj,;—dy and # is small enough so that Iy, Iy,
and I® all hit P, and have then endpoints (except possibly a;) in
P~ C(fIP) ~ ClgIP).

Case £E. W is odd and M, contains an f-point. The construction is
similar to those of the other three cases and therefore is omitted.

Obviously parts (1) and (2) of the conclusion of the lemma are
satisfied. To show part (3), let (»,¥) e (f|P)— D(P). Then (@, y) ¢ some
A e A where 4 ~(g]|P)= @. Therefore (z,y) is within 2z of (w4, y4).

m—1

Since x4 is an f-point we have by construction 24 e (J Iy,.,. Theretore
m=1 k=0

{#,y) is within ¥2e of f|( U Ly,). Likewise part (4) is satisfied, finishing
k=0
the proof of the lemma.
s—r ~
LevmA 2. Let 0< e and ¢ and d belong to P~ C(f|P)n

~ C(g|P) with ¢ < d.. Then there emists a continuous, increasing (or de-
creasing) function h on P ~[e,d] such that range h = [¢(c)+ e, f(d)— e}
(resp. [f(e)—e, g(d)-+£]). :

Proof. The vertical closed line segment joining (¢, g(c)-+¢) to (c,7)
can be covered by finitely many open disks, none of which intersects
(g]P)v (fIP). The same can be said for the closed segment joining
(d, f(d)—e) to (d, s). Letting T be the rectangle with vertices (d,s), (¢, 8)
(d, r) and (e, 7), it is clear that within 7 union these disks one can constr,uc“;
a Cantor-like function on P ~[¢, d] satisfying the required properties.

Lemma 3. Let << 0. Then there ewists a function h e $,(P) such that
g< h<__f on P and each point of ((f|P)v (g|P))—D(P) is within & of
some point of h.

Proof. Clearly one can find a partition of [a, b] ~ P into finitely
many ’non-empty relative, closed intervals of P, each a perfect set having
ende{nts in P, each two of which intersect at most once at a common
endpoint, and moreover each having a convex hull of length less than

min |-, —).
2’ 3
Tet e= min(2, ="
£= min 33 and let @ be any such petfect subset of P.

Next, apply Lemma 1 to obtain the inte; :
‘ rvals {I,}4Y4
We then define hy as follows: Halim for @ and e

flz)—e £ Q "
- or Tel) N I
hQ(m) _ 17;90 4k+1 2
—1

gl@)+e for weQn UZers -
x=0

icm®
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Since the endpoints of each I,;.,= [@ys, bepio] belong to @ we may
choose a decreasing continuous funetion h, on the perfect set Q
A @y, o] as specified by Lemma 2. Similarly, we may choose an
increasing continuous funetion kg on @ ~ [ay,, by] for each k by Lemma 2.
Let h be the union of all such hy over all such Q. Clearly, & € &(P)
and g< h< f on P. Moreover, from the construction of k and the pro-
perties of {I,}4Y, as given by Lemma 1, it is clear that each point of
((f]P) v (g P))— D(P) is within 4 of some point of h. -
LEvra 4. Let ¢ >0 and let J = (¢, d) be an open interval with ¢, d € P.
Then there exists a function h with domain J ~ P such that e By(J ~ P)
and g< k< fon J ~ P. Moreover, each point of ((fj(J ~P)) olgitd » P)))——
— D(P) is within & of some point of h and :
K*(h, ¢) = [infE*(g (] ~ P), ¢}, supE*(fI(J ~ P), el
E~(h,d) = |it E~(gi(J ~ P), ¢}, supE~(fI(J ~P),d).
Proof. Let {¢,} and {d.} be sequences in J ~PACfIP)~Clg|P)
such that ¢, < ¢p<< ¢ =d; < de < d;, for each k and lime; = ¢ and
k00
limd; = d.

J—>0

Consider [¢,.1, ¢,] » P. We may modify the proof of Lemma 3 rela-
tive to P n[c.y, ¢, and & to obtain a function hy, € ByUP A [Cpias Cal)
with the additional properties that

l

if n is even.

fle

8 - -
!f(cn+1)~—‘n+1 if n is odd,
hn(cn-i—l) =1 .
‘lg(‘?’n{»l)'}_m if n is even
and
{g((?n)—}—i if » is odd,
"
Fn(Cn) = {
I £

Likewise on each [d,, d,.,] »~ P we may obtain a function k, such that

gldn)+5 if nis odd
n

Fen(dn) =
&

fldy)—— if n is even
n

e e o s e e,
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and
[ e ..
If(dn+l) =7T—Fi if » is odd,
kn(dn+l) =3 .
llg(dn+1)+ m if n i§ even.

o0 o0
Now put k= (| kha)w (U kx) to obtain the desired function %.

n=1 n=1

Having established the four preliminary lemmas we proceed with
the proof of the theorem. First of all, we may assume without loss of
generality that the domain interval I of f and g is a finite closed interval.

The outline of the proof is as follows: for each a < £, the first un-
countable ordinal, we construct sets 0,, P, and h, with the following
properties:

(1) I— Oa =P aj

(2) O, is a dense open (relative to I) set and P, is a perfect set,

(8) {Ou}aco s an ascending chain and {P,},., is a deseending chain,

{(4) P+ O implies Ppy, # @ and Py, + P,,

(5) h, is a function with domain O, such that h, e D(0,) ~ B,(0,)
and g< h,<f on 0,.

Having done this, we show that for some limit ordinal 4, 0, = I so
that k, is the desired D$, function inserted between f and g.

The construction of 0y, P, and k,. First we observe that if ¢ is
any perfeet set and wxe C(f|Q) C(g|Q), then there exists an open
interval @ containing # and real numbers » and s such that f and ¢ are
bounded on G~ Q and g<r<s<f on & Q.

Using this fact, we may construct a sequence of non-void open
intervals {@,}7., and sequences of reals {r,}°, and {s ]}, such that

(1) the endpoints of G, belong to C(f) ~ C(g),

(2} Eﬁ Gn= 0 whenever n # m,

o0
(3) U Gr = I,
Nn=1
(4) f and ¢ are bounded on each G,
(5) g<m< sa<f on @,.
Then putting 0y= {J G, and P,= T— 0y, O, will be a dense open

n==1
subset of I and P, will be a non-void perfect subset of I.

Fo? each n we may choose by Lemma 4 a function " satisfying the
conclusion of Lemma 4 relative to the values J = @G,, P=1I, and
- b

, length of Gn). Putting hy = {J 7™ it is easy to verify that
n=1
by € D(0g) » B{0y) and g< hy<<f on 0,.

. [sa—r,
e———mm(" it
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The construction of O,, P, and h,. Applying the above con-
struetion, we can find a sequence of non-void open intervals {&, },_; and
real sequences {r,}n—, and {s,}o, such that

(1) the end points of G, belong to C(f|P,) ~ C(g|Py),

(2) Gy~ Gp = @ whenever n # m,

(3) LJI(G'& N Py) = Py,

(4) f and g are bounded on each Gy ~ Py,
(B g<rm<sn<<fom GunP,.

Now put O, = Oy v ( | G») and P, = I— 0,. Obviously 0, is a dense
n=1
open set and P, is a non-empty perfect set.
On each G ~ P we construct A" according to Lemma 4 with respect
, length ova,,). Put by = hyw

Sn—"¥n

to P=P,;, J =G, and a:min(

w ( L,Lh”’)-
ne

Sinee hy € B,(0,) and k™ € B,(Gn ~ P) it follows that k, € $,(0,). It is
also clear that g<<h, < f on O,.

Next we show that fi; € D(0,). For this it suffices to show that for
each e 0y, Iy(x) e KT (hy, 2) ~ K (hy, @) (see [2]).

This statement is clearly valid whenever z e O, since h; € D(0,). So
we may assume that z e G, n P, for some n. We will show that k(w)
e Kt (hy, %). The proof that h(x)e K (h,, ) is similar. We have two
cages to consider:

Case I. # is the left endpoint of a component J of 0,. By the defi-
nition of &, on J, K¥(hy, ) D[f(x), g(z)] (see Lemma 4). Hence hy(x)
€ [f(=), g(@)] CE (hy, ) C K™ (hy, @).

Case IL. z is not the left-hand endpoint of a component of O,. From
the construction in Lemma 4 of %, on G, n P, it follows that « belongs
to some [a, b) ~ P, where h, on [a,b) n P, satisties one of the following
conditions: («) %, = f—e¢, for some & >0; (B) b, = g+ &, for some & > 0;
() R, is an incereasing Cantor function; (£) b, is a decreasing Cantor function.

In cases (y) or (%), since # is not a left-hand point of a component
of 0, it follows that {z, hy(#)) is a limit point of hy|(#, b) n Py so that
hy(2) € K (hy, ).

Suppose that condition (x) holds (the proof for condition (B) is
similar). Then there arise two subcases.

Subease (). There exists a sequence {z;}5., in (z,b) n O, such
that xx—>o and f(z)—f(x). Without loss of generality we may assume
that {I,}7, is a sequence of distinct components of O, decreasing to @
such that o e I for each n. By Lemma 4 there exists a point ('wk, ho(wk)}
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of ho|Ix whose distance from. (s, f(w)) is less than the length of I,.
Since the length of I approaches 0, it follows that (@) e Kt(hy, »)
C E*(hy, 0).

T Clearly [7a, ho(20g)] C range fglTx so that [, f (#)] C KT (hy, 2) C K *(hy, ).

Sp—Tn n

S U,
However, & < and s, < f(a) 80 that e+ < ra+ — 3 <~ &< Jiz)

and 7, < f(#)— e = hy(x). Therefore, hy(x) ¢ K*(hy, @).

Subcase (up): There exists a sequence {%,}5., in (z, b) ~» Py such
that mz—>o and flog)>f(@). Since hy(2) = f(#)—e on [z, b) ~ Py, we
have hy(2,) = f(an)— e—~f(2)— e = hy(»). Therefore, h (@) e K*(hy, ).

Construction of O, P, and k, with « > 2. For this we proceed
by induction: assume that we have defined 0y, P; and h; for each f < a
to satisfy the-inductive hypotheses (1) through (5). We have two cases
to consider:

Case (i). # is a non-limit ordinal. Then f = a-+1 for some a. In
case P,= @, then O, = I and h, is the desired DB, function. So we may
assume that P, # @. We construct 0,,,, P,., and %, just as we con-
strueted 0,, P; and h,. The only essential difference is that in the proof
that %,.,eD(0,,,) one must pick the sequence {®,}i., to avoid the
countable set | | D(P,). This is possible since the deletion of a countable

<a

set from the domain of a Darboux function does not change the cluster sets.
Case (ii). p is a limit ordinal. Then I— (JO,= (" P, is closed.

a<f a<f.
Therefore there exists a perfect set P, (possibly empty) and a countable

set G such that Oy~ Py = 0 and () P,= Pyw (5. Now put Op=I—P,
a<p.
f+y

= (U 0,) v C;. Define h; to be &, on 0, and on the set Oy let hy be -
a<p “
Obviously ks € £,(0;) and g< h;< f on Op.

Let us show that ky € D(0). Let # € 05. I & € O, for some a < §, then

hy(@) = h(x) € K (hyy @) ~ K~ (hy, @) C E*(hy, 1) ~ K~ (hy, )
sinee h, € D(0,).
So let us assume that € ;. We will show that [¢ () ) f(@)] C Kt (hy, );
the proof for K~ (h;, 2) is similar. Let J be the component of 0—,; in which z
lies and let 1« K¥(f, ). Since fe DB, there exists a sequence {@,}m-; in
J A (@, 00)—C; such that (wg, f(wr)) ¢ L/"?D(Pﬂ) and  (wx, f(2x))—> (2, ).
a<,

We may assume that o € G, a component of 0,, where ax < B. If o is
2 left endpoint of some 0., then the proof of Case (i) shows that
[g(@}, f(2)1 C E*(hy, 7). Assuming, then, that the # is not the left end-
point of any 0., we may by Lemma 4 find a sequenée {w,}y_, where
s € 0, such that the distance from (wn, hwa)) to £|G,, is Toss than

icm®
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the length of &,,. Therefore hyx,)—>2 since limlength@, = 0. Thus
N0
E*(f, ) C E*(hy, ). Similarly, E*(g, 2) C E¥(ky, x).

Moreover, we know that rangehs|@,, D [infg|@,,, supfl]@,] It
follows that all points “between” K™(f,z) and K*(g, x) also belong to
K*(hg, @). Hence,

Fl@)+g(z)

2

hg(a) = € [f(@), g(@)] CE*(hy, @) .

This completes the inductive definition of {O,}.co; {Paiteco and
{he}acgo- Clearly, conditions (1) through (5) of the induective hypothesis
are satisfied. Since {P_},., is a descending well-ordered chain of elosed
sets in the real line, there exists a y such that P, = @. Let 1 be the least
such y. By condition (5) of the inductive hypothesis 2 must be a limit
ordinal. In this ease I—0; = P, = O and 0, = I and k, is the desired DB,
function inserted between f and g.

4. Additional results. In this section we consider the possibility of
inserting a Darboux function between two comparable functions which
are not quite DB, functions.

In [6] an example was given of two comparable D3, functions
admitting no Darboux function between them. We can improve this
example to the following.

ExAMPLE. There exist two comparable Darbous functions, one in Baire
class one and the other in Baire class two, which admit no Darboux function
between them.

Let g be any function in DB, which is positive on a dense subset 4
of the real line R and negative on another dense set B. (For example,
g can be taken to be the derivative of a nowhere monotone differentiable
funection.) Then ¢ = 0 on a dense set Z of type G;. Define f as follows:
On 4, f(x) = 2¢(x); on B, f(x) = 0; on Z, f takes on every positive real
number in every interval. We can do this is such a way that f ¢ 3, (see [6]).
Now, if & is between f and g, then h >0 on 4 u Z and h < 0 on B, 5o f can-
not have the Darboux property.

In the above example f and g mesh in such a way as to remove any
possibility of inserting a Darboux function between them. Theorem 1
asserts that such behaviour is impossible if both functions belong to D%, .
Theorem 2 states that we can drop all requirements (except, of course,
the Darboux property) on one of the functions if we remove, in an ap-
propriate way, some of the pathological behaviour of the other. The
additional regularizing hypothesis in the statement of Theorem 2 occurs
in a number of cases, some of which are listed in a corollary to the
Theorem.

12 — Fundamenta Mathematicae, T. LXXX
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TaroreM 2. Let f and g be Darbous functions such that g(x) < f(w)
Jor all @ in I. If g{H ~ C(g)).4s dense in g(H) for every non-degenerate
subinterval H of I, then there exists a Darbous function h between f
and g. ‘

Proof. According to Theorem 1 of [6] it suffices to show. that for any
non-degenerate subinterval (z;,a,) of I and any number A for which
gliy) < A< f(ms), the set {@ e (@, Ls): g{z) < A< f(x)} has cardinality ec.
Let, then, 2, @, and @, be as above. By our hypothesis, there is a point
3 € (2, &) such that g(zs) < 4 and ¢ is continuous at . Therefore there
exists an open interval in (, #,) on which g<C 1. Let J be a maximal
such interval contained in [z, #,]), Let a be an endpoint of J. Then, since
g is Darboux, we must have g(a) = 1< f(»). Since f is Darboux on J it
follows that {& eJ: f(z) > 1} has cardinality ¢. Therefore, {x e J: g(2) <2
< f(z)} bas cardinality ¢, completing the proof.

CorOLLARY. Let f and g be comparable Darbous funmctions on I. If
g meets any of the conditions below, there exists a Darbous function h between
fand g on I.

(1) g possesses Banach’s condition T, and is of Baire class one.

(2) g 8 continuous except on a denumerable set.

{(3) g is quasi-continuous in the sense of Kempisty [7)].

Proof. In each case, the hypothesis of Theorem 2 is met. (For con-
dition (1), see [1, p. 19]; that conditions (2) and (3) suffice for the hypo-
thesis of Theorem 2 follows directly from the definition of “Darboux”
and “quasi-continuity”.) :

‘We note that condition (2) automatically implies that g e 3, but
condition (3) does not.

‘We close by posing the problem of determining necessary and sufficient

conditions for inserting a Darboux function between two comparable
Darboux funetions.
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