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= ’™® where r is the final segment of s unlcspondmg to t, we see that
either Z(s) = ®™® or X(s) = (w*™)2.

Thus under the assumption made above, we have proved fh(htr 8(s) is
finite; and we can now obtain the full result in the usnal manner.
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Properties of the gimel function
and a classification of singular cardinals

by

Thomas J. Jech (*) (Princeton, N. J.)

Abstract. The paper gives a list of properties of the function 3 () = xtt=,

1. The continuum problem and computation of cardinal exponentiation from

the function 3. The subject of our investigation is the cardinal function

1 (%) = . The gimel function is instrumental in cardinal arithmetic;

Bukovsky [1] proved that both the continuum function 2* and the

exponential function s

of 2% and

* are computable from the gimel function.

The book of Vopénka and Héjek [7] gives inductive definitions
* in terms of ) and lists a few obvious properties of the

function 1. In the present article we give a list of seven properties of the
gimel fupction. The author believes that these properties describe the
function 1 completely, in the sense that no other laws about 3 can be
proved in set theory alone (without the assumption of large cardinals).
This conjecture is based on the expectations (shared by others) that the
singular cardinal problem (discussed later) will be solved in the generality
analogous to Iaston’s result [2].

The situation is different if the existence of large cardinals is as-

sumed. A recent result of Solovay [5] indicates that the presence of large
cardinals has o strong influence on the behaviour of the gimel function
at singular cardinaly. These questions are discussed in the last section.

Throughout the paper, we use Greek letters =, 4, ... to denote infinite

cardinals (alephs) which are identified with initial ordinals. Ordinals are
generally denoted by the letters a, 8, ... The cofinality of a limit ordinal «,
denoted cfa, is the least ordinal cofinal with a in the nafmml ordering
of ordinals; cfa iy always a regular cardinal. The cardinal »* is the cardi-
nality of the set *» of all functions from A to x; if A< x then also «*

(A)| where ¢.(4) is the set of all subsets X of 1 such that |X| <<~

(*) Resea:oh supported by NSF Grant No. P0-34191-X00.
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{Of course, K% == 9% = |T(x)|, where ¢ (x) is the power set of x). For each
%, »T iy the least cardinal greater than wx.

In [1], Bukovsky proves that both 2% and %* are computable from
the function »°*. The induetive definition of 2* is as in [1]; the inductive
definition of »* given below is somewhat simpler than that given by Bu-
kovsky. Both are based on the following lemma:

1.1. Lemma (Bukovsky [1]).

(o) If » is a singular cardinal and cfx < A< u then - (,'{Eimf’l)”‘”.
e

The proof of the lemma uses the fact that every function from 4 to »
{every subset of %) is a limit of a (cfx)-sequence of bounded functiong
{of bounded subsets). For details, ef. [1] or [7].

1.1. COMPUTATION OF THE CONTINUUM FUNCTION (Bukovsky).
By induction on x: '

{) If = 48 a reqular cardinal then 2°= 1 (x).

(i) If » is a singular cardinal and if there is &, < x such that 2¢ = 2%
for all & = &, E<x, then 2%= 2%,

(iii) If % is a singular cardinal and for each & < x there is n > & 0 <x
such that 25 < 27 then 2" = 1(15111;125).’

For the proof, see [1] or [7].

1.3. COMPUTATION OF THE BXPONENTIAL FUNOIION. For a fiwed 2,
by induction on sx:

(i) If % < A then " = 2~

(i) If there is a &< A such that & = w them »* = &\

(i) If & < »x for all & << 5 and = is either a regular cardinal or a singular
cardinal with cfx > A then »* = .

(iv) If & < » for all £< x amd efu < A< % then »* = 1 (x).

Proof. (i) Obvious.

(ii) On the one hand, & < »* On the other hand, «* < (&)* <&

(iif) If » is a successor cardinal, » = y*, then »* == 5 4* by Haus-
dorff formula. If » is a limit cardinal with cfx > 4 thon s»* == ljmé" by

Eory

Tarski formula.

(iv) Follows from Bukovsky’s lemma.

One may ask whether the gimel function ig definable from the con-
tinuum function. Recent results of Prikry and Silver show that it is not so,
at leagt if one assumes the existence of large cardinals. Namely, consider
a trangitive model M of ZFC (Zermelo-Traenkel set theory -- Axiom of
‘Choice) + GCH (generalized continuum hypothesis) 4 “There is a 2-ex-
tendable cardinal »”. Silver in his paper [4] (not yet published) constructs
an extension M, of M, in which all cardinals and cofinalities are preserved,

©
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s remains measurable, 2% =, 9% = #*t*T and GCH holds above ». Using
the method of Prikry [3], one can get an extension M, of M,, in which
all cardinals are preserved, so are all cofinalities except x, cfx = w and
the continuum function behaves as in M. In particular, 2* = »*+ in M,
and since 2* < » for each 1< x, it follows that «® — »*+ in M,. Now
let My be an extension of M, obtained by adding »** subsets of x,. On
the other hand, let N, be an extension of M obtained by a direct appli-
cation of Prikry’s method and let N, be an extension of N, by adding »++
subsets of &,. The above construetions lead to two models, M; and N,
that have the same cardinals and cofinalities, the same continuum
function (2% = x;, 2% = »** and GOH above x), but »® is »* in N,
and »"t in M.

2. Properties of the gimel function. The behaviour of the function »°*
on regular cardinals is well known. If » is regular then »®* = »*= 2* and
the continuum function has the following properties:

(C1) 2% > x.

(02) It % < A then 2% < 2%

(03) cf(2%) > . ‘

Moreover, a theorem of Raston [2] states that given any function C(x)
with properties (CL1), (C2), (03), one can construct a model of ZFC in
which 2% = C(x) for all regular cardinals. )

There is however no construction known that would establish a result
analogous to Baston’s result, but for all cardinals. This open problem is
known ag the singular cardinal problem.

It is obvious that the conditions (Cl)-(C3) do not sufficiently describe
the continuum funetion on singular cardinals. For it follows from Bu-
kovsky’s Theorem 1.2 (ii) that the continuum function has to satisfy at
least one additional condition:

(C4) If % is singular and if there is & <C » such that 2% = 2% for all
&z &, E< %, then 2% = 2%,

The question we are interested in, is to describe the function 3 (x)
= %", Tt turns out that there are four categories of singular cardinals
and the gimel function behaves differently on cardinals in each category.

DurNrrioN. Let » be a singular cardinal. We say that

(i) = 18 free (*) if 2 (§) < x for all < =

(ii) % is properly bound it » < 29 = 1 (ctx).

(iii) » is dmproperly bound if 2°* < x and there exists &< x with
cff < efy such that » < 3 (). '

(*) Or, » is o strongly limit singular eardinal.

i
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(iv) # is captive if it is neither free nor bound (properly or otherwise),
ie. if % < 3(n) for some 5 < » of greater cofinality bub » > 1 (&) for all
&< » such that cff < cfx.

Obviously, it depends on the behavior of the gimel funection on
smaller cardinals, to which of the four categories a given singular cardinal
belongs. If GOH holds then all singular cardinaly are free. By standard
Coben technique, one can obtain examples of either properly bound or
captive cardinals. To get an example of an improperly hound cardinal,
however, one has to solve the singular cardinal problem firgt.

2.1. TEEOREM. The function ) (x) == «*** has the following properties:

(GL) 3 (%) > .

(G2) cfa (%) > cfx.

(G3) If » is a regular cardinal then 3 (x):= 3 (A) for all A< s.

(G4) If = is a free singular cardinal then cfy () > .

(GD) If » is properly bound then 13 (x) =1 (ctx).

(G6) If » is improperly bound, let A be the least cardinal such that
efd << ofxand 3(4) = . Then 1(x) = 1(A).

(G7) If = is captive, let A be a cardinal of least cofinality swch that
1(2) = % Then 3 (%) < 3 (A) and of 3 (x) = cfA.

Proof. ‘It follows from Konig’s theorem that cf(«°) > of (cfx)
= cfx. Consequently, »°* >» because they have different cofinalities.
This proves (1) and (2).

If % is a regular eardinal then 3 (x) == 2" and if 1< » then (1) < 2*
< 2% If « is a free singular cardinal, then by (1.2.iii), 3 (x) = 2% and
cf2" > » by Konig’s theorem. If » is properly bound then 2°0% < x°*
< (2°7)* = 2°'* and we have (G3), (G4) and (GB).

 If % is improperly bound, let A be the least cardinal such that 1% = .
We have ' ‘

%ctu < (Kctl)cﬂn — Zotu < %0“

and therefore »°'™ = 1°* Now we use the inductive computation of the
exponential function (Theorem 1.3). One can see that for all % and & &
equals either 27 or £ or 1 (£) for some . In our cage, since % is bound im-
properly, we huve A°™ = %'> 2% and therefore IO e 3 (@) for some
u4< A However, 1 is the least cardinal such that » < 1(A4). Therefore,
3 (%) — Mut» . 1(:!» = ) (l)
which proves (G6).
Finally, if x is o captive singular cardinal, let 4 be u cardinal of least
cofinality such that 3(1) = ». Since cfl > cfx, it is easy to see that

3 (%) — »OL% < (/-chl)cbf — jold 1(A)

proving the first part of (G7). To show that of (%) = ef A, it suffices to
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show that for each regular p such that efx < @ < cfd, we have of (x7*) > u.
To do that, we prove that »* = % for each regular u such that cfx< p
< of2. Then by Konig’s theorem, cf (x) = cf (»*) > 2

Let © be,as above. Since 4> cfx, clause (iii) of Theorem 1.3 does
not apply and hence »* is equal to either 2 or 3 (n) for some % such that
# <7< n The first alternative is impossible since u is regular, therefore
2 == 1 (p), which would imply 3(g) 3= % and that would contradict the
minimality of ¢fad because u< cfi by the agssumption. In the second
alternative, » must necessarily satisty clause (iv) of Theorem 1.3 which
means that efy < u. Again, it is impossible that 7 < since then 1 (n) = »
and cfn<Cefd, o contradietion. Fence »*= 3(x) and so of(3 (%)) > a.

Remarks. It seoms o us unlikely that other conditions on the gimel
function than those above can be found using simple cardinal arithmetic.
The natural question is then whether (G1)-(G7) are the only rules provable
in ZFC. In other words, the problem is, given a cardinal function G ()
which satisfies (G1-(G7), to construct a model of ZFC such that w»°*
= G(x) for all ». Thiy iy of cowrse what Baston has done for regular
cardinaly in [2]. In his model, 1 () = »* for each free or captive singular
cardinal (and there are no improperly bound cardinals). Therefore the
problem seems to be to make 3(x)>xt for free or captive singular
cardinals. A typical special ease is to make 2% = x, ., together with

- 9%, for all m. The results of Prikry and Silver mentioned earlier

give a partial solution of the singular cardinal problem but only under
the assumption of large cardinals.

Let us also remark that if (G1)-(G7) arve the only rules for the gimel
function then (C1)-(C4) are the only rules for the continuum function.
For, given a function ¢ satisfying (01)-(04), one can define a function @
which satisfies (G1)-(G7) and such that ¢ is the function computed
trom @ by Theorem 1.2. (@ is defined inductively, taking the only possible
value if x iy not captive. If » is captive and a limit of the function C,
# == lim 0(&) for some singular p, then G(x)= C(n); otherwise, G(x)

-y
= p{‘")

3. Effect of large cardinals on the behayior of the gimel function. It has Leen
known for o long time that existence of large cardinals influences the
behavior of the continuum function. The first important result to this
effect was discovered by Dana Seott:

g ‘ 7 » + g O o

If % is a measurable cardinal and 2% = E* for all &< x then 2°=x".

Here we shall briefly discuss the impact of large cardinals on the
behavior of the gimel funetion on singular cardinals.

Recently [h] (nol yet published), Solovay discovered the following
remarkable theorem;
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If % is a strongly compact cardinal and A > is & free or captive singular
cardinal then A% = 1T

Consequently, the. gimel function for cardinals >x is computable
from the continuum function (note also that no singular cardinals above x
are improperly bound).

Even under the assumption of only measurable cardinals, we have
to consider additional rules for the gimmel funetion on singular cardinals.
For the rest of the paper, let » denote a measurable cardinal.

We start with an analog of Scott’s theorem:

3.1. PrOPOSITION. Let A > x be a cardinal of cofinality » and assume
that 2f = £+ for all &< A Then 2* = 2.

Proof. Let M be an ultrapower by a normal ultrafilter and let
i: V-+M Dbe the corresponding elementary embedding. Let 1==[f], i.e.
let f be a function representing A in M. Since cfld=x, f(e) <1 and
cf(f(a)) = a a.e. Since f(a)*= o for all a < x, we have M |= (2*=2").
Since M contains all x-sequences of ordinals, it follows that 1*= 1%,
Hence 2* = A*= AT, ' .

The proof gives us actually a somewhat stronger resulf:

If 2 > u, ofd = » and if 1 (&) = & for all singular & < 2 of cofinality <
then 3 (A) = AT.

Even if we do not have G.C.H. below a A of cofinality =, it is often
possible to get a bound on 1 (A). In [6], Vopénka announced the following
theorem:

If 8 > n, cf(x,) =2 and if 2% < 5, for all B<< & then 28¢ < &, where
o= (|&)*. '

Hence, if &<, then 28 < Nge- (I 8g = £, the theorem does not
give any information.)

We will present a generalization of this result. Let A > » be a singular
cardinal of cofinality ». First we observe that 4 does not have to be a free
singular cardinal to get an estimate for a(A); if 1 i8 captive then we can
get the same- estimate. Since for bound singular cardinals, the value
i(A) is determined anyway, it would be nice to have an apper bound for
1(4) for all free or captive cardinals of cofinality x. This, however, we
were unable to do, although an estimate exists for a large number of
“describable” such cardinals.

Let us say that an ordinal o is attainable if there is an ordinal ope-
ration F with the property

(¥) it M, N are models of ZF and IMCR then FUy) < Fy)
for all y,

sueh that « = F(8) for some < a.
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~ 3.2. PROPOSITION. Let A > x be o cardinal of cofinality x, either free
or captive. If A is attainable by F, ithen

A< sup{F(y): y< A}.

Proof. Let M and ¢ have the same meaning as in 3.1. Since 1 is
either free or captive, we have £ < 1 for all £ < A. Therefore the following
is true in M: if £ <4l and % < ix then £ < i). Since c¢f} = %, we have
A<id and hence M |= 2* < il. Moreover, 1* < (A%)n (because (“A)y = *A)
and so A%< 4.

Next note that if £ < 1 then |if] < £*< 1and hence if < A If 1= F(a)
for some a << 4, then il = 5¥(iq) and we have

5

e <vid= FMia) < F (ia) < sup{F (y): » < 1} .

It remains to say a few words about attainable ordinals. For instance
the function F(a) = », satisfies (x) and hence we can get a bound for
3(2) if 4 is not a fixed point of the aleph function. More generally, if & ig
an increasing enumeration of a IT; class of cardinals then F satisfies ().

Now we shortly describe one way to attain more and more ordinals.
Let & be an increasing continuous ordinal funetion satisfying (x). Let 5°
be defined as follows, for any ordinal 8: Let C be the class of all values of &
(a closed unbounded class), and let F* be the increasing enumeration
of 0% where O™ is the class of all fixed points of € and €7 =[) ¢*

it y is a limit ordinal. Finally, let 0 = {a: a e ("} and let F* bg<q;he
corresponding function. Then 7 satisfies (x) and enables us to attain
more ordinals than F.

Finally, there is an estimate of 1 (1) in some cases of singular cardinals
of cofinality < x.

3.3. PROPOSITION. Let A >« be a cardinal of cofinality Ay<<wx such
that A< 2% If 1(£) = &* for all £<< » of cofinality A, then 3 (3) = At.

(The theorem remains true if » << A< 2% is replaced by u<< i< py*
where g is a free or captive cardinal of cofinality =, and it 1 (£) =&+
for all £ < 9 of cofinality 4,.)

Proof. M and 4 have the same meaning as before. We have 1x > 2%
and therefore i > A. It is true in M that for each &< ix of cofinality 1,,
£ o V. Thevefore M |= (A == AT) and 1% < (M) = (A7) < AT,
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Applications of the Baire-category method
to the problem of independent sets

by

K. Kuratowski (Warszawa)

Abstract. A set ' C X is said independent in B C X", if for every system =z, ..., 2,
of different points of ¥ the point <@, ..., z,> never belongs to R. The main result states
that, if X is a complete space and R is closed and nowhere dense, then the set J(R) of
all compact subsets F of X independent in B is a dense G5 in the space C(X) of all
compact subsets of X. Using Baire category theorem this statement is extended to
the case where R is an I';-set of the first category and also to the case of an infinite
sequence Ry, R,, ..., where B, C X"®,

The same method allows also to show the existence of Cantor sets in X (supposed
dense-in-itself) independent in B (or more generally, in B,, R,, ...). Similar results were
obtained in [10] and [11].

Applications to indecomposable continua (and others) are considered.

§ 1. Introduction.

DEFINITION. Let X be a space and B an n-ary relation in X, i.e.
RBCIX" A set FCX is said to be independent in E, written F ¢ J(R),
if for every point &= <&, .., z,> e " with distinct cocrdinates (i.e.
2 # @y for ¢ % j), we have £ ¢ X*—R.

In particular, if R is a binary relation (n = 2), I is independent, if
no two of its elements are in the relation R.

In many cases, it is important to know whether or not there exists
an uncountable compact set FC X independent in a given relation E.

The Main Theorem of this papér will give a possibility of proving
the existence of an ¥ independent in R (under suitable assumptions on X
and B) with the use of the Baire category method; thus — avoiding
individual constructions of F (ackward —in many cases). Ce

Let us note two ugeful (and obvious) formulag -

1) if R,CRy, then J(R,)CJ(Ry),
@) 7 - T BR) =1 J(By) .

5 — Fundamenta Mathematicae, T. LXXXI
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