

On some special iteration groups

by

A. Smajdor (Katowice)

Abstract. Let f be a real function fulfilling the following conditions: (H) f is defined and absolutely monotonic in an interval [0, a), 0 < f(x) < x for $x \in (0, a)$, moreover

$$\lim_{x \to 0+} \frac{f(x)}{x} = s , \quad 0 < s < 1 .$$

An iteration group $\{f^u\}$ is called absolutely monotonic if for every positive u the function $f^u(x)$ is an absolutely monotonic function of x.

The main result of this paper is

Theorem 2. Let function f fulfil hypothesis (H). Then f has an absolutely monotonic iteration group if and only if

$$h^{(n)}(0) \leqslant 0$$
 for $n=2,3,...$

where h is an analytic solution of the equation

$$h[f(x)] = f'(x) h(x)$$

such that h(0) = 0, h'(0) = 1.

In the proof of this theorem we use S. Dubuc's theorem about fractional iteration (Ann. Inst. Grenoble, 21(1) (1971), pp. 171-251).

A function f is called absolutely monotonic in an interval [0, a) if

$$arDelta_h^p f(x) = \sum_{i=0}^p (-1)^{p-i} {p \choose i} f(x+ih) \geqslant 0$$

for all $x \in [0, a)$, $h \ge 0$ and non-negative integers p, where $0 \le x \le x + ph < a$.

It is obvious that the limit of a sequence of absolutely monotonic functions is absolutely monotonic.

Let f be a real function fulfilling the following conditions:

(H) f is defined and absolutely monotonic in an interval [0, a), 0 < f(x) < x for $x \in (0, a)$, moreover,

(1)
$$\lim_{x \to 0} \frac{f(x)}{x} = s , \quad 0 < s < 1 .$$

District Administration of

An iteration group $\{f^u\}$ of f is called *convex* if for every positive u the function $f^u(x)$ is a convex function of x (cf. [6] and [7]).

An iteration group $\{f^u\}$ of f is called absolutely monotonic if for every positive u the function $f^u(x)$ is an absolutely monotonic function of x.

Every absolutely monotonic function f is analytic and

(2)
$$f(x) = sx + \sum_{i=2}^{\infty} a_i x^i \quad \text{for} \quad x \in [0, a),$$

where

(3)
$$a_i \geqslant 0 \quad \text{for} \quad i = 2, 3, \dots$$

Let

$$\hat{f}(z) = sz + \sum_{i=2}^{\infty} a_i z^i$$

be the extension of f onto the disc |z| < a. It is shown by G. Koenigs [3] that there exist a positive number $r_0 \in (0, a)$ and an analytic function σ for $|z| < r_0$ such that

(5)
$$\sigma[\hat{f}(z)] = s\sigma(z)$$

and

$$\sigma'(0) = 1.$$

This function is unique.

 \mathbf{Let}

(7)
$$\hat{h}(z) \stackrel{\text{df}}{=} \frac{\sigma(z)}{\sigma'(z)}.$$

The function \hat{h} is analytic in a neighbourhood of zero. Let

(8)
$$\hat{h}(z) = z + \sum_{i=2}^{\infty} b_i z^i.$$

Serge Dubue proved in [2] the following theorem: Theorem. Let (1)-(8) hold. Then every equation

$$\hat{\varphi}^m(z) = \hat{f}(z)$$

for m = 2, 3, ... has in a neighbourhood of zero an analytic solution

$$\hat{\varphi}(z) = \sum_{i=1}^{\infty} c_i z^i$$

such that

$$c_i \geqslant 0$$
 for $i = 1, 2, ...$

if and only if

(C)
$$b_i \leqslant 0$$
 for $i = 2, 3, ...,$

where b_i are coefficients in (8).

Let m=2 and let condition (C) be fulfilled. Then (9) has the form

$$\hat{\varphi}^{2}(z) = \hat{f}(z) .$$

The formal solutions (10) of equation (11) can be found from the formula (cf. [8])

(12)
$$a_n = \sum_{i=1}^n \sum_{\substack{p_1, \dots, p_i \in N \\ p_1 + \dots + p_i = n}} c_i c_{p_1} \dots c_{p_i} \quad \text{for} \quad n = 1, 2, \dots$$

From (12) we have

(13)
$$a_1 = c_1^2$$
, $a_n = c_n(c_1^n + c_1) + w_n(c_1, ..., c_{n-1})$ for $n = 2, 3, ...,$

where w_n is a polynomial with non-negative coefficients. According to (13) a formal solution of (11) such that $c_1 \ge 0$ is unique. Moreover, since $c_i \ge 0$, we have

$$c_n \leqslant \frac{a_n}{c_1^n + c_1} \leqslant \frac{a_n}{c_1}$$
 for $n = 2, 3, \dots,$

whence

(14)
$$\lim_{n \to \infty} \sup_{v \to \infty} |\overline{c_n}| \leqslant \lim_{n \to \infty} \sup_{v \to \infty} |\overline{c_n}| = 1$$

Inequality (14) implies that

$$R_{\hat{i}} \leqslant R_{\hat{\sigma}} ,$$

where $R_{\hat{f}}$ denotes the radius of convergence of series (4) and $R_{\hat{\tau}}$ denotes that of series (10).

Let

(16)
$$\varphi(x) = \sum_{i=1}^{\infty} c_i x^i \quad \text{for} \quad x \in [0, R_{\widehat{\varphi}}).$$

The function φ is absolutely monotonic and φ is a solution of the equation

in $[0, r_1)$ for a certain $r_1 \in (0, a)$.

Suppose that there exists a point $x_0 \in [0, r_1)$ such that $\varphi(x_0) > x_0$. The function φ is increasing; hence

$$f(x_0) = \varphi^2(x_0) \geqslant \varphi(x_0) > x_0$$
,

and this contradicts (1). If $b \in (0, \alpha)$ is such that

$$\varphi([0,b]) \subset [0,b],$$

then the superposition $\varphi^2(x) = \varphi[\varphi(x)]$ exists in [0, b]. Since series (16) formally satisfies equation (17), the function φ is an actual solution of (17) in [0, b].

Let

$$c = \sup \{x \in [0, a) \colon \varphi(x) < x\}.$$

Suppose that c < a; then $\varphi(c) = c$ and condition (18) is fulfilled for b = c. Hence φ fulfils (17) in [0, c] and

$$f(c) = \varphi[\varphi(c)] = \varphi(c) = c,$$

which contradicts hypothesis (H). Thus we have shown that the inequality

$$\varphi(x) < x$$

is fulfilled in [0, a) and φ is an actual solution of (17) in [0, a).

We have proved the following

THEOREM 1. Let the function f fulfil hypothesis (H) and let conditions (2), (3) and (C) be fulfilled. Then equation (17) has an absolutely monotonic solution in [0, a) such that

$$0 < \varphi'(0) < 1$$
 and $0 < \varphi(x) < x$ in $(0, a)$.

Since f is convex, 0 < f(x) < x, f'(x) > 0 and $\lim_{x \to 0+} f'(x) = s \in (0,1)$ in (0,a), we have (cf. [5])

COROLLARY 1. If the hypotheses of Theorem 1 are fulfilled, then $\varphi = f^{1/2}$, where $\{f^u\}$ is the principal iteration group of f (concerning definitions of. [4], Chapter IX).

COROLLARY 2. Suppose that the hypotheses of Theorem 1 are fulfilled. Then, for non-negative integer k, the equation

$$\varphi^{2^k}(x) = f(x)$$

has an absolutely monotonic solution φ in [0, a) such that $0 < \varphi'(0) < 1$ and $0 < \varphi(x) < x$ in (0, a).

We shall prove the following

THEOREM 2. Let the function f fulfil hypothesis (H) and let conditions (2)-(8) be fulfilled. Then f has an absolutely monotonic iteration group if and only if condition (C) is fulfilled.

Proof. For every $u \ge 0$ there exists a sequence $p_0, p_1, ...,$ where $p_k = 0$ or 1 for k = 1, 2, ..., such that

$$u=\sum_{k=0}^{\infty}p_k2^{-k}.$$

Moreover, a superposition of absolutely monotonic functions is absolutely monotonic. Therefore, according to Corollaries 1 and 2, the function $f^{u_n}(x)$, where f^{u_n} is the member of the principal iteration group of f with $u_n = \sum_{k=0}^{n} p_k 2^{-k}$, is an absolutely monotonic function of x. According to the definition of a continuous iteration group, $f^u(x)$ is a continuous function of u. Therefore

$$\lim_{n\to\infty} f^{u_n}(x) = f^u(x) .$$

Since the limit of a sequence of absolutely monotonic functions is absolutely monotonic, the function $f^{u}(x)$ is an absolutely monotonic function of x.

On the other hand, if f has an absolutely monotonic iteration group, then for every positive integer m there exists an absolutely monotonic solution of the equation

$$\varphi^m(x) := f(x)$$

and, according to Theorem 2, condition (C) is fulfilled.

COROLLARY 3. If f fulfils hypothesis (H) and condition (C) is fulfilled, then f has a convex iteration group in (0, a).

Let hypothesis (H) be fulfilled. According to (5), (7) and in view of the relation

$$\sigma'[\hat{f}(z)]\hat{f}'(z) = s\sigma'(z)$$

we obtain

$$\hat{h}[\hat{f}(z)] = \hat{f}'(z)\hat{h}(z).$$

Moreover, \hat{h} is of the form (8). From (8) and (19) we have

(20)
$$\psi[f(z)] = g(z)\psi(z)$$

for

$$\psi(z) = 1 + \sum_{i=2}^{\infty} b_i z^{i-1}$$

and

$$g(z) = \left\{ egin{array}{ll} z\hat{f}'(z) & ext{for} & z
eq 0 \ , \ 1 & ext{for} & z = 0 \ . \end{array}
ight.$$

The function ψ is a solution of the linear homogeneous equation (20) in a neighbourhood of zero and

$$\lim_{z\to 0}\psi(z)=1.$$

It can be proved similarly to Theorem 5.2 in [4] 'hat

$$\psi(z) = \lim_{n \to \infty} \frac{\hat{f}^n(z)}{z \prod_{i=0}^{n-1} \hat{f}'[\hat{f}^i(z)]},$$

whence

$$\hat{h}(z) = \lim_{n \to \infty} \frac{\hat{f}^n(z)}{\lceil \hat{f}^n(z) \rceil'}$$

EXAMPLE 1. Let

$$f(x) = \frac{1}{2}(x + x^2 + ...) = \frac{1}{2} \cdot \frac{x}{1 - x}$$
 for $x \in [0, \frac{1}{2})$;

then

$$\hat{f}(z) = \frac{1}{2}(z + z^2 + ...) = \frac{1}{2} \cdot \frac{z}{1 - z}$$
 for $|z| < \frac{1}{2}$

We have

$$\hat{f}^n(z) = \frac{1}{2^n} \cdot \frac{z}{1 - (2 - 2^{1-n})z}$$
 and $(\hat{f}^n)'(z) = \frac{1}{2^n} \cdot \frac{1}{[1 - (2 - 2^{1-n})z]^2}$

According to (21)

$$\hat{h}(z) = \lim_{n \to \infty} \frac{\hat{f}^n(z)}{(\hat{f}^n)'(z)} = \lim_{n \to \infty} [1 - (2 - 2^{1-n})z \rceil z = z - 2z^2 \,.$$

We have shown that condition (C) is fulfilled. The refore f has an absolutely monotonic iteration group in $[0, \frac{1}{2})$.

A formal solution of (19) can be found from the equations (cf. [8])

$$sb_2 + 2a_2 = a_2 + b_2 s^2,$$

 $a_3 + 2a_2b_2 s + b_3 s^3 = sb_3 + 2a_2b_2 + 3a_3,$

whence we have

$$\begin{split} b_2 &= \frac{a_2}{s \, (s-1)} \, , \\ b_3 &= \frac{2 a_2 \, b_2 (1-s) + 2 a_3}{s \, (s^2-1)} = 2 \, \frac{a_3 s - a_2^2}{s^2 (s^2-1)} \, . \end{split}$$

Ιf

$$(22) a_3 s - a_2^2 < 0,$$

then

(23)
$$b_3 > 0$$
.

Inequality (23) is incompatible with (C). If condition (22) is fulfilled, then the function f cannot have an absolutely monotonic iteration group.

Example 2. Let $f(x) = sx + x^2$, 0 < s < 1. Since the function f fulfils (22), it does not have an absolutely monotonic iteration group. We shall show more, viz. that equation

has no absolutely monotonic solution. Suppose that equation (24) has a solution in the form

$$\varphi(x) = \sum_{i=1}^{\infty} c_i x^i.$$

Then (cf. [8])

$$(25) sx + x^2 = \varphi^2(x) = c_1 x + c_2(c_1 + c_1^2)x^2 + (c_1 c_3 + 2c_1 c_2^2 + c_3 c_1^3)x^3 + \dots$$

From (25) we obtain either

$$(26) c_1 = -\sqrt{s}$$

 \mathbf{or}

(27)
$$c_1 = \sqrt{s}$$
, $c_2 = \frac{1}{s + \sqrt{s}}$ and $c_3 = \frac{-2}{(1 + s)(s + \sqrt{s})^2}$

Formulas (26) and (27) show that φ is not absolutely monotonic.

A function g is called completely monotonic in (0, a] if $f \in C^{\infty}((0, a])$ and $(-1)^{k-1}f^{(k)}(x) \ge 0$ for $x \in (0, a]$ and k = 1, 2, ... (cf. [9]).

Let a function g fulfil the following conditions:

 (\mathbf{H}_1) g is completely monotonic in (0, a]; moreover, x < g(x) < a in (0, a) and

$$\lim_{x\to a^-} \frac{a-g(x)}{a-x} = s , \quad 0 < s < 1 .$$

An iteration group $\{g^u\}$ is called *completely monotonic* if for every positive u the function $g^u(x)$ is a completely monotonic function of x. A function g fulfils hypothesis (H_1) if and only if the function

$$f(x) = a - g(a - x)$$

fulfils hypothesis (H). Moreover, the function g has a completely monotonic iteration group if and only if the function f defined by (28) has an absolutely monotonic iteration group. The formula

$$g^{u}(x)=a\!-\!f^{u}(a\!-\!x)$$

gives the relation between those iteration groups.

icm[©]

THEOREM 3. Let the function g fulfil hypothesis (\mathbf{H}_1) and let conditions (2)-(8) be fulfilled for f defined by (28). Then g has a completely monotonic iteration group if and only if condition (C) is fulfilled (for f defined by (28)).

EXAMPLE 3. Let

$$(29) g(x) = (2-s)x - x^2$$

for $x \in (0, 1-s]$. The function g is completely monotonic. Suppose that there exists a completely monotonic function X such that

$$(30) X^2(x) = g(x).$$

Then $\varphi(x) = 1 - s - X(1 - s - x)$ is an absolutely monotonic solution of (24), where

$$f(x) = 1 - s - g(1 - s - x) = sx + x^2$$
.

But this is impossible (cf. Example 2). Therefore equation (30) with g given by (29) has no completely monotonic solution.

Theorem 3 and Example 3 answer in the negative U. T. Bödewadt's conjecture [1] that for a completely monotonic g the equation

$$\varphi^n(x) = g(x)$$

always has a unique completely monotonic solution for every positive integer n.

References

- U. T. Bödewadt, Zur Iteration reeller Funktionen, Math. Zeitschr. 49 (1944), pp. 497-516.
- [2] S. Dubuc, Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade, Ann. Inst. Grenoble 21 (1) (1971), pp. 171-251.
- [3] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 1 (1884), Supplément, pp. 3-41.
- [4] M. Kuczma, Functional equations in a single variable, Warszawa 1968.
- [5] and A. Smajdor, Fractional iteration in the class of convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), pp. 717-720.
- [6] A. Smajdor, On convex iteration group, ibid. 15 (1967), pp. 325-328.
- 7] Regular iteration of functions with multiplier 1, Fund. Math. 59 (1966), pp. 65-69.
- [8] W. Smajdor, Formal solutions of a functional equation, Zeszyty Naukowe UJ Prace Matematyczne 13 (1969), pp. 71-78.
- [9] D. V. Widder, The Laplace Transform, Princeton 1946.

Reçu par la Rédaction le 29. 9. 1972

Compact absolute retracts as factors of the Hilbert space

by

H. Toruńczyk (Warszawa)

Abstract. It is shown that if X is a compact ANR then $X \times l_2$ is an l_2 -manifold.

Let (Y, ϱ) be a metric space and let r be a retraction of Y onto its subspace X. We shall call the retraction regular (with respect to ϱ), if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\varrho(r(y), y) < \varepsilon$ whenever the ϱ -distance from y to X is less than δ . Our main theorem is:

THEOREM 1. If $(E, \| \|)$ is a normed linear space and $r: E \xrightarrow{\text{onto}} X \subset E$ is a retraction which is regular with respect to $\| \|$, then $X \times \Sigma_{l_1} E \cong \Sigma_{l_2} E$. If moreover X is complete in the norm $\| \|$, then also $X \times \Pi_{l_1} E \cong \Pi_{l_2} E$.

Here, " \cong " means "is homeomorphic to", and $\Sigma_i E$ and $\Pi_i E$ denote respectively $\{(t_i) \in E^{\infty} : t_i = 0 \text{ for almost all } i \in N\}$ and $\{(t_i) \in E^{\infty} : \sum ||t_i|| < \infty\}$, both spaces equipped with the norm $|||(t_i)||| = \sum ||t_i||$. As a corollary we conclude that if X is a compact absolute retract and E is an infinite-dimensional Fréchet space, then $X \times E \cong E$.

The problem whether a given space is a cartesian factor of the Hilbert cube or of a locally convex linear metric space has been studied by several authors (see [0], [11], [14]–[18] and also [5] pp. 266 and 269, [9a] p. 30 and [13] p. 265). The strongest results in this direction were obtained by J. E. West, who proved (among other theorems) that if K is a contractible locally finite-dimensional simplicial complex endowed with its metric topology, then $K \times E^{\infty} \cong E^{\infty}$ for every Fréchet space E of sufficiently large density character. The methods used by West in proving this were closely connected with those he developed in [14] for investigating factors of the Hilbert cube; they depend on "approximating" the space $K \times E^{\infty}$ by sets homeomorphic to E^{∞} .

D. W. Henderson in his recent paper [8] considered the situation where X is a retract of a finite-dimensional space F, and he succeeded in an explicit writing of a homeomorphism $f: X \times \varinjlim F^i \xrightarrow{\text{onto}} \varinjlim F^i$. The symbol $\varinjlim F^i$ denotes here the direct limit of finite powers of F; this