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Strongly cellular subsets of E*

by
Arlo W. Schurle (Charlotte, N. C.)

Abstract. This paper investigates properties of strongly cellular subsets of £* and E*.
A subset Z of E* is strongly cellular if there is an n-cell ' in E® and a homotopy H
of (in C such that He = Id, Hi|Z = 1d for all {, H](BdAC) x [0, 1] is a homeomorphism
into E™Z, and H,(() = Z. The main results are the following.

Theorem. 4 subset of E* is sirongly cellular if and only if it is a locally connecied
continuum not separating E°.

Theorem. A one-dimensional subset of E® is sirongly cellular if and only if it is
a tame dendrife.

1. Introduction. Bing and Kirkor [4] introduced the notion of strong
cellularity and proved that a strongly cellular are in E® is tame. This
paper generalizes this result to the following satisfying theorem, which
not only provides a characterization of tame dendrites but also a new
characterization of tame trees.

TaeoreM 1. A one dimensional subsel of E* is sirongly cellular if and
only if it is a tame dendrite.

There are a number of results and questioms involving strong
cellularity. Bing and Kirkor’s paper [4] has already been mentioned.
Griffith and Howell [5] have shown that strongly cellular two-cells and
three-cells in E® are tame. We use a number of results and techniques
from both these papers. Bean has shown in [3] that every cactoid has
an embedding ¢ in E® so that C is strongly cellular, and in [2] asked
whether 2 monotone decomposition of E® into points and countably many
strongly cellular sets has E® as decomposition space. Our theorem shows
a relationship between this question and that of Armentrout [1, Question 3]
agking the same question for tame dendrites.

2. Preliminaries and statement of results, We first recall the original
definition of Bing and Kirkor [4] as modified in [5]. T denotes the real
interval [0,1]. A homotopy of § in T is a continuous function H from
§x1I into T, and H, denotes the function given by Hyz)= H(x,1).
Also, if € is a cell, then BdC, IntC denote its combinatorial boundary
and interior respectively.
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A set Z in E" is strongly cellular if there is an m-cell ¢ in B® and
a homotopy of C in C such that, if §= Bd(, then '

(1) H, is the identity map, and H,|Z is the identity for all ¢,

(2) HyS is a homeomorphism and H(8) ~nZ =@ for ¢< 1,

(8) HY(S)~H,S)=0 for t  u, and

(4) H,(C)=Z.

Following Griffith and Howell [5] we say that a set Z in E® has

@ cocoon if there is an (n—1)-sphere § in F"— Z and a homotopy % of
8 in E™ such that

(1) hy is the identity,

(2) h; is an embedding for << 1,

(3) hy(S) ~ 1 (8) = O for ¢ # u, and

(4) 1y (S)= BdryZ, where Bdry denotes point-set boundary.

The homotopy % will be called a cocooning map for Z.
We will need the following results from [5]. It should be noted that
we do not require that a simply connected set be connected.

THEOREM 2. ([Theorem 2.1, 5]) If Z is a compact subset of E™ with
a connected complement, then Z is strongly cellular if and only if Z has
a ¢0coon.

ProrosiTION 1. ([Lemma 4.1, 5]) If & is a cocooning map for a sub-
set Z of B® and A is an arcwise connected closed subset of BdryZ with
BdryZ~A simply connected, then hy (4) is connected.

Our first result concerns strongly cellular subsets of the plane.

THEOREM 3. 4 subset of E* is strongly cellular if and only if it is a locally
connected continuum with connecied complement. .

Recall that a dendrite is a locally connected continuum containing
no simple closed curve. It is well known that all dendrites can be em-
bedded in F? that all dendrites lying in B* have connected complements,
and that dendrites are one-dimensional. (See, for example, [8, page 77],
[8, page 107], and [8, page 99].) A dendrite D in E? is said to be tame if
there is a2 homeomorphism % of E® onto itself such that i (D) is contrined
in B*= {(®,y,#)e B*: z= 0}, Since a strongly cellular subset of E* is
easily seen to be strongly cellular in K3, Theorem 3 gives us half of Theo-
rern 1. The next two theorems give us the other half.

TeeoREM 4. A one-dimensional strongly cellular subset of B is o den-
drite.
THEOREM 5. A strongly cellular dendrite in F® is tame.

. T;Je remaining sections of this paper consist ofproofs of Theorems 3,
, and 5.
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3. Proof of Theorem 3. Any strongly cellular set is the continuous
image of a eell, and so is a locally connected continuum. The complement
of a strongly cellular set is the inereasing union of complements of cells
and so is connected. This proves one-half of Theorem 3.

Let M be a locally connected continuum in E° with connected
complement. We show that 3/ is strongly cellular by constructing a co-
cooning map H for M and applying Theorem 2. We use freely results
coneerning the topology of the plane and of locally connected continua,
all of which ean be found in [7] or [8].

Let B be the point-set boundary of M. We know that B is a regular
curve. For each point  of B there is an open neighborhood Us of z in B
such that U, is connected, diam U, is less than }, and the boundary of
U.in B is finite. Let T,, U, ..., U,, be a collection of sueh Us’s covering B,
and let K,; be the closare of U;. B> U; has only finitely many components,
each lying except for a single point in the unbounded component of
E*— K,;. Hence there is a closed connected set Ly; such that B CE,;vLy
and K,; nL,; is finite.

An application of the Plane Separation Theorem [8, page 108] yields
simple closed curves Cy, Cua, ..., Ci;, bounding disks Dy, Dysyweey Digy
such that C,;C B(K,;, 1), diamD,;< %, and B nDy= Ky;. (For any
set A and positive number & we let B(4, &) denote the set of points with
in & of a point of 4. Also, if J is a simple closed curve in I, then Intd
denotes the bounded complementary domain of J.) By adjusting the Cy;’s
if necessary, we may assume that each component of Dy; » Dy contains
a point of B, that each C,; is locally polygonal off B, and that the C);’s
are in general position off B, i.e., at each point of intersection of two Cy;’s
not on B the C,;’s look locally like the letter “X.”

81

Let J, be the boundary of the unbounded component of E”\_U 0Oy
J, is a polygonal simple closed curve whose interior containg M andlv;hieh
les in B{3M,1).

By starting with sufficiently small neighborhoods U and following
the above procedure, we can obtain continua Ky, Ko, ..., K, such that
diam K,; < %, each K,; is contained in some K,;, the interiors of the
K,’s in B cover B, and there are continua Lasyy Lssy «ovy Ly, such that
BC K,; v L,; and E,; n L,; is finite.

An applieation of the Pline Separation Theorem and adjustment
of the resulting curves now yield simple closed curves Gy, Cy, ..., Coy
bounding disks Dy, Dasy -.oy Do, such that

(1) diamD,; < %,
(2) Dy; C B(Ey;, 3) » Int ), whenever K,;C Ky,
(8) B nDy; = Ky,
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(4) each component of D,; ~ D,; contains a point of B,
(5) each component of Dy; ~ D,; contains a point of B,

6) each C,; is locally polygonal off B, and the (s and O,’s are
( 27 1 27

in general position off B.
Let J, be the boundary of the unbounded component of E""’\ )025

J, is a polygonal simple closed curve such that M C Int s, J2C IntJl,
and J,C B(M, 1). Let A be the annulus (J, v IntJ,) IntJ,. We show
that there is a homeomorphism % from J, x I onto A such that & (z, 0) = z
and h((J; ~ Oy X IJC Dy, for i=1,2,..,5
Consider D,;~ (Jyw Intd,). By (5) each component of this set
contains points of B, and since D,; ~ B is connected, there is only ore
component. By the general position requirements D,; ~J, consists of
either (I) one are ab spanning D,; or (II) two such arcs, say sy and 2w.
Also, B ~ Dy, lies in the disk bounded by (I) ab and one component of
C ) \{a, b} or (II) zy, 2w, and two components of C;\{z, ¥, z, w}.
S1
Sinece J, C {_ Int 0}; and the C},’s, C,;’s are in general position off B,
i=1
there is a homeomorphism %y; of 0y; ~J; into D,; such that if » is a point
of Oy; ~dy~ Oy, then hy;({#} X I) lies in D;; ~ D,;. The desired homeo-
morphism % is obtained by pasting together suech hyfs, j=1,2, ..., 8.
The entire procedure given above can clearly be iterated, yieldi.ng
a sequence of simple closed curves Jy,dJs, ... such that for ¢ =1,2,.

M CIntdyy CJyyq v Intdy, C (Intdy) ~ B(M, 1i+1) .

Further, if we let 4; be the annulus bounded by J;v dJ;,,, then the
curves J; may be so constructed that there is a homeomorphism h* from
Jix I onto A; such that diam 2%({w} x I) is less than 1/2° and k¥, 0) = &
for each ¢ in J; and ¢=1,2,..

The sequence A, k3 o ki, ... converges to a continuous function g.
Tt is now easy to show that the function H from J; X I into B? defined by

Hz, t)

— . m—1 m
— |PMRT T o s o Bi(@), m(m 1) t—m2 1), te[ p m_—{—i]’ m=1,2,..,

g(x) , t=1
i8 a cocooning map for M. This concludes the proof of Theorem 3.
4. Proof of Theorem 4. Let W be a one-dimensional subset of F®
with cocooning map % defined on S x I. We first note that W is a dendrite

if and only if %, is a monotone map. For if &, is monotone, then W is the
monotone image of a 2-sphere, hence a cactoid [6], and a one-dimensional
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cactoid is a dendrite. Conversely, if W is a dendrite, the W— ta'} is simply
connected for each point # of W, and so by Proposition 1 k7% #) is eon-
nected.

The rest of the procf is by contradiction. Suppese x iz a point of W
such that k7*z) is not conunected. There is a simple closed curve JJ on S
missing h7Y{w) such that each complementary domsin of J en § meets
hiYz). Now hy(8—dJ) is a neighborhood U of # in W. Since W is one-
dimensional, there is a compact 0-dimensional set K contained in U which
separates @ from A,(J) in W. Then hyY{K) sepuarates iy z) from J on 8.

Let D be either of the disks bounded by J on S, and let 4 be a com-
ponent of k7 Yz) in D. Some component C of kY (K) separates 4 from J
(I7, page 123]). Since K is 0-dimensional, 2,(C) is a single point. Let
J1,ds, ... be simple closed curves in Int.D such that C v J, , is contained
in the interior of the subdisk of D bounded by J; for i = 1,2, ..., and
JiCB{C,1/i) for i=1,2,..

Let f be a homeomorphism of J x [0, 1) inte D such that f(xz,0) ==
for all # in J and f{J x {{i+1})=J; for i = 1,2, ... Define a function g
from J x I into E* by '

hifiz, 1), i<1,
gle, )=
{7,(C), t=1.

It is easy to see that g is continuous and hence a homotopy shrinking J
to a point.

Now let g, be a point ¢f 4 and y, a point of A7) in S\D. Let J' be
a simple closed curve formed by rn 2re frem #; to ¥, meeting A{(S X I)
only ¢t ¥, and y, together with the ares h{y, X I) and h(y, X I). Then
and J’ cre linked, but g shrinks J to a point in the complement of J'.
(See [5, Lemma 4.1] for a similar argument.) This contradiction establishes
Theorem 4.

5. Proof of Theorem 5. The proof of this theorem follows [4] 50 closely
that we omit details and give only a general outline. Let K and K’ be
any two strongly cellular homeomorphic dendrites in E® In particuler,
by Theorem 3 K can be planar. Let k be a homeomorphism from K onto K,
and assume that B K CC= {reE: [2] <1} and that H, H" are
homotopies of Cx I into C as in the definition of strongly cellular for
K, K’ respectively. Let S, 8; be H/{BAC), H{(BAC) respectively, and
C;, C; be HLC), Hy(C) respectively.

Let 9,, P, -.- be a dense set of points of order 2 in K such th:t for
each positive & there is an integer N for which each component of
K—{py, Doy ---, Py} has diameter less than & Let p;= h(p;). We now
construet topological disks D, D,, ... and Dj, Dy ... in @ satisfying the
following conditions.
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(1) D; ~ 8, D; 8 are simple closed curves for t<<1 and p;,p;
respectively for ¢==1.

(2) Each component of C\D,, O\D; contains exactly one component
of K\p;, E"\p; respectively.
(3) D;, D; are locally tame except possibly ab i, p; respectively.
(4) For i # j there is a number # such that 0 <{<C1 and
¢;nD;~nD;= 0= 0;nD;~Dj.

(8) If 4, §, and ¢ ave as in (4), << s <1 and W, W’ are the closures
of ON\C,, C\C, respectively, then the closures of the components of
WN(D; v Dy) and W\(D;wv Dj) are two tame 3-cells and a tame solid
torus.

Let t,, t,, ... be 2 monotone increasing sequence of positive numbers
with limit 1 such that for m = n and m,n <i-+1,

Cri‘ﬁ_Dmm_Dn=0=O’t"nD.'mmD;,.

The 8,’s, D,’s, S;’s and Dy’s form isomorphic decompositions of C into
tame 3 -cells, tame solid tori, and points of K and K'. Now it is not difficult
to extend the homeomorphism % inductively over elements of the de-
compositions to obtain a homeomorphism of ¢ onto itself. This completes
the outline of the proof of Theorem 5.
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Monotone decompositions of continua into
generalized arcs and simple closed curves

by
Eldon J. Vought (Chico, Calif.)

Abstract. For compact, Haunsdorff continua that are irreducible between two
points, and those that are separated by no subcontinuum, sufficient conditions are
given in order for the continuum to have a monotone, upper semi-continuous
decomposition onto a generalized arc and generalized simple closed eurve, respectively.
The conditions involve the use of saturated and bi-saturated collections of continua.
TFor metric continua the conditions are both necessary and sufficient. It is alsp shown
that the elements @ in the decomposition with void interiors are of the form
T(T(x)), z€Q, where T is the aposyndetic set function. The structure of the elements
with mon-void interiors is described and two open questions relating to the paper
are discussed.

1. Introduction. A compact, Hausdorff continnum M that is irredueible
between a pair of its points is fype A [4] if M has a monotone, upper
semi-continnous decomposition whose quotient space is a generalized arc
(a continuum with exactly two non-separating points). If M is separated
by no subeontinuum let us say M is also type A if there exists a monotone,
upper semi-continuous decomposition whose quotient space is & genera-
lized simple closed curve (a continuum in which every set of two distinet
points separates). The primary theorems of this paper establish sufficient
conditions for these two kinds of continua to be type 4. If the continuum
is metric the conditions are both neeessary and sufficient where, of course,
the quotient space is now a simple arc or a simple closed curve. Whether
in the Hausdorff setting these conditions characterize type 4 continna
is not known.

Prior work for non-metric continna has been done by Gordh [4],
and FitzGerald and Swingle [3] in the case where the continumm is
irreducible. Gordh generalizes the work of Thomas on metric continua [7]
to prove that a compact, Hausdorff continuum M is type A with the
elements of the decomposition nowhere dense if and only if M contains
no region-containing indecomposable continuum. FitzGerald and Swingle
give sufficient conditions for the continuum to be type A and give results
concerning the nature of the elements of the minimal decomposition.
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