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The notion of an elementary subsystem
for a Boolean-valued relational system

by
L. W. Szczerba (Warszawa)

Abstract. The paper is devoted to investigate the possibility of generalization of
the notion of an elementary subsystem for a Boolean-valued relational system. Several
possible generalizations are proposed and their mutual relations are studied. The
Skolem - L wenheim - Targki theorem is studied in connection with this generalizations.

By a relational system one may mean the sequence
& = (8, Ryy vy Boy )

where R, is a function from ™28 into {0, 1}. The relational system & may
be described in the first order language L. For any formula Fefg and
any e 8 we have valg(F, h) 1 if b satisties F in © and valg(F,h)e0
otherwise. We may generalize the notion of relational system such. that
the functor valg will take values in some, not necessarily two-valued,
Boolean algebra (see e.g. [3], [4] and [5]). For a classical relational system
(over a two-valued Boolean algebra) the notion of elementary subsystem
has been introduced, and the well known Liowenheim-Skolem-Targki
theorem has been proved (see [7]). Below, the notion of elementary sub-
system will be generalized to Boolean-valued relational systems in such
a way that the Léwenheim-Skolem-Tarski theorem will be valid.

1. Boolean-valued relational systems. Usually by a Boolean algebra
one means the algebra B= (B, —,v, ) satisfying suitable conditions
(see e.g. [6]). Since the operation ~ may be defined in terms of — and v,
we ghall mean by a Boolean algebra the reduct (B, —,wv) of B.

Let B = (B, —,v) be a Boolean algebra. As is well known, we
may define in B a partial order on B:

a<Lbeoavdb=0b.
This relation may be extended to subsets of B:

A<aVala ed>a < a) .
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If A <a we say that a is an upper bound of A. The least upper bound
of A (if it exists) is called the supremum of A (in symbols: supg4). If the
operation of supremum is defined for all subsets of B, the algebra B ig
called complete (see [6], § 20). The two-valued Boolean algebra B,, i.e. the
Boolean algebra with the universe {0, 1} is complete.

By the Boolean-valued relational system over the algebra B we shall
mean the (finite or transfinite) sequence

& =(8,Roy o, By, )

where § is a set called the wniverse of S, and R, is an n-ary function
defined on § with the values in B:

R,:"™8->B.

Any function R, is called a relation of &.

To the Boolean-valued relational system & there corresponds
a language £, i.e. the set of all well-formed formulas, built up from the
gymbols xg, ..., Xn, ... (variables), = (equality), ~, v, T (logical con-
nectives) and (, ) (parentheses). Let § be any infinite sequence of elements
of 8. We put:

0 -if B, # by,

1 it h;= IM’

ii) Va‘lg(Ra(xia’ ey X4, I)) = Ru(bioa ey I)in) 2
(ifiy val2(~F,b) = —valg(F,p),
)
)

(i) valg(x;=x;,b) =

—_

—

iv) val}(FVG,Db) = valg(F, h) v valg(G, b)
valg (dx;F, D) = supg {valg(F, §'): Vj(i # j—b, = b))} .

The.(laonditiion (v) is well defined in any complete Boolean algebra, in
particular in B,. In general the supremum of the set

) {valg(F, b): Vj(i # j—>b, = b))}
does not necessarily exist. Thus we need to assume that the supremum
of any set of ‘the .form (1) does exist in the Boolean algebra in question.
This assumption is .n'mch weaker than the assumption of completeness
.From the eond11:1qn (i) it follows that the mterpretation of equality,
=,1s standard. Somg‘mmes (see e.g. [3], p. B3) the equality is treated just
h»kem any other predicate, ie. there is a function eq: 2S—B such that
'vals(xif-xj,b) = eq(I)z.,- h;). Since in such a case we may enrich the
taﬁl}guage ;)y g DEW predicate, say =', which will denote standard equality,
i8 nonstandard notion may be treated as just a parti i y
e ponstanda ] particular case of that
Thfa Boolean a,lggbra, underlying the Boolean relational syét-em S is
not uniquely determined. If the Boolean relation system S is over the
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Boolean algebra B, then it is over any extension of B being a Boolean
algebra. The least Boolean algebra underlying & is said to be supporting &.
Let © be a Boolean-valued relational system over the Boolean algebra 8.
The algebra B restricted to the set )

(@) {valZ(F,5): Felohb <8}

is a Boolean algebra supporting &.

By the power of"® = (8§, Ry, ..., B,, ...) We shall mean the power
of the set §. Let the power of 8 be ¢. Let 1 be the power of the language £¢.
Then the power of the set (2) is not greater than the maximum of o and 4
(since at least A is infinite). Thus we have

TurorEM 1. The power of the Boolean algebra supporting the Boolean-
valued relational system & is not greater tham the mazimwm of the powers
of © and L.

Let & be a Boolean-valued relational system over a Boolean ‘al-
gebra B, and &’ — over B'. We say that S is a subsystem of &' if the
universe of G is a subset of the universe of the universe of &' and re-
lations of © are corresponding relations of &’ restricted to the universe
of G. We say that & is a Boolean elementary subsystem of &' (&' is a Boolean
elementary extension of ©) if there are Boolean algebras B and B’, under-

*lying & and &', respectively and such that

(I) & is a subsystem of &,
(I) B is an elementary subalgebra (*) of B’,
(IIT)  for any Felg and any b S
val2(F, h) = valg/(F, D) .

Since the only Boolean subalgebra (and therefore the only elementary
subalgebra) of the two-valued Boolean algebra B, is the algebra B, itself,

the notion of a Boolean elementary subsystem in case of classical gystems
(i.e. the systems over the algebra %B,) coincides with the classical notion
of elementary subsystem (see [7]). Therefore the notion  of a Boolean
elementary subsystem is a generalization of the notion of an elementary

subsystem.

3. Lowenheim-Skolem-Tarski theorem. Let & = (8, By, -3 R,,..) be
a Boolean-valued relational system supported by the Boolean algebra
B = (B, —,v). Let £, be the set of all formulas in which only the
variables with indices less than p occur. We say that the relational system

M= (M, 8, Ry, ey Bay s B, Uy Fyy ey Fgy ooy Vol ey V8L, )

() In the classical sense.
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describes the Boolean-valued relational system & if
(i) SvBuUi;CH,
(i) Fy, .., Fyy ... is & sequence of all formulas of fg,

(iii)  val, is a mapping of £, x"8 into B such that for any Fe £, and § « “8

val(F, By oy Drey) = valg(F, p) .
It should be noticed that 9 is a relational system in the classical sense:
R, is not a Boolean relation on § but an ordinary function from ™§ into B.

Levma 2. If I is an elementary subsystem (elementary ewtension) of
the system I deseribing a Boolean-valued relational system S, then the
suitable reduct of M' is & Boolean elementary subsystem (Boolean elementary
extension) of ©.

Proof. Let
W = (M, §, By oy By oy By~ Foy ooy Fay ooy vl oy val, )
be an elementary subsystem of It. Then the reduct &’ = (&7, R, ..., R,

. s )
is the Boolean-valued relational system over the Boolean algebra B’

={B’, =’y '). Moreover, B’ is an elementary subalgebra of 8. Therefore,
to prove the lemma it will suffice to show that for any formula F and
any he“8’ we have '

valg(F, b) = valg (F, b) .

‘We shall prove this equality by induetion according to the complexity
of the formula F. Let F be an atomic formula R(x;, ..., ¥, ); then

Valg(F, ) = By (D5 ey Bin)) = RalByyy ooy By,) = valll(F, b) .
Similarly for F= (x; = x;). Let F= ~F. Then
valg(F, b) = — vald(F', ) = —'valZ/(F', b) = valZ(F, ).

Simrly we may prove the equality in the case of F= F'V F". Slightly
more involved is the proof in the case of F= Hx;F’. Here we have to 1use
the fact that M’ is an elementary subsystem of 9 and the element

supﬁ{valp(F', Dos ey Dimay @5 Digyy ooy Bp1): @ e 8}
is definable in f4,. Let Fef,, then .

valg(F, p) =
if and only if = I

g= SuPﬂa{Va*lp(F’; Doy ooy Dimay @5 By vees Dpi): e S},
Since M’ is an elementary subsystem of MM, this is equivalent to

g = supg {val,(F’, By, ..., h;_y, 7, Dit1s ey Bpy): @€ 8},
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Therefore by the induction hypothesis
valg) (F,b) = g = valg(F, D) .

TEEOREM 3 (Lower Lowenheim-Skolem-Tarski theorem). If & is
a Boolean-valued relational system of the power o, Lg is of the power A and
o> u= A then there is anm elementary Booleam subsystem &' of S of the
power p. :

Proof. Let &= (8, &,, ..., B,, ...). We shall consider the following
relational system:

M= (M, 8, RyyeeeyByy vy By =, Fyy ey Fyy oevy valyy ooy valy, oy f)
(comp. the definition of a system describing the Boolean-valued relational
system) where f is a function mapping 8 onto M. Such a function exists

since by Theorem 1 the power of B is less than or equal to ¢. The power
of Ly is equal to 1. Therefore there is a relational system

M = (M, 8", Ry ey By ooy By =y U’y Fyy vy Fyy ooy valgy oy valy,y ooy 1)

an elementary subsystem of M of the power u. Thus by Lemma 2 the
Boolean-valued relational system

&= (Sly Rn’n very Rc:: )
is an elementary Boolean subsystem of &. Since 8’ C M’ and f’ is a function
mapping 8’ onto M’, the power of & is p.
More involved is the proof of
TerorEM 4 (Upper Loéwenheim-Skolem-Tarski theorem). If © s
a Boolean-valued relational system of the infinite power o, Lg is of the
power L and u > A+ o, then there is an elementary Boolean extension S’
od & of the power u.
Proof. Let us consider the relational system
M= (M, 8, By, ..., By, vy By =0y Foy ey By e
oy Valgy ceey ValLy oy Sgy ves S5y o)
where 8;, ..., 85, - 18 & sequence of all elements of M. The other notations
are as in the proof of Theorem 3. There are an index set J and an ultra-
filter # such that the power of the ultrapower §%/5 is greater than pu.
Let M be the expansion of MYz by the sequence &y, ...y 1, - of u elements
of §%. Since the power of Ly i8 equal to z, there is an elementary sub-
system of SN’ of the power u (see [7]). Let

WM = (M, 8y RYy ery Bry vey By =30y Foy ey Fgy vevy valy, ..., val;, ...)

be the reduct of this subsystem. Since M’ contains all the elements of
the sequence Sg, ..., Szy -, D' is an extension of the relational system


Artur


110 L. W. 8zczerba

describing ©. Both are elementary subsystems of the reduct of 9.
Thus PV is an elementary extension of the relational system describing &.
Therefore by Lemma 2 the Boolean-valued relational system

& = (8, R, iy B, )

is a Boolean elementary extension of &. Since §' is contained in the set 1’
of the power u and confains u elements %y, ..., 1, ..., therefore &' is of
the power u. This completes the proof.

3. Modifications of the notion of an elementary Boolean subsystem. We
have defined the notion of an elementary Boolean subsystem in the
following way:

The Boolean-valued relational system & is an elementary Boolean
subsystem of &’ (in’ symbols & < &) if there are Boolean algebras B
and B’ underlying, respectively, & and &’ and such that

(I) & 'is a subsystem of &',
(IIy B is an elementary subalgebra of B,
(III) for any Fefg and h «“S (8 iz the universe of &) we have

valg (F, ) = valZ/(F, ) .
We may introduce the modified notions of an elementary Boolean
subsystem. We shall write
cR Y

if © and &’ satisfy the above definition with condition (IT) replaced by
a stronger one:

(I B=1B'.
‘We shall write’
E <<, &

if © and &' satisfy this definition with condition (IT) replaced by
a weaker omne:

(IT")y B is Boolean subalgebra of B'.

Mo’reover, we may modify the notion of an elementary Boolean sub-
system by the elimination of the existential quantifier: We shall write
G =<
if for ]-SQOIean algebras B aund B’ supporting, respectively, S and &' the
conditions (I), (II) and (ILI) are satisfied. Similarly we shall write

<6 wd GG
if condition (II) is replaced by (1I') and (II"), respectively.

e a©
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THEOREM 5.
C<AG>6=,C
<G -6<6E
6 <86,

Proof. Almost all implications follow -immediately from the de-
finitions. Only the implication

6<,8>6<56

EAG>E<IC BTG -GS
€26 +6<36 €< E-6=,6

must be proved. Let B and B’ be such Boolean algebras underlying,
respectively, © and &’ that conditions (I), (TT”) and (III) are satistied.
In particular 9B is a subalgebra of B’ and & is a Boolean subsystem of &'.
Thus by condition (IIT)

(valZ(F, B): Fefanl eS8} C {valZi(F, b): Fefonhe s’}
and therefore the Boolean algebra supporting & is a subalgebra of that
supporting &'. This completes the proof.

On the other hand, € < &' does not imply € <, &', In fact, for <
the lower Léwenheim-Skolem-Tarski theorem holds (see section 2), but
for <, as has Dbeen proven by W. Guzicki (see [2]), it fails. Guzicki’s
proof may in fact be reduced to the following:

ExampLE. Let B8 be the Boolean algebra of all subsets of the set
of real numbers B. Further, let P(r) = {r}, where r ¢ R and R = (R, P).
R is o Boolean-valued relational system over the Boolean algebra .
Let us consider the following sentence:

Hxy P(xo) -
The‘value of this sentence, for any b e“R, is
valZ (Txy P(xo), b) = supg {vali(P(x5), §): Vi ¢ # 0->h; = r);.} = R.
Now, let R = (R, P') be any proper Boolean subsystem of B; then
val® (Ax, P(xp), ) =B L R.
Thus ;
valfy (Ax,P(x;), b) # val§ (Tx, P(x,), D) -

Moreover, we shall have the same inequality if we replace % by any of
its extensions. Ther.fore it is not true that R’ <2, R. There is no proper

Boolean subsystem R’ of ® such that ®' <, R
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The connections between different notions of a Boolean elementary
subsystem may be visualised by means of the following diagram.

GG >6=2E

¥ %
B >E<0
v ¥

<G 62,

ProBLEM 1. How to complete the diagram? Which implications
hold and which fail?

We have proved the upper and lower Lowenheim-Skolem-Tarski
theorems for <. Thus from Theorem 5 it follows that both theorems
bold for <, and <3;,. From Guzicki’s example it follows that the lower
Lowenheim-Skolem-Tarski theorem fails for <, and therefore for <.
However, if we introduce into the lower Loéwenheim-Skolem-Tarski
theorem some stronger assumptions (see [1] Theorem 4.3.1), it ‘will
hold for <,.

ProsrEM 2. Does the lower Liwenheim-Skolem-Targki theorem hold
for- <<°% Does the upper Liwenheim-Skolem-Tarski theorem hold for
<% <sand <t

A partial answer to Problem 2 is given in {17 (see page 63). Namely,
for any Boolean-valued relational system & and any cardinal number u
there is a Boolean-valued relational system &' of the power at least u
such that € <, &".
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A non-symmetric generalization of the
Borsuk-Ulam theorem (*)
. o
Kapil D. Joshi (Bloomington, Ind.)

Abstract. The following generalization of the well-known Borsuk-Ulam theorem
is proved. Theorem: Let X be a compact subset of the Euclidean space E#** which
disconnects E**! in such a way that the origin is in a bounded component of B™1— X

.and let f: X —RE" be a map. Then there exist two points #, ¥ in X, lying on opposite rays

from the origin (i.e. ¥ = — Az for some 1> 0), such that f(z) = f(y). This provides an
affirmative answer to a question of Borsuk. The proof is based on P. A. Smith’s theory
of the index of a periodic transformation acting on a topological space, Yang’s result
about maps from such spaces to the Euclidean spaces and the technique of approximating
the set X by a special class of polyhedra, the so-called “regular polyhedra” defined in
the paper. The special cases n = 1 or 2 of the theorem were proved earlier by Sieklucki
by a different argument.
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1. Introduction. The classic Borsuk-Ulam theorem [2] states thatb
if f is & map from the n-dimensional sphere 8" into the »-dimensional
Tuclidean space R™ then there exists a pair of antipodal points {x, —x}
on 8" such that f(w) = f(—u). Several generalizations of this theorem,
proceeding in various directions, have been obtained among others by
Agoston [1], Jaworowski [8], Yang [14], Granas [6] who extended the
result to infinite-dimensional Banach spaces and Munkholm [9] who
considered Z,-actions on a homology sphere for a prime p. In many of

(*) The main result of this paper was included in the author’s dissertation sub-
mitted to Indiana University in partial fulfillment of the requirements for the degree
Doctor of Philosophy in April 1972, The author would like to thank his advisor, Prof.
Jan Jaworowski for his help.
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