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The number of automorphisms of models
of s-categorical theories

by
John T. Baldwin (East Lansing, Michigan)

Abstract. The number of automorphism of a model of a x,-categorical theory is
computed in terms of a definability condition on the model. In addition the relationship
between the cardinalities of the automorphism groups of various models of the same
N8, -categorical theory are considered.

Let T be a complete first order theory having only infinite models.
A theory T is »-categorical if all models of T with power » are isomorphie.
Morley ([6]) showed that every uncountable model of an x,-eategorical
theory T is saturated. He further proved that if 7' is not - categorical
the countable models of 7' can be arranged in an increasing sequence
#gy yy oy #, Of order type w1 such that £, < #,., and #, is satur-
ated [5]. The members of this sequence are proved to be pairwise non-
isomorphic in [1].

If A is a relational structure for a first order language L we denote
by Aut(#£) the group of automorphisms of +. In this paper we investigate
the cardinality of Aut(+) (JAut(+t)|) where # is a model of an &, - categorical
theory. We show that if 4 is saturated and |#|= x» then |Aut(#)]= 2%
If A is not saturated we show |Aut(#4)] < 8. or JAut(#£)] = 2%, If T is not
8- categorical we define a function f from the natural numbers into the
natural numbers union {&,, 2%} by f(n) = o if |Aut(#)| = «. We show
this function is inereasing and counsider {n|f(n-+1) >f(n)}. We assume
familiarity with [1].

We have learned that Theorem 3 follows directly from a result of
Kueker [4, Theorem 2.2 (i), (ii)]. It has also been obtained by purely
algebraic means by K. K. Hickin. Both of these proofs do not involve
any condition on the theory of the models involved. The definability
conditions in Theorem 2 are the impact of assuming T is x,-categorical.

With the following exceptions our notation follows [1]. The language
of T is L. We denote by Su(L) the set of formulas of L which have at
most # free variables. For an arbitrary set X we may form the language
L(X) by adjoining to L a constant symbol z for each member z of X,
If X is a subset of the universe of an L-structure £, then (£, z),.x i8
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the L(X)-structure where 2 is the name of z. We denote by Su(X) the
set of formulas of L(X) with at most » free variables. The Boolean algebra
formed by identifying those members of 8,(L) which are equivalent in
T is denoted Fy(T). Let X C|#4|= A (the universe of 4 and let 1"
= Th{(#, #),.x)- The Boolean algebra formed by identifying those
members of S,(X) which are equivalent in 7" is denoted F.(X). We
frequently identify a representative of an equivalence class with the
class. A formula 4 € Sp(L) (4 € 8x(X)) is an atom if its equivalence class
is an atom in the Boolean algebra F,(T) Fu(X)). £ is an atomic model
of T if each n-tuple of elements of [4| satisfies an atom in Sy(L).

We will frequently deal with finite or infinite sequences of elements
from a model. We will not distingnish in our notation between the se-
quence and the seb of elements in its range. For example, if a ¢ A™ and f is
a2 function from A to 4, we write f(a) for the sequence

{Flao)y flar)y ooy F(@py)) -

If A is an L-structure and a,b are countable sequences of elements
from |+t|, a and b realize the same type if («,aq) (that is (#, a(d),.,) is
elementarily equivalent to (#,0). #£ is countably homogeneous if for
each pair a, b of countable sequences which realize the same type there
is an antomorphism f of #£ such that f(a) = b.

TueoREM 1. If B is o saturated model of an s, -categorical theory T
and |B| = x then |Aut(B)| = 2*.

Proof. If » > &, there is a model of 7 with power » having 2* auto-
morphisms by the Ehrenfeucht-Mostowski Theorem [8]. As T is x-cate-
gorical the saturated model has 2% automorphisms. By Lemma 9 of [1]
there is a principal extension T of T with a strongly minimal formula M,
Let & be the expansion of B to a model for 7. We first show the di-
mension of M(B') is x,. There is a countable model C of 7" with M(C)
having dimension s,. Thus, since %' is universal, the dimension of M (B
must be 8. By Lemma 8 of [1] &' is prime over a basis X for M (B).
Since (%', X) is a prime model of Th(%’, X) and Th($’, X) is NIN- cate-
gorical, (%', X) is a minimal model of Th($', X) so each elementary
permutation of X extends to an automorphism of &' Applying Lemma 4
of [1] each permutation of X is an elementary permutation of X. Hence,
&', and a fortiori, B has 2% automorphisms.

. CororrArY. If T is categorical in every infinite power, and & is
a model of T with power x, then |Aut(#)| = 2%

Proof. Each model of 7 is saturated.

We will now deal with s,-but not §y-categorical theories. We first

show that each non-saturated model has either countably many or 2%

automorphisms.
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Let $ be a model of T and X C B. An element b of $ is determined
or selected [3] by X if there is a formula 4 ¢ 8y(X) such that BE 4(b)A "
AH! 9 A. We denote by D(X) the set of elements selected by X.

‘We will discuss the cardinality of Aut® in terms of the following
property.

+ For each finite X C B, B— D(X) is infinite.

TeEROREM 2. Let T be a complete first order theory having only infinite
models. Let 3B be a countable, countably homogeneous, atomic model of T.

1) If B has *, [Aut(B)| = 2%,

2) If % does mot have *, |Aut(B)]| < x,.

Proof. 1) Let ¢ denote the congtantly 0 map in 2°. For each 7 e¢2®
we construct by induction a sequence b, of elements of $ such that (B, b,)
= (B, b,) but 7, # 7, implies b, # b,,.

Let b, ¢ B—D(@) and let 4, « 8,(L) be the atom realized by b,. Since
by ¢ D(@), B EE>? v, 4,. Let b, be any other element such that % & 4(b,).

Irzisa sequeﬁcg of length n let = ~ 4 be the sequence of length n-+-1
extending t with (n-41)-st coordinate <. Suppose for each 7 ¢ 2™ a sequence
b, € B" has been chosen such that +, # 7, implies b, # b,, but for each b,
(B,0,) = (B, byy,) Where gin is the n-ary constantly zero sequence. Let

By= U {by} and B, = .U {ban} «

762" i<n

i<n
Since B, is finite there exists # ¢ B—D(By). Let z be b, oy . Let dne S, (L)
be the atom in F, ,(T) realized by b,,4,- Then 4,(b4,, v) is an atom
in Fy(B,,). Moreover $ F H>* vy An(byyp; Vo) Form byy,_, by extending b,q,
by any element satisfying A,(b,4,, 20) exeept z. Similarly for 2" let
b —oimsny 20 By _gymrqy e distinet elements satisfying 4,(b,,v,). There
are two such elements because (B, b,) = 3, b,). By the atomicity of 4.,
(B, byynes) = (B, b,q;) for each 7€2" and i=10, 1.

For 7 e2° let b, be the union of the finite sequences b, such that v
extends ;. Then ($,b.) = (B,d,). Since $ is countably homogeneous,
for each such 7 there is an automorphism f, of % taking b, to b,,. Since
7, # 7, implies for some 4 b, # b, these are 2% digtinet auto-
morphisms of &.

92) If » does not hold there is a finite subset Z of B with D(Z) = B.
But then any automorphism of $ is determined by the image of Z and
a finite set can have at most countably many images in a countable set.

A structure 4’ is an inessential expansion of 4 if it is obtained from 4
by naming a set of elements from the universe of #. It is a finite inessential
expansion if the set of elements named is finite.

Levma 1. Let &' be a finite inessential ezpansion of 4. If |A] = &, and
[Aut ()] > 89, then |Aut(#£)] = |[Aut(£")|.
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Proof. Let b be the finite sequence in #4 which is named in expand-
ing # to #'. There are at most countably many images for b in 4 so if
JAut(#4)| = % > 8,, there must be some b’ such that for each of a sequence
¢f.ewr OF automorphisms of #, f,(b) = b'. For each a foteof,is an auto-
morphism of # which fixes b, i.e. an automorphism of A'. But if a # 8
1 of, £t of; 50 |Aut(#4)] > = But each automorphism of A’ is an
automorphism of £ so |Aub(#)| = |Aub(#A")] = .

THEOREM 3. If 4 is a non-saturated model of an - categorical theory T,
then |AutA| < 8 or JAubA| = 2%, .

Proof. Since each uncountable model of 7' is saturated, 4 is count-
able. Let T” be a principal extension of T with strongly minimal formula 3
and let 4’ be an expansion of # to a model for 7". As it is an inessential
expansion of #, A4 is not saturated. Hence, as remarked near the end
of Section 8 in [1], ' does not contain an infinite set of indiscernibles.
Thus there is a finite basis @y, ..., #x for M (£). Let A" = (&', @y, ..., ¥n)
and T" = Th(#"). Then #” is a prime model of T"". Moreover, 4 ([1,
Section 3]) and hence 4 is countably homogeneous. Thus by Theorem 2
|Aut(£”)| < 8, or |Aut(#£")| = 2%. But then by Lemma 1 [Aut(£)] <8
or [Aut(#)] = 2%, .

Recall that by [7] and [1] the non-saturated models may be arranged
in an elementary tower of order type w, #,<< #£; < ... We will now consider
the properties of a function f mapping the natural numbers into a set
consisting of the natural numbers, &), and 2% defined by f(n) = |Aut ().

LeMMA 2. The function f is increasing.

Proof. Let # and $ be non-saturated models of T, suppose £ < H
and ¢ is an automorphism of 4. We show g extends to an automorphism
of B. Let <a;>;.., be an enumeration of 4. Then <(a;>;., and {g(a;)>;,
realize the same type in # and hence in $. Since B is countably homogene-
ous there is an automorphism of $ taking a; to g(as), that is extending g.

Lemma 3. For each n f(n) = n.

Proof. Let T” be a principal extension of 7 with strongly minimal
formula M and let #; be the expansion of 4, to a model of I”. Then by
Lemma 7 and Lemma 4 of [1], #, is prime over a set of at least n indis-
cernibles. Hence, there are at least n! automorphisms of #, and hence of s,.

If T is theory of equality in a language with », distinct constant
symbols then f(n)= n!

‘We collect these lemmas in the following theorem.

TEEOREM 4. Let T be an w,-but not %y-categorical theory. There exists
an ordinal number a o< w-+1 such that for 0 < n< a n! < f(n) < 8, and
if a<n fn)=2% If a = v, then all non-saturated models of T have at
most countably many automorphisms.
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If T is the theory of torsion-free infinite divisible Abelian groups
f(n) = n, for each n. As was noticed in [2] f(n) = 28 for each n if T is
the theory of algebraically closed fields of characteristic zero.

If T is any s,-but not ,-categorical theory extending 7 to 7' by
naming each element of the prime model does not change f(n) for » >0
but makes f(0) = 1.

To indicate how the behavior of f may become more complex we
now outline an example where f(0)= 1, f(1) = s, and f(2) = 2%,

We first construct a structure £ such that the required T' = Th(+).
The language L containg a unary relation symbol E, a binary relation
symbol §, & constant n for each integer n, and ternary relation symbols, £
and for each integer n Gn and for each natural number » F,. The universe
of 4 is the integers union the set of all pairs of the form {((n, m), (m,nd>
where m and # are integers. We define the relations on # as follows:

Ry = the integers, ng=n,
_lg.f(: = {{{ny mp, Lmy )| n,m integers},
Hy = {m,n, m,ny, {n,m>y | m,n integers} v

U {dm, n, {{ny mYy, {my,n)dD> | m,n integers} ,
(Fo) g = {<m, m+n, {m+n, m), <m,m~+nd> m an integer},
(G = {<{m,n, {{m,ny, {m, m>y| m an integer},

84 = {<m,m+1>| m an integer} 8, C BoX By-

To show T = Th(+) is x;-categorical notice that (F4, 84) is a model
of the theory of the integers under successor which is s,-categorical.
If B, and B, are models of I with power w, choose an isomorphism
between (Rg,, Sp,) and (Bg, Sg,) and extend it in the obvious manner
to an isomorphism of B, and $,.

The prime model of T, #, has only the identity automorphism since
every element of |#| is either named by some constant n, or is the unique
element ¢ satisfying one of these two types of formulas

. Hin,m,e)n  Gnln,m,¢),
o H(nym, g)h 71 Gmln, m, 0) -

In A, there is an element d e R(:t,)—R () such that for each element
dy e R(#,)—R(+#,) there is integer % that d; is the kth successor of &
(predecessor if % is negative). The entire universe of #; is selected by d.
That is, if ¢ is an element of A, it is either in R (4, or is the unique ele-

ment satisfying a formula of type (i) or a formula of one of the following

types
(i ‘ H(SHA) , ny o)A GulSF(d), 1, a)
ii R AT~

’ (D), 5, ¢)h 1 BlS D, 2 2)

b
?
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(i) g(gk(d), 8ydy, S)/\ Ek:l(sk(d), Sl(d), c) , k>1,
i &)y DG o), 812 ¢
H(SHd), §1d), o)A T E(8d), SUd),¢), E>1.

In R(#,)— R(#,) there exist elements d, and d; such that for no
natural number % is d, the kth successor or predecessor of d,. The formulas
H(8%dy), 84ds), u) define prineipal types in Th(,, d;, d;) which are
realized by 2 points. That is, * holds in A, so |Aut(#4,)] = 2%

Easy variations on this example will give theories T with f(0) =1,
fn) =%, 0<n<< N and f(n)= 2% for n» > N, for any choice of N. Is
there a theory T such that for some natural number ¥ > 1, f(n) is finite
for n << N, f(n) = 8, for some segment beginning with ¥, say N <n < M
and f(n) = 2% for n > M? That is, is it possible in other than the trivial
case when all elements of the prime model are named for the value
of f to jump from finite to countable to uncountable?
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On certain homological properties of finite-dimensional
compacta. Carriers, minimal carriers and bubbles (*)

by
W. Kuperberg (Stockholm)

Abstract. A compact metric space X is g-¢velic (¢ = 1,2,...) provided that there
sxists a coefficient group G such thab the Vietoris-Cech homology group H (X, &)
of X is non-trivial. An irreducibly g-cyclic compact metric space is called a g-dimen-
sional clogsed Cantorian manifold, or a g-bubble. The following question, asked by P. 5.
Alexandroff, is considered in the paper: Given a g-dimensional ¢-cyelic compact metric
space X, does X contain a g-bubble? As is known, the answer is not always positive,
but by adding some assumptions on X a positive result iz obtained. A class of spaces,
the so called WSCq~compacta, is exhibited in the paper and it is proved that each
g-dimensional g-cyclic WSC -compactum contains at least one and at most countably
many g-bubbles. Furthermore, some other properties of WSC,-compacta are studied.

1. Introduction. By a compactum is meant & compact metriec space.
Ag is well known, the Gech and the Vietoris homology theories are equiva-
lent in the algebraic sense (see for instance [13], p. 273). The ¢-dimensional
Vietoris-Cech homology group of a compactum X with coefficients in
an Abelian group G will be denoted by Hy(X, ). This group will be
sometimes represented as the limit of the inverse system of the (simplicial)
gth homology groups of the nerves of all finife open coverings of X, with @
as the coefficient group (the well-known (ech construction) and sometimes
as the group of homology classes of g-dimensional true cycles in X with
coetficients in @ (the Vietoris construction). In the first case, the notations,
symbols and terminology from [9], chap. IX will be applied here, in the
second case, we shall base ourselves on the construetion desecribed in [4],
chap. II, sec. 3. In particular, the concepts of infinite chains and infinite
cycles are very useful. By means of these concepts the following charac-
terization of the dimension of compacta has been established:

(*) This is the present writer’s doctoral thesis (in a modified form), defended 911;
the University of Warsaw, Poland, in February 1069. The original title of the thesis
was “Dimensional properties of ANR-spaces”.
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