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On some special iteration groups
by
~" A, Smajdor (Katowice)

Abstract. Let f be a real function fulfilling the following conditions: (H) fis defined
and absolutely monotonic in an interval [0,a), 0< f)< = for » (0, a), moreover

lim f—(m—)= s, O<s<l.
g0+ T
An iteration group {f¥} is called absolutely monolonic if for every positive u the
function f¥(x) is an absolutely monotonic funetion of . ‘
The main result of this paper is
TaworeM 2. Let function f fulfil hypothesis (H). Then f has an absolutely monotonic
iteration group if and only if

M) 0  for m=2,3,..,

where b is an ytic solution of the 17
Y g

BLf(@)] = f'(=) h(w)
such that h(0)= 0, R'(0)= 1.
In the proof of this theorem we use 8. Dubue’s theorem about fractional iteration
(Ann. Inst. Grenoble, 21 (1) (1971), pp. 171-251).

A function f is called absolutely monotonic in an interval [0, a) if

. »
22f(@) = X (—1P~ (B) flo+ih) = 0
=0
for all w<[0,a), h>0 and non-negative integers p, where 0 < z< @+

+ph < a.

Tt is obvious that the limit of a sequence of absolutely monotonic
functions is absolutely monotonic.

Let f be a real function fulfilling the following conditions:

(H) f is defined and absolutely monotonic in an interval [0, a),
0 < f(») < @ for @ (0, a), moreover,
1) 'limfﬁvl:s, 0<s<1.

x>0 X
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An iteration group {f*} of f is called convexs if for every positive u the
function f%x) is a convex function of « (cf. [6] and [7]).

An iteration group {f*} of fis called absolutely monotonic if for every ¢
positive « the function f*(x) is an absolutely monotonic function of .

Every absolutely monotonic function f is analytic and

2) fl@) = sm—[—Zagm" for w@e[0,a),
=2
where
3) a>=0 for i=2,8,..
Let
(4) (o) =se+ 2 a?
=2

be the extension of f onto the dise|?| < a. It is shown by G. Koenigs [3]
that there exist a positive number .7, € (0, ¢) and an analytic function ¢
for |2]< 7, such that .

(®) ol (@)= s0(2)
and
(6) o(0)=1.
This function is unique.
Let
) ip2o®
o'(#)

The function % is analytic in a neighbourhood of zero. Let

(8) h(e) =2+ D biet.
) i=2-
Serge])ubuc proved in [2] the following theorem:
THEOREM. Let (1)-(8) hold. Then every equation

©) #(e) =] ()
for m=2,3, ... has in a neighbourhood of zero an amalytic solution
(10) o(2) = Zciz‘
=
such that

=0 for q:=1,27,_.'
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if and only if
(C) b <0 for i=2,3,..,

where by are coefficients in (8).

Let m = 2 and let condition (C) be fulfilled. Then (9) has the form
(11) P2)=f(2) . '
The formal solutions (10) of equation (11) can be found from the for-
mula (cf. [8])

n

(12) =D D Gyt for m=1,2,..
=1 Dy DieN .
Dbt pi=n

From (12) we have
(18) @, =¢% @, = () F WGy ery Gpy) for n=2,3,..,

where w;, is & polynomial with non-negative coefficients. According to (13)
a formal solution of (11) such that ¢; > 0 is unique. Moreover, since
¢ =0, we have

On @
b L ——<— for n=2,3,..
"Tdte e TTe
whence
(14) Tim sup} |ea] < Lim sup/ |as| .
Nn—>ro00 >0

Inequality (14) implies that
(15) R;< R;,

where R; denotes the radius of convergence of series (4) and E; denotes
that of series (10). .
Let

(16) P@) =

e

]
P

ot for  we[0,Rp).

i

The function ¢ is absolutely monotonic and ¢ is a solution of the equation

an ¢¥(w) = f(x)

in [0,7,) for a certain r; €(0,a). °
Suppose that there exists a point @y € [0, 7)) such that ¢(w) > %-
The function ¢ is increasing; hence

I (@) = ¢%() = @(2e) > o »
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and this contradicts (1). If b € (0, a) is such that
(18) ([0, 5]) C [0, 0],

then the superposition ¢(@)= ¢[p(x)] exists in [0, d]. Since series (16)
formally satisfies equation (17), the function ¢ is an actual solution of
(17) in [0, b].
Let
c= sup{ze[0,a): p(x)<a}.
Suppose that ¢ < a; then ¢(¢) = ¢ and condition (18) is fulfilled for b = ¢.
Hence ¢ fulfils (17) in [0, ¢] and

fley=olple)] = ¢lo) = ¢,
which contradicts hypothesis (H). Thus we have shown that the inequality
plr) <o '

is fulfilled in [0, @) and @ is an actual solution of (17) in [0, a).

‘We have proved the following

TuroREM 1. Let the function f fulfil hypothesis (H) and let conditions
(2), (8) and (O) be fulfilled. Then equation (17) has an absolutely monotonic
solution in [0, a) such that

0<p0)<1l and O<o@<zs in (0,a).
Since f is convex, 0 < f(x)< &, f () >0 and 1% fl(@)=se(0,1)
in (0, a), we have (cf. [5])

COROLLARY 1. If the hypotheses of Theorem 1 are fulﬂlled then ¢ = f*%
where {f*} is the principal iteration group of f (concerning definitions of. [4],
Chapter IX).

COROLLARY 2. Suppose that the hypotheses of Theorem 1 are fulfilled.
Then, for non-negative integer k, the equation

(@) = f(a)
has an absolutely monotonic solution @ in [0, a) such that 0 < ¢'(0)< 1
and 0< g(x) <<z in (0, a).
We shall prove the following

» THEOREM 2. Let the function f fulfil hypothesis (H) and let con-
ditions (2)-(8) be fulfilled. Then f has an absolutely monotonic iteration
group if and only if condition (C) is fulfilled.

Proof. For every u >0 there exists a sequence Doy P1y -.., Where
Pr=0 or 1 for k=1,2,..., such that

0

U= ypEQ &,
C =0
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Moreover, a superposition of absolutely monotonic functions is absolutely
monotonie. Therefore, according to Corollaries 1 and 2, the function f*(x),
where f“» is the member of the principal iteration group of f with ua
n
= > pr27%, is an absolutely monotonic function of #. According to the
%=0
definition of a continuous iteration group, f*(#) is a continuous function
of 4. Therefore

lim f*(a) = (o)

Since the limit of a sequence of absolutely monotonie functions is ab-
solutely monotonie, the function f*(x) is an absolutely monotonie fune-
tion of =. ‘

On the other hand, if f has an absolutely monotonic iteration group,
then for every positive integer m there exists an absolutely monotonie
solution of the equation

¢™(@) = f(=)
and, according to Theorem 2, condition (C) is fulfilled.

CORCLLARY 3. If f fulfils hypothesis (H) and condition (C) is fulfdled
then f has a convew iteration group in (0, a).

Let hypothesis (H) be fulfilled. According to (5), (7) and in view of
the relation

[F (1F (&) = s0'(2)

we obtain
19 BHCIESHOLON
Moreover, % is of the form (8). From (8) and (19) we have
(20) pIf ()] = g(2)v(2)
for
(2) = 14 Zbizi'l -
’and )
af'(2)
g = T
1 for 2=0.

The funetion y is & solution of the linear homogeneous equation (20) in
a neighbourhood of zero and -

lm(}zp(z) =1.
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Tt can be proved similarly to Theorem 5.2 in [4] “bat

p(2) = Iim ~,;:{—1:(i)h~—,
S IRHAC)
whence
5 e
21 f(2) = lim =——.
- & =T
Exavere 1. Let
1 1 @
f@)=g@+tat+ )=z for  wel0, });
then
. 1 1 =z 1
f(2)= §(z+z 4+ )= 31, for ]zl< 3
‘We have ’
-~ 1 b4 . a,nd_ (fﬂ)r(z) . i ___1——_ .

o= 1i—g—2:
According to (21)
R @)
h(2) = lim =<
B =1

‘We have shown that condition (C) is fulfilled. The refore f has an absolutely
monotonic iteration group in [0, $).
A formal solution of (19) can be found from the equations (cf. [8])

$byt-2a5 = ay+ by 8,

=Tim [1— (2— 2" 212 = 2— 222.
N0

‘whence we have

by= L 1
s(s—1)
205 bo(1—8) + 205 ays— a3
by = = — .
s(s2—1) §(s2—1)
If
(22) ags—az<< 0,
then
(23) by >0,

e ©
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Inequality (23) is incompatible with (C). If condition (22) is fulfilled, then

the function f cannot have an absolutely monotonic iteration group.
ExamrLE 2. Let f(#) = s»+a?, 0<s< 1. Since the function f

fulfils (22), it does not have an absolutely monotonic iteration group.
We shall show more, viz. that equation

@) = f(2)

has no absolutely monotonic solution. Suppose that equation (24) has
a solution in the form -

(24)

o(z) = 2 ciat.
Then (cf. [8])

(25)  so+a° = ¢¥(@) = 2+ c(e,+ )P+ (6,6 20,6 F )2’ + -

From (25) we obtain either

(26) og=—Vs

or

@) amyE, a——— ad a=
s-+y/s (14-8)(s+ys)*

Formulas (26) and (27) show that g is pot absolutely monotonic.
A function g is called completely monctonic in (0, a] if f e C®((0, a])
and (—1)¥®(p) >0 for we(0,a] and k=1,2,.. (ct. [9]).
Let a function g fulfil the following conditions:
(H,) g is completely monotonic in (0, a]; moreover, x < gwy<a
in (0, @) and
lim 9% g(@) =8,

zra— QG—T

0<s<<l.

An iteration group {g*} is called completely monotonic if for every

positive % the function g*(=) is a completely monotonic function of .

A fpnetion g fulfils hypothesis (H;) if and only if the function
(28) ’ f(z) = a—gla—a)

fulfils hypothesis (H). Moreover, the function g has a completely mono-
tonie iteration group if and only if the function f defined by (28) has an
absolutely monotonic iteration group. The formula

§(e) = a—f*“(a—2)

gives the relation between those iteration groups.
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TEEOREM 3. Let the function g fulfil hypothesis (H,) and let con-
ditions (2)-(8) be fulfilled for f defined by (28). Then g has a completely
monotonic iteration group if and only if condition (O) is fulfilled (for f de-
fined by (28)).

ExampLE 3. Let

(29) g(@) = 2—s)w—2o?

for # € (0, 1—&]. The function ¢ is completely monotonic. Suppose that
there exists a completely monotonic function X such that

(30) Xi(0) = g(a)

Then ¢@(s) = 1—s—X(1—s—2) is an absolutely monotonic solution
of (24), where

&) =1—s—g(l—s—a) = swt o

But this is impossible (cf. Example 2). Therefore equation (30) with g
given by (29) has no completely monotonic solution.

Theorem 3 and Example 3 answer in the negative U. T. Bodewadt’s
conjecture [1] that for a completely monotonic g the equation

¢"(x) = g ()

always has a unique completely monotonic solution for every positive
integer =.
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Compact absolute retracts as factors
of the Hilbert space
by
H. Toruiczyk (Warszawa)

Abstract. It is shown that if X is a compact ANR then XxI, is an l;-manifold.

Let (¥, o) be a metric space and let # be a retraction of Y onto its
subspace X. We shall call the retraction regular (with respect to o),

if for every £ >0 there exists a 8 >0 such that fr(y), 9) < ¢ whenever

the g-distance from y to X is less than 6. Our main theorem is:

Temormst 1. If (B, | |) 45 @ normed linear space and r: B> X C 1 is
a retraction which is regular with respect to | ||, then XX E =5
If moreover X is complete in the norm | ||, then also X XIL B ~ I, E.

Here, “~” means “is homeomorphic to”, and X E and IL B de-
note respectively {(t) e E®: ¢ =0 for almost all ¢ <N} and {(t:) € B*:
3'|itdl < o}, both spaces equipped with the norm e = X . As
a corollary we conclude that if X is a compact absolute retract and ¥ is
an infinite-dimensional Fréchet space, then X X B ~ H.

The problem whether a given space is a cartesian factor of the
Hilbert cube or of a locally convex linear metric space has been studied
by several authors (see [0], [11], [14]-{18] and also [5] pp. 266 and
269, [9a] p. 30 and [13] p. 265). The strongest results in this direction
were obtained by J. E. West, who proved (among other theorems) that
it K is a contractible locally finite-dimensional simplicial complex
endowed, with its metrie topology, then K x B =~ E> for every Fréchet
space B of sufficiently large density character. The methods used by
West in proving this .were closely connected with those he developed in
[14] for investigating factors of the Hilbert cube; they depend on
“approximating” the space K X B> by sets homeomorphic to B>,

D. W. Henderson in his recent paper [8] considered the situation
where X is a retract of a finite-dimensional space F, and he succeeded

 onto .
in an explicit writing of a homeomorphism f: XX l_iBIF"”EE* lim F*. The
symbol lim F' denotes here the direct limit of finite powers of F; this
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