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OJHAKO 3aMETHM, YTO CIPABEIJIMBO CIETyIOMIee -

ITeemmnosxenne 5. Iyeme X ylosnemsoprem nepeoil axcuome cuemmocmy
u §(X) < 8. Tozda X cenapabenvuo mo20a u mMoAbKo Mmo20a, k020d 0HO obaadaem
cgoticmson (C).

Jloxa3aTesbcTBO HECTIOMKHO.
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A universal separable metric
locally finite-dimensional space
by
B. R. Wenner (Kansas City, Missouri)

Abstract.. The author has previously defined a topological space to be losally
finite-dimensional if every point has a neighborhood of finite covering dimension [ef.
Pacific J. Math. 42 (1972), pp. 267-276). In this communication we introduee a locall
finite-dimensional subset of the Hilbert Cube in which every separable metric locally
finite-dimensional space can be topologically embedded. From this it follows readily
that every separable metric locally finite-dimensional space has a locally finite-di-
mensional complete extension.

By a space universal in the class C we shall understand a member
of G in which every member of € can be topologically embedded (X is
said to be fopologically embedded in Y iff there exists a homeomorphism
from X onto a subspace of Y). Well-known universal spaces have been
obtained in the classes of separable metric n-dimensional spaces (by
K. Menger [2] and G. Nobeling [6]), separable metric countable-dimensional
spaces (by J. Nagata [4]), and separable metrie strongly countable-di-
mensional spaces (by J. Nagata [4] and Ju. M. Smirnov [7]), respectively.
In this communication we shall describe & space universal in the class
of separable metric locally finite-dimensional spaces.

The dimension of a space X will be denoted by dimX, and will be
interpreted as the covering dimension of Lebesgue [¢f. 51. A space X is
said to be locally finite-dimensional iff every point of X has a finite-di-
mensional neighborhood. We denote the Hilbert Cube by I, and for
each n =1, 2, ... we define a subset

Jo={@)el®: 0<m<lmfori=1,..,m, and m;= 0 for i >n},
?

and

J={Jdn.
- n=1
Let ¢ denote the origin of I®, and define J* = J—{q}. The author has
shown in an earlier work [8, Lemma 3] that J* is loeally finite-dimensional,
and J* is a separable metric space since it is a subset of I°. In order to
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prove that any separable metric locally finite-dimensional space can be
topologically embedded in J* we shall require the following Lemma,

Levma. Let X be a separable metric space, U an open subset of X with
GmT <k, and let & >0. Define Bk, &) = {(@1; vy Typi0) € B 0 < gy
<e for el i=1,..,2k+2}. Then there cwists a continuous mapping
G: X—>E(k,s) such that

(i) G(x)=(0,...,0) iff e X—T, and
(ii) the restriction of G to U is a homeomorphism.

Proof. This iy essentially a special case of a lemma due to Smirnov
[7, Lemma 2]. In the terminology of that lemma we let A = U—T and
R= B= U, and note that Smirnov’s @** is homeomorphic to H(k, ¢),
50 Smirnov’s mapping F can be considered to be a mapping into E(k, ¢)
with the same properties. If by F’ we denote the constant mapping of
XU onto the origin of H(k, ¢), we clearly obtain the desired mapping
G: X E(k, ¢) by letting @ t-ke on the values given by F on U and by '
on X—U (note that F and F' agree on the boundary of TU).

TarorEM. Let X be a separable metric locally finite-dimensional space.
Then X can be topologically embedded in J*.

Proof. Since X is locally finite-dimensional we can use regularity
to find an open cover consisting of sets whose closures are finite-
dimensional. A separable metric space is Lindelsf, so there exists an open
starfinite cover {Uz: k=1,2,...} of X for which dimUx= n(k)< o
for all k= 1,2, .. [3, Theorem 10]. We now define the following four
functions on the positive integers by meang of the formulae:

k—1
)= D @n(i)+2), »p1)=0,
i=1

r(k) = max{j: U; n Uy # O},
s(k) = p(r(k)+1), and
(k) = max{j: p(j)<k}.

The following assertions are easily verified:

1 j<k implies p(j)<p(k),
2) i<k implies i(j)<¥(k),
(8) tpB)<k<tlp(h+1) forallk=1,2,.., and

(4)  tpF)+i)=% forall k=1,2,..and all j <2n(k)+2.

For each k=1,2,.. there exists a continuous mapping Gi: X
~EB(n{k), 1/s(%)) which satisfies conditions (i) and (ii) of the Lemma
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with respect to the open set Up. For each j=1, <y 2n(k)4-2 let g, ;
denote the composition of @z with the jth projection; Le., for any o e}g

b
(@) = (05,1(2) s -1 Jrony42(®)). It follows from the definitions that

(8) 0<gps@)<1/s(k) forall zeX, k=1,2,..,5=1,.., 2n(k)+2.

The desired homeomorphism f: X—>I% is the function for which
fl@) = (fil), fz(a;),...-), where fi = gy, k—puay for all k=1,2,..; in-
tuitively, the coordinate functions for f are obtained by lining up in
order the coordinate functions of successive G. Alternatively,

(6)  Gr;=Tpm+s Torall k=1,2,.. and all j=1, ..., 20(k)+2,
since
95,1 = Inlo00+) -2 = Jelpta+5), w+1)-0(ta®@+7)) by w) = Fpuyrs

(the last equality follows from the definition of the coordinate fune-
tion fpuyys)-

Ole .1ty f is continuous, since each coordinate mapping f; is simply
a coordinate mapping of some continuous mapping Gx. To see that fis
one-to-one, we let # and y be distinct points of X and choose k such that
#e Up. It y « Uy we note that Gy is a homeomorphism on Uy, so Gy)
# Gi(x); hence there exists j<2n(k)+-2 such that fyu.:¥)= g ,(¥)
# 01.(®) = Fomss (bY (6)), which implies that f(y) # f(z). On the other
hand, if y ¢ Uy then Gu(y)= (0, ...,0)  Gi(z) (by condition (i) of the
Lemma), so there exists j < 2n(k)+2 for which f,;, ()= Gx, i(@) # 0
= 0,1Y) = Fom++(¥); 80 again f(z) # f(y).

To show f is open we shall prove that if e X and U is an open
neighborhood of », there exists an open neighborhood V of f(z) such
that V A f[X]Cf[U]. Given » and U, let % be such that z e Uyz. For
each j < 2n (k) 2 there exists an open neighborhood V; (relative to the jth
coordinate space of B(2n (k) 2, 1/s(k))) of the coordinate g, ,(x) such that

an()+2 :

(1) ( [] Vi) &XICHIT ~ T,

by the definition of the product topology and the fact that Gy is open
on Uy. We define the desived neighborhood in I® by
Zn('lcz-{-Z

V= jfl (o +9) "IVl
=1

where by z; we denote the ¢th projection into I®. Now let y ¢ V ~ f[X].
Then there exists ze¢X such that f(z)=yeV, 80 fi(z)eV; for all
i=pk)+1, ..., p (k)‘l‘(2'"'(k)+2) = p(k+1); Le, fumss?)=gr{2)e¥;
forsllj=1, ..., 2n(k)+2. By (7) this implies that ze U ~ U, so y = f(z)
€flU ~ Ux] Cf[U], and f is open.
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To complete the proof of the Theorem we need only show that
flx1CcJ*. Let X, and k; <...< km be precisely those integers % for
which @ ¢ Ug; we shall prove that f(@) € Jg,n— {g}. For any coordinate
mapping fi we denote #(i) by ¥ and i— p(k) by j, and note fhat f; = ri
by definition. If & # &, for all h=1, ..., m, then fi(z) = g;, ,(#) = 0 since
2 ¢ Uy and Gy(@) = (0, ..., 0) for » ¢ X—Uy. Otherwise, k= k; for some
h<<m, 80 )

- fid@) = i, (@) < s (k) = Lip{r(k)+1) < 1fp (kn+1)

by (1) and sinee z e Uy~ Uy, implies kn < (k). Note also that at least
one integer & does exist for which » € Uy, so by (i) of the Lemma there
exists an integer j such that fup. (%) = gy,:(®) # 0, 80 f(z) # g. Hence
F(@) €I pomeny —{@), and since the choice of » was arbitrary we have

fIxIC Q(Jn—{q}) (U T~ =T—{g} =" .

We close with an application of this. Theorem.
CoroLLARY. If X is a separable metric locally finite-dimensional space,
then X has a locally finite-dimensional completion.

Proof. Let f be the embedding of X into J* given by the Theorem.
It is known that J is compaet [ef. 8], and J”* is open in J, so there exists
a complete metrie for J* [1, Theorem 9, p. 189]. Relative to this complete
metric the closure ¥ of f[X] in J* is complete, so Y is the desired com-
pletion of X.
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A characterization of determinacy
for Turing degree games (%)
by
E. M. Kleinberg (Cambridge, Mass.)

Abstract. A natural method for modifying partition properties of ecardinals is to
require the existence of homogeneous sets having certain additional special properties.
In this paper such a modification of the partition property w-»(w)® is shown to lead
to a natural characterization of the axiom of determinacy for Turing degree games.

1. The axiom of defterminacy is most appropriately described in
terms of two person games of infinite length: given any set 4 of reals
(that is, of sets of integers) a game G, exists and is played as follows:
two players, I and II, move alternately writing at each turn a 0 or a 1.
In this way they build an infinite sequence of 0’s and 1’s, that is, a fune-
tion # from o into {0, 1}. Player I wins if # is the characteristie function
of a member of A. A winning strategy is a function f from finite sequences
of 0’s and 1’s into {0, 1} such that a player making only moves as indi-
cated by f (his move following any initial play ay, ..., a, should be
flay,y ..., @ny)) wins. Clearly both players can never simultaneously possess
a winning strategy. A set of reals A is said to be deferminate if there is
a winning strategy (for I or for II) associated with &,. The axiom of
determinacy (AD) is the assertion that every set of reals is determinate.

Using the axiom of choice it is fairly easy to contradiet AD. One
can put together a nondeterminate set simply by diagonalizing over all
strategies. However, the very rich theory of AD as well as its internal
appeal makes a closer examination of the guestion “which sets of reals
are determinate?” extremely worthwhile. .

One very natural approach to the question is through the various
seb hierarchies. It is easy to see that every open set of reals is determinate,
and most recently Paris has shown that in fact every Zi set of reals is
determinate. With a large cardinal assumption one can actually do quite
well here — in particular there is Martin’s result ([6]) that if a measur-
able cardinal exists then every analytic (£]) set of reals is determinate.

(1) This research was partially supported by a Moore Instructorship at M.LT.
and by NSF Grant GP-29079.
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