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To complete the proof of the Theorem we need only show that
flx1CcJ*. Let X, and k; <...< km be precisely those integers % for
which @ ¢ Ug; we shall prove that f(@) € Jg,n— {g}. For any coordinate
mapping fi we denote #(i) by ¥ and i— p(k) by j, and note fhat f; = ri
by definition. If & # &, for all h=1, ..., m, then fi(z) = g;, ,(#) = 0 since
2 ¢ Uy and Gy(@) = (0, ..., 0) for » ¢ X—Uy. Otherwise, k= k; for some
h<<m, 80 )

- fid@) = i, (@) < s (k) = Lip{r(k)+1) < 1fp (kn+1)

by (1) and sinee z e Uy~ Uy, implies kn < (k). Note also that at least
one integer & does exist for which » € Uy, so by (i) of the Lemma there
exists an integer j such that fup. (%) = gy,:(®) # 0, 80 f(z) # g. Hence
F(@) €I pomeny —{@), and since the choice of » was arbitrary we have

fIxIC Q(Jn—{q}) (U T~ =T—{g} =" .

We close with an application of this. Theorem.
CoroLLARY. If X is a separable metric locally finite-dimensional space,
then X has a locally finite-dimensional completion.

Proof. Let f be the embedding of X into J* given by the Theorem.
It is known that J is compaet [ef. 8], and J”* is open in J, so there exists
a complete metrie for J* [1, Theorem 9, p. 189]. Relative to this complete
metric the closure ¥ of f[X] in J* is complete, so Y is the desired com-
pletion of X.
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A characterization of determinacy
for Turing degree games (%)
by
E. M. Kleinberg (Cambridge, Mass.)

Abstract. A natural method for modifying partition properties of ecardinals is to
require the existence of homogeneous sets having certain additional special properties.
In this paper such a modification of the partition property w-»(w)® is shown to lead
to a natural characterization of the axiom of determinacy for Turing degree games.

1. The axiom of defterminacy is most appropriately described in
terms of two person games of infinite length: given any set 4 of reals
(that is, of sets of integers) a game G, exists and is played as follows:
two players, I and II, move alternately writing at each turn a 0 or a 1.
In this way they build an infinite sequence of 0’s and 1’s, that is, a fune-
tion # from o into {0, 1}. Player I wins if # is the characteristie function
of a member of A. A winning strategy is a function f from finite sequences
of 0’s and 1’s into {0, 1} such that a player making only moves as indi-
cated by f (his move following any initial play ay, ..., a, should be
flay,y ..., @ny)) wins. Clearly both players can never simultaneously possess
a winning strategy. A set of reals A is said to be deferminate if there is
a winning strategy (for I or for II) associated with &,. The axiom of
determinacy (AD) is the assertion that every set of reals is determinate.

Using the axiom of choice it is fairly easy to contradiet AD. One
can put together a nondeterminate set simply by diagonalizing over all
strategies. However, the very rich theory of AD as well as its internal
appeal makes a closer examination of the guestion “which sets of reals
are determinate?” extremely worthwhile. .

One very natural approach to the question is through the various
seb hierarchies. It is easy to see that every open set of reals is determinate,
and most recently Paris has shown that in fact every Zi set of reals is
determinate. With a large cardinal assumption one can actually do quite
well here — in particular there is Martin’s result ([6]) that if a measur-
able cardinal exists then every analytic (£]) set of reals is determinate.

(1) This research was partially supported by a Moore Instructorship at M.LT.
and by NSF Grant GP-29079.
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One of the outstanding open questions in set theory at this time is whether
or not every Borel set of reals is determinate.

Another approach to the question of the determinateness of various
sets of reals is due to Martin ([5]). He realized that much of the power
of determinacy was retained if one restricted his attention solely to sets
of resls well-defined with respect to Turing degree. (A set A of reals is
well-defined with respect to Turing degree if whenever a real  is in 4,
every real Turing equivalent to # is in 4). The key to his idea lies in the
following lemma (Martin [5]). Assume that every set of reals well-defined
under Turing degree is determinate. Then given any set & of Turing
degrees there exists a degree d, such that the set of degrees greater than
or equal to d, is either contained in & or is digjoint from &. (A cone of
degrees iy a set of the form {d| d > dg}. d, is said to be the vertex of the
cone {d} &= dy}.)

Now even though the proof of Martin’s lemma is simple (given §
let B be those reals whose degree is in & — then the degree of any strategy
for G is an appropriate vertex — its associated cone is contained either
in & or in & depending upon whether the strategy is for I or II, resp.)
its strength is immediate. As an example consider Mnrtin’s proof that
‘§, is 2 measurable cardinal (assuming Turing degree determinaecy): one
simply notes that the two-valued measure on the degrees given by
“u(8) =1 iff § contains a cone” can be transferred to a measure on 8.
Namely, if f is the function sending any degree to the least ordinal not
recursive in it, a set Q of countable ordinals will have measure 1 iff
a(f @) =1.

As it turns out, the question of whether or not every Borel set of
reals well-defined under Turing degree is determinate, is also open.

2. Now it is easy to see that Martin’s lemma in fact lends itself to
a characterization of determinacy for Turing degree games. This is thab
any set 4 of reals well-defined under Turing degree is determinate iff its
associated set of degrees either contzing, or iy disjoint from, a cone. What
we now do i3 give an alternate characterization of Turing degree deter-
mingey in terms of a modification of the partition relation w->(w)”.

Given a set of nonmegative integers =, [#]° denotes the collection
of infinite subsets of #. Let 4 be a given collection of sets of nonnegative
integers. Then viewing 4 as a partition of [w]® into two pieces ({4, A%}
is the partition) we say, in keeping with the usual conventions of the
study of partition relations, that a set of integers & is homogeneous for A
if [#]” is contained in either 4 or in A°. w->(w)® denotes the assertion
that every set of reals has a homogeneous set.

Using the axiom of choice it is easy to contradict w—(w)® (Erdos-
Rado [1]) and so once again one is up against the question “which sets
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of reals A have homogeneous sets?”. The success here has been somewhat
better than with determinacy. It turns out, for instance, that (without
any large cardinal assumptions) every I! set of reals has a homogeneous
set (Silver [7]).

The connection with determinacy comes when one asks for homo-
geneous sets possessing certain additional properties. For example, let 4
be a given set of reals well-defined under Turing degree. Then there are
two questions one can ask about 4: (1) Is 4 determinate? (2) Does 4 have
an introreducible (*) homogeneous set? We shall show that these two
questions are equivalent.

Remark. Since it is known how to construet homogeneous sets for
Borel sets of reals and since it is extremely easy to put together intro-
reducible sets, it is tempting to think that one might ineorporate the two
constructions and thereby prove Borel determinaey for Turing degree
games. Another tempting approach is to look for an appropriate basis
result. For example, the Xondo-Addison theorem gives that every Borel
set of reals has a 43 homogeneous set. If one could improve this to 11,
Borel Turing degree determinacy would follow, for Jockusch has shown
(13]) that every I7; set has an introreducible subset and so our Borel set
would have an introreducible homogeneous set. Unfortunately, following
work of Soare, Jockusch has exhibited ([8]) a Borel set of reals with no
introreducible homogeneous set. The Borel set, however, is not well-
defined under Turing degree and hence its existence does not refute
Borel determinacy. But Jockusch’s example does indieate that one cannot
simply combine standard constructions of homogeneous and of intro-
reducible sets nor can one use any standard basis argument to find nice
homogeneous sets. In fact, a result of Friedman ([2]) indieates that any
proof of Borel determinacy for Turing degree games must be quite
strange — for instance, any sueh proof must use the power set axiom
in an iterated fashion s -many times.

3. Rather than work directly with the notion “introreducible” we
shall look at what are called “rigid” sets: if  and y are sets of nonnegative
integers, y C @, we say that y is spread-out in x if between any two members
of i there exist at least two members of #. A set z is said to be rigid if
it is recursive in a spread-out subset of itself. Clearly any set which is
introreducible is rigid. Our main theorem is the following:

THEOREM. Let A be a given set of reals well-defined under Turing degree.
Then A is determinate iff A (viewed as a partition of [w]®) has a rigid homo-
geneous set.

(*) A set of integers is said to be infroreducible if it is recursive in each of its in-
finite subsets.
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COROLLARY. In the statement of the above theorem, “rigid” can be re-
placed with “retraceable” or “iniroreducible”.

Proof of theorem. (=) Suppose that 4 is determinate. By Martin’s
lemma let d, be a degree such that if B is the set of reals whose degres
is at least d, then either B; C A or R, C A° Let  be a set of nonnegative
integers of degree d, and let «* be the set of codes of initial segments of &
(we assume the existence of a fixed recursive coding of the finite sequences
of nonnegative integers into nonnegative integers). Then it is easy to see
that #* is of degree d, and is introreducible. Thus #* is rigid, and if
y € [#*]° #* is recursive in ¥, i.e. y ¢ Ry, Thus 2% is a rigid set homogene-
ous for A.

(=) Suppose that 4 has a rigid homogeneous set. Let A* be the
set of degrees associated with 4, that is, 4* = {d |d C 4}. By Martin's
characterization it would suffice to find a degree d, such that the cone
with vertex d, is either contained in, or is disjoint from, 4*. Let & be
a rigid set homogeneous for A and let y be a spread-out subset of # such
that z is recursive in 9.

Claim. If » is any set such that y is recursive in « then there exists
a subset v of # such that  and » are of the same Turing degree.

(Proof of claim. The construction here is due essentially to Soare
([91). Let u be given. We form the subset v of x as follows: for each »

let 9 be the nth largest element of y. Then for any n, the (2n-+1)st largest

element of v is y, and the 2ath largest element of v is either the first
element in # larger than 4, or the second element in # larger than y,
depending on whether n « 4 or n ¢ %, respectively. Now why is ¢ Turing
equivalent to u% Well clearly one can recover » from u for as ¢ and o
are both recursive in u (# is recursive in y recall) we can, given u, list v in
increasing order simply as indieated above. On the other hand suppose
that we start with ». Since the odd elements of a list of » in increasing
order are precisely those in y, and sinee # is recursive in y we can, starting
with ¢, make lists of # and y in increasing order. % can now be listed in
inereasing order simply by examining the even clements in the list of v in
increasing order in light of the lists of z and y.)

Our theorem now follows. For if d, is the degree of ¥, the claim easily
gives that the cone associated with d, is either contained in 4* or is
disjoint from A* depending upon whether [x]"CA or [2]°CA°% re-
spectively. : -

In proving this theorem we also establish the corollary. The only
point to observe is that the set #* mentioned in the first half of the
proof is, in fact, retraceable.
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