icm®

STUDIA MATHEMATICA T. XLV. (1973)

On subspaces of Orlicz sequence spaces

by
KARL LINDBERG* (Detroit, Mich.)

Abstract. The main results concern separable Orlicz sequence spaces, Iy;, which
are studied as Banach spaces with a symmetric basis. Sufficient conditions are given
for the existence of a contractive projection in Iy onto a subspace which is isomorphic
to I for some p in an interval determined by I37; for p not in. this interval, there is
no subspace of 1,7 isomorphic to 7,,. Let X be an infinite dimensional subspace of Iz;;
then X contains a subspace isomorphic to an Orlicz sequence space; if X has an uncon-
ditional basis, there is a contractive projection in X onto a subspace of X isomorphie
to an Orlicz sequence space; if X has a symmetric basis, X is isomorphic to an Orlicz
sequence space. Sufficient conditions are given for two Orlicz sequence spaces to have
no isomorphic infinite dimensional subspaces.

This research is motivated by the following question: Does a Banach
space with a symmetric basis have a complemented subspace isomorphic
to either I,, 1 < p < o0, or ¢, ? A class of Banach spaces with symmetric
bases is the class of separable Orlicz sequence spaces. In this paper we
study various properties of Orlicz sequence spaces and of their subspaces.
‘We show that an affirmative answer can be given to the above question
for certain types of Orlicz sequence spaces.

This answer is provided by Theorem 4.2 and Theorem 4.5. These
theorems show that if an Orliez sequence space X satisfies a certain condi-
tion, then for some 1 < p < oo, there is a block basic sequence with con-
stant coefficients with respect to a symmetric basis of X such that this
block basic sequence is equivalent to the unit vectors basis of 7,. By
a result in [8] there is a bounded projection in X onto the span of such
a block basic sequence, and in the usual norm on the Orlicz sequence
space the norm of this projection is one.

We now give a more detailed account of the results and organizatio
of this paper. :

In Section 1 we give some definitions and basic properties of Banach
spaces with various types of bases.

* This is part of the author’s Ph.D. thesis prepared at University of California
at Berkeley under the supervision of Profegsor H.P. Rosenthal.
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Orliez sequence spaces are introduced in Section 2 and some basic
properties of these spaces are given. Most of the results presented are
not new and appear in various places as stated here or in some clogely
related form. Orlicz functions are defined and the meaning of equivalence
of Orlicz functions is given. When an Orlicz function M (#) generates a sepa-
rable Orlicz sequence space l,,, the unit vectors form a symmetric basis
for Iy, If M'() is another Orlicz function, it is shown that M’ (@) ig equiv-
alent to M (z) iff the unit vectors basis of I,, and Iy are equivalent. An
interval [a,d], 1< a<<b< oo, is associated with each separable Orlicz
Sequence space. Spaces with equivalent unit vectors bases have identical
intervals associated with them. The interval associated with lyy 1< p< 00
is the point p. The concept of an interval associated with a separable
Orliez sequence space is new and it is useful in the study of these spaces.
An example of this is Proposition 2.19 which shows that a separable
Orlicz sequence space is reflexive iff the associated interval doos not
contain 1.

Section 3 deals with subspaces of Orlicz sequence spaces. Theorem 8.3
shows that if the intervals associated with two spaces are disjoint, then
these spaces have no isomorphic infinite dimensional subspaces. This
generalizes the result that if p +£ ¢, then l, and I, have no isomorphic
infinite dimensional subspaces. Theorem 3.7 shows that each infinite
dimensional subspace of a separable Orlicz Sequence space containg a sub-
space isomorphic to an Orlicz sequence space. Among the corollaries of
this theorem is Corollary 3.9 which shows that a symmetric basis of a sub-
space of a separable Orlicz sequence space is equivalent to the unit vectors
basis of some Orlicz sequence space. Proposition 3.5 gives some necessary
and sufficient conditions for Orlicz sequence spaces to contain subspaces
isomorphie to ¢, I, or I,.

In Section 4 we deal with the existence of contractive projections
in separable Orlicz sequence spaces onto subspaces which are isomorphic
to 1, for some p, 1 <p < co. If Iy 18 a non-reflexive, separable Orlicz
sequence space, then results of ([1], C. 7) and ( [3], Thm. 4) easily show
that there is an isomorph of I, complemented in I,,. Theorem 4.2 gives
additional information. This theorem proves that if 1, is a non-reflexive
separable Orlicz sequence space, then, with respect to the unit vectors
basis of 1,,, there is a block basic sequence with constant coofficients
which is equivalent to the unit vectors basis of l;; therefore, there is a con-
tractive projection in 1,, onto a Subspace isomorphic to I,. Theorem 4.5
gives a sufficient condition for an Orlicz Sequence space I, to have a contra-
ctive projection onto a subspace isomorphic to I, for some p in the interval
associated with 1,,. By Theorem 3.3, for ¢ not in thig interval, 1, contains
no subspace isomorphic to Iy Corollary 4.8 shows that if Iy satisfies a con-
dition apparently stronger than that of Theorem 4.5, then for each ?
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in the interval associated with 7, there is a contractive projection onto
a subspace isomorphie to . Corollary 4.9 shows that for each @, b such that
1< a<b< oo, there is an Orlicz sequence space with associated interval
[a, b]; this space satisfies the condition of Corollary 4.8. Using results
of [2], we show that the spaces of Corollary 4.9 with intervals [a, b],
1< a< b< 2, are isomorphic to subspaces of L,. Section 4 is concluded
with some remarks concerning open problems related to this research.

1. Definitions and basic facts. Lett X and ¥ be Banach spaces. An
isomorphism from X into Y is a one-to-one linear map from X intq Y
which is bounded and has a bounded inverse. If there is an isomorphism
of X onto ¥, then X and Y are isomorphic. A projection P in X is a bounf}ed
linear map from X into X such that P? = P. The range of a projection
in X is called a complemented subspace of X. A contractive projection, P,
in X is a projection in X such that |P|x< 1. X* denotes the Banach
space of bounded linear functionals on X. Only cloged subspaces are
congidered in this paper; and hence subspace is to mean closed subspace.

Let {x;}32, be a sequence in X. {r,}32, is a basij for X if every zin X
can be uniquely represented in the form = =.2,1‘ a;x; where {a;}2, is

i<
a sequence of gealars and where the sum converges in the norm on X.
If. {w;}2, is a basis for X and {y;}2, is a basis for ¥, then {};2, and
{y;}io, are equivalent if for any sequence of scalars, {a;}52,, Z a;%; con-

verges in X iff ) a,y; converges in ¥. This is equivalent to the existence

of an isomomhisrtn, T, from X onto Y such that T'(x;) = y;, for all 4. A.ba,sis
{z;}22, is called normalized if ||z)| = 1 for all ¢. {32, is called semi-nor-
malized it there are constants K, and K, such that for every ¢, 0 < I@
< |l < K, < oo. The sequence {f;}2, in X* such that fi(z;) =38 is
called the sequence biorthogonal to {®;}3~,. A sequence .{zi};’f__l in 'X is
a basic sequence if it is a basis for the subspace Wh.ieh it spans in X.
A sequence {z,}%_, is a block basis with respect to the basis {&;}3, if for every
P41

+ 0
o . X -nega
M, 2, = D a;%; Where {p,}o., is an increasing sequence of non-negative

integerst.q])i":;(lary block bagis is a bagic sequence and hence may be called

a block basic sequence. A sequence {z,}n.. is & block basic sequence with

Prt1
constant coefficients if 2, = 3 a,z;.

i=pn+l

Let {¢;}32, be a sequence in X and let z = Zci. If for each permuta-

* .
tion, p, of the positive integers, Zcp(i) converges to z, then Zc,- is said
i

1
to converge unconditionally. A basis {z;}i, for X is an uncondﬂ.ﬁional 2(13?8
if for all # in X, v = )'a;2; converges unconditionally. A basis {#;}iZ, is
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called subsequence imvariant if {z,}3, is equivalent to each of its infinite
subsequences. A basis {w;}$2; is called symmetric if for all permutations, p,
of the positive integers, {z,}:, is equivalent to {Zpytiz:. In [10] it ig
shown that symmetric bases are unconditional and subsequence invariant,

The following proposition gives an important property of spaces
with unconditignal bases. It follows immediately from ([3], p. 73).

PropositioNn 1.1. If X is a Banach space with norm ||| and with an
unconditional basis {z,}2.,, then there is amother norm on X, N, such
that [1]-]|| 18 equivalent to ||| and such that there is q contractive projection
in X with the norm |||]]| onto each subspace spanned by a subsequence of
the {w;}32,.

The following proposition gives results similar to the above for @ 8pace
with a symmetriec bagis.

ProrosITION 1.2. Let X be a space with norm ||| and a symmetric basis
{&:}32,. There is a norm on X, Il equivalent to || such that Jor all
T = ;'aizvi, all sequences {e}2, with ¢, = +1, and all permutations, p,

of the positive integers, |||z||| = IHZ%%(«;) w)|. Also, for sequences of scalars,

b}, and {a33,, [”Zb,w@m<m‘2a¢@“[ whensver, for some permuta-

tion p, b < |y for all i, and 2%:501' converges.
7

Proof. These facts follow from results in [10].

If X is a space with a symmetric basis, {;}{2,, then a norm on X
with the above properties is called a symmetric basis morm with respect to
{2332,

PROPOSITION 1.3. If X is a space with o symmetric basis {u,}3.,, then,
in X with a symmetric basis norm with respect to {w;}2,, there is a contra-
ctive projection onto each subspace of X spamned by a block basic sequence
of {@;}72, with constant coefficients.

Proof. This is Lemma 4 of [8].

Forl<g p< oo, Ly denotes L,[0, 1] with Lebesgue measure. l,, denotos
the space of p-summable real sequences with norm Hmadially = (X, [2)H2.
]

The space ¢,is the space of sequences converging to zero with the supremam
norm and I, is the space of bounded sequences with the supremum norm.
For each i, ¢; is the sequence whose ith coordinate is one and whose jth
coordinate is zero for all j == 4. The get {e}32, is the set of unit vectors.
The unit vectors form a Symmetric basis for ¢, and lyy 1< p< co. This
basis is called the wmit vestors basis. The I, norm is a symmetric basis norm
with respect to the unit veetors basis.

ProrosrTION 1.4. If X is isomorphic to either lyy 1< p< o0, or Cyy
every symmetric basis for X is equivalent to the unis vectors basis of 1, or ¢,.
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Proof. For I, and ¢, the results follow from the main result of [8].
For 1 << p < oo, the result follows from the fact that for each p, I, is iso-
morphic to & complemented subspace of L, and the fact ([6], Cor. 13), that
for 1< p < oo, if X is a complemented subspace of L, with a symmetric
basis, then this basis is equivalent to the unit vectors basis of I, or .

If {#;};Z, be a basis for X, then {u;}32, is boundedly complete it for all

n
sequences {a;}32, such that for some K > 0, | 3 ;2| < K for all n, D
=1

1
converges in X. A basis, {x;}i2,, for X is shrinking if the sequence biortho-
gonal to {2}, is a basis for X*. The following two propositions are due
to R. C. James; the proofs can be found in [3].

ProrPoSITION 1.8. If {®.}i2; is a basis for X, then X is reflexive iff
{@;}721 is both shrinking and boundedly complete.

PrOPOSITION 1.6. If {m}i2, is an unconditional basis for X, then {x;}¥,
is boundedly complete iff X has no subspace isomorphic to ¢,. Also, {%}3,
is shrinking iff X has no subspace isomorphic to 1.

The following proposition is an easy consequence of Proposition 1.5.

ProposITION 1.7. If {2}i2, 18 a semi-normalized basic sequence in
a reflexive space, then {x,}52, converges weakly to zero. )

Using some results of [1] it is possible to state Proposition 1.6 as
follows:

PrOPOSITION 1.8. If {w;}52, is an unconditional basis for X, then {w}3,
ss boundedly complete iff X has no complemented subspace isomorphic to. Cy. Al-
10 {@;}32, 18 shrinking iff X has no complemented subspace isomorphic to 1,.

p=1

2. Basic properties of Orlicz sequence spaces.

DEFINITION 2.1. An Orlicz function M () is a continuous, non-negative,
convex, even function such that M (0) = 0 and for some a = 0, M (a) 5 0.
If M{x)is an Orlicz function, I,, is the Banach space of real sequences,

z . :
{®;}%.1, such that for some 7 > 0, 2; M (—;i) < co with the norm [[{z,}52ll5r

= inf {r > 0: ZM (—a;’«)g 1}. The space I, with norm |-||;, is called an

Orlicz sequence space. '
By ([7], Thm. 1.1), an Orlicz function M (») has the representation
@

M (z) = lf‘l p(t)dt, where p(t), the right-derivative of M(z), is a non-

deerezusixig, right-continuous, non-negative function defined on the non-
le . - .

negative reals. We call [ p(t)di the representation of M (z). Using this
0

12|

representation it is possible to place each Orlicz function, M (z) = of p(t)dt,
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into one of three distinet groups according to the behavior of p(t): There
is an & > 0 such that p(0) = a; there is an 4, > 0 such that for 0 < # < @y,
p(x) = 0;p(0) = 0and for » > 0, p(x) > 0. It is shown in Proposition 2.14
that Orlicz functions of the first two groups generate I, and 1, respectively.
Functions of the third group are called M-functions:

DreriNiTION 2.2, An M-function, M (%), is an Orlicz function which
It
has the representation M (x) = [ p(t)df, where p(f) is a real-valued,
0
right-continuous, non-decreasing function defined on the non-negative
reals such that p(0) = 0 and p(¢) > 0 for > 0.
Dermvirion 2.3. Let M(w) be an M-function with representation

]
M () =Df p(t)at. Define g(s) = sup & Then ¢(s) is a right-continuous,

D(E)<s
non-decreasing function defined on the non-negative reals such that

Iz}
q(0) = 0 and g(s) > 0 for s> 0. N(z) = [ g(s)ds is an M-function and
p ‘

it is called the M-function complementary to M (x). It is clear that M (z)
is also complementary to N (). Hence M (z) and N (@) are called comple-
mentary M-functions.

If p>1and x +i = 1, then ~1~w” and 1 #* are complementary
M -functions. q r 1
A sequence space I;; can now be defined as the space of real sequences
{2 such that (||{m}2, [l = (Xm:y:) < co. The space Iy, with
Vi
norm ||[-|||, is a Banach space over the reals. This is stated by Orlicz in [9].
The following two proposition show that By I-llar) and (Tppy [11120)
are isomorphiec Banach spaces and give some useful results concerning
M-functions and their complementary functions. The proofs of these
Propositions can be obtained by slightly modifying the proofs in [7] for
analogous statements in the case of Orlicz function spaces.

PROPOSITION 2.4. Let M () be an M-function and let {m;}52, be a real
sequence. Then (.}, is in Ly off {w}32, 48 in Iy, And,

o illar < IHo 2l llae < 2 s o
PROPOSITlI(')N 2.5. Let M(®) and N (x) be complementary M-functions.
x|
Let M(x) = [ p(t)dt be the representation of M(w). Then,
P ’
(a) For all z,94>0, oy < M(z)+ N (2).

(b) For all x>0, zp(z)= M (x)+ N (x).
(e) For all {m}2, in 1y,

Q< ezl i N Ni<i,
i
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and

o< Medalllae XN W) if D N(a<1.

DEFINITION 2.6. Let M (2) be an Orlicz function. Define h,, as the
set of real sequences {z;}72, such that for all r > 0, > M (z/r) < oc.

The space hy wag introduced by Gribanov [4]. Since hy is a subset
of 1 it can Dbe given the norm ||z of 1.

PRroPOSITION 2.7. Let M (%) be an Orlicz function. Then hy, ts a closed
subspace of Uy, and hy has o symmeiric basis consisting of the uwit vectors
basis. Furthermore, the norm |||y, restricted to hy, is a symmetric basis norm.

Proof. Suppose X, are elements of hy and X, converges to X, in
. ol
the norm ||lls;. It is necessary to show that if X, = {a};>, then ZM (—'r_)
i

1 : 1
< oo for all » > 0. But since —X,, converges to —;X., for each r > 0 and
r

l—Xn is also in ky,, it is only necessary to show ) M (@) < co. For each n,
r 7

let X, = {z}}2,. Choosing N such that for n = N, [X,—X,ly < 3, it
follows that ’

N |} — 3] )
o) Y M—— ] =1 foralln>=N.
e o 2 < 2, (”x,,—X.,HM -

<

Therefore, using convexity of M (x),

S~ Soppe=
<3 211’[(2(90?))»!— %ZM@ | —af]) < oo.
7 1

Hence hy, is closed in 1y, . .
Let {¢;}, be the set of unit vectors. This is a basis for &, if for each

{w)32, in Ry, Dwe, converges in the norm |l to {w}il,. Given {@}eey
i ] @ .
in hy and 0 < ¢ < 1, choose an integer N such that ) M| (—;—) < 1. This
=N
can be done since {2}, is in hy. Now for n > N,

n hd
Y . @i
‘ ——Z @6 =1nf{'r>0‘2 M(T)él}
=1 1f=n41
2 M(fﬂ) < 1} <e.
r

i=N

{@:}ia

<inf{'r>0

Hence {¢};2, forms a basis for hy.
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That this basis is a symmetric basis and that the norm [, is a symme-
trie basis norm follows by observing that for any sequence {5}, |&;| = 1,
and any permutation of the positive integers, p,

I
{o3illar = ”2%%(@')81“1,4-
The last equality follows from the fact that

Saf)- Sope)- o)

There is an important class of M-functions such that the unit voctors
form a basis for the Orlicz space generated by these M-functions.

DEFINITION 2.8. An M-function M () salisfies the 4 o condition for
small ¢ if for all @ > 0 there are K > 0 and @, > 0 such that M(Qu) < KM ()
for all 0 <z <w, Using convexity of M (@), it follows that the
above is equivalent to the existence of K and @, such that M (22) < KM (2)
for all 0 < 2 << .

ProposiTioN 2.9. Let M(x) be an M-function with representation
It
M(z) = [ pt)dt. M(z) satisfies the A, condition for small % iff there are
0
p ()
M ()

Proof. This follows from the proof of ({7], Thm. 4.1) with slight
changes.

PRrOPOSITION 2.10. Let M(x) be an M-function. The following are
equivalent:

(@) M(z) satisfies the 4, condition for small .
(b) Ty = hyy.

(e) Uy is separable.

() Uy has a symmetric basis.

Proof. The equivalence of the first three statements is stated by
Gribanov [4]. That each of the first three statements is equivalent to the
last follows using Proposition 2.7.

Prorosrrrow 2.11. If M () and N () are complementary M-functions
then by is isomorphic to 1.

Remark. The above proposition is stated in [4]. There is an iso-
morphism, T, from I onto kY, such that for ¥ o= {y}, inly, T(y) {@}2.,)

K> 0 and z,> 0 such that 1< <Kforall‘0<m<wo.

= Y @.y;. It 1y is separable, in which case Uy is isomorphic to 1,,, ¥ i
i=1

isomorphic to I, in such a way that the identity injection of % ar into Ty,

yields the canonical embedding of %y, into Wy
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Since we are interested in those properties of the unit vectors basis
which hold for all equivalent unit vectors bases, it is important to know
which Orlicz functions generate spaces with equivalent unit vectors
bases. Thus we have the following definition:

DEriNITION 2.12. Two functions M,(x) and M () are equivalent if
there are positive constants 4, B, a, b and ,, such that for all 0 < o< @,

AM o (aw) < My (%) < BM,(ba).

PROPOSITION 2.13. Let My (2) and M, (z) be Orlice Sfunctions. If M, ()
18 equivalent to M,(w), then Uy, and Ly, ave isomorphic. If Ly, ond Uy, are
separable, then M. () is equivalent to M,(x) iff the unit vectors bases of lar,
and Uy, are equivalent.

Proof. The proofs of these statements can be derived, with slight
modification, from the proofs of analogous statements for Orlicz function
spaces in ([7], pp. 112-113).

Remark. By Proposition 1.4 and the above proposition, we have
that if M (») is an Orlicz function, then I, is isomorphic to. i, iff M (x)
is equivalent to #”. In particular if I, is isomorphic to I,, then for positive
constants 4, B and &, de<M()< Bz for 0<a<w, If M (2)

1z

= [p(t)dt is the reprosentation of M (z), we have that p(0) = a> 0,
an& M (%) is not an M-function. Conversely, if p(0) = a > 0, then, for
M(z) = fol p(t)dt, mlilﬁM (#)/# = a and there are posit.ﬁre constants 4, B
and @, such that Az < M () < Bwfor 0 < © < ,. In this case I, is isomor-

phic to I,. We have proved the first assertion in the following proposition.
ProrosirIoN 2.14. Let M(x) be an Orlicz function with representation
el
M () = [pt)dt. Then p(0) =a>0 iff Iy is isomorphic to 1. Also,
0
if for some @y > 0 p(x) = 0 for 0 < & < @y, then 1y, s isomorphic to T, and
the wnit vectors basis of hy, is equivalent o the umit vectors basis of c,.
Proof. The first assertion is proved in the remark above. Suppose
p(@) = 0 for 0w 2. For all sequences {w}2;, {2}, is bounded iff
4 . . z;
for some K > 0, |ﬂ;‘,ﬁ_|_ <5 @y for all ¢; and this occurs iff ZM (7”) < o0
- i
for some » > 0. Since for some ¢ > #,, M(c)> 0, there is some z, > 0
such that M (u,) = 1. For any bounded sequence {#,}i>;, let ¥ = |[{#}:> 1/l
1
Sinee S ar(" Land S #(Fe )= o0 it that — [z
bmco% .II/[(»N- ml) > 1 and % M( Naco) 0, it follows tha o ||{w,}l=%|lw
< Modilalar < e {# o1l - Henee Iy, is isomorphic to I,. That hy, is
L my

2 — Studia Mathematlca XLV.2
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o
isomorphic to ¢, follows from the observation that ZM (ﬁ) converges
for all » > 0 iff lima; = 0. i=1 4

The following is an important property of M-functions which generate
separable spaces.

Izl
ProrostrioN 2.15. Let M(z) = [ p(t)dt be an M-function which
0

satisfies the Ay condition for small m. Then there is am M-function M 1 ()

whz'lcfa is equivalent to M (x) such that M,(x) has the representation M 1 ()
|

= [ p,(t)dt, where p,(t) is a continuous, strictly increasing function with
p ;

4(0) = 0. :
Proof. By Proposition 2.9 there are positive constants, K and w,,

2
such that 1< ﬁ((:))gK for all 0<a<z,. Hence (o) < p(2)
»
Mz I lael
\<\K—;(—) for all 0< z<<,, and f—MT(thg_M(m)gK Mdt
t
[ 0

M(z

for all 0 < # < #,. By ([7], p. 8), ) is strietly increasing. Setting p, (v)

M (z) lai
e 0, 1(0) = 0, we have that M, (#) = [ p,(t)ds has the desired
0
properties.

) T]:Ee importance of the derivative of an M-function being strictly
Increasing and continuous is seen in the following proposition which is
proved in the same manner as ([7], Thm. 4.3).

PROPOSITION 2.16. Let M (%) and N (%) be complementary M-functions.
X

]
Suppose M (x) has the representation M (@) = [ p(t)dt where p(t) is conti-
0

nuou.s.tmd strictly increasing with p(0) = 0. Then N (@) satisfies the A,
condition for small » iff there are constamts K > 1 and o > 0 such that for
© wp (@)
O< o<y, ~—r3= K.
' "M (z) = _
The following definition is partially motivated by the above results,
DErINITION 2.17. Let M (%) be an M-function which satisfies the 4,

o I
condition for small #. Tf M () has the representation f p(t)dt where p (1)
0

ap(2) A
.M(m)—' for # > 0.

then, by Proposition 2.15,

is continuous and strictly increasing, define fy, (1) =

If M(a) does not have such a representation,

|t
M) = [ 2O

J — dt does have the desired representation and M, ()
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is equivalent to M (x). In this ease define fy,(2) to be Jar, (®). The function
S () is called the function associated with M (z) and it is continuous for
&> 0. Let ay = lim fp () and by = lim fy (). The interval [ay, byl
-0 -0

is called the interval associated with M (x). By Proposition 2.9, 1< ay,

In this paper we are concerned with.certain properties which, if
possessed by a separable Orlicz sequence space l,,, are shared by all spaces
1y with unit vectors bases equivalent to the unit vectors basis of I,,. As
equivalent Orlicz functions generate spaces with equivalent unit vectors

" bases, we are mainly interested in properties of equivalence classes of

Orlicz functions and not with properties peculiar to individual members
of a clags. The following definition is motivated by this concern.

DEFINITION 2.18. Let 7, be a separable Orlicz sequence space gener-
ated by the Orlicz function M (x). Define [a, b}, the interval agsociated
with 1y, as follows: [a, b}, =1, if Iy is isomorphic to I;; otherwise,
M (x) is an M-function and [a,b];,, is defined as the intersection of all
intervals, [@y-, by ], which are associated with the M-functions, M'(x),
equivalent to M (x).

In the next section it is shown that for all separable spaces, Iy, [@, ],
is a non-empty interval. For any two Orlicz sequence spaces with equivalent
unit veetors bages, the intervals associated with these spaces are identical.
The agsociation of an interval with an Orlicz sequence space is a useful
concept. Its usefulness is shown in the next two sections, but it can be
illustrated in the following proposition.

PROPOSITION 2.19. Let 1y, be a separable Orlicz sequence space. Then Ty
18 veflewive iff [a, b, does not contain 1.

Proof. If 1, is isomorphic to Iy, [a, b}, =1 and I, is not reflexive.
‘We may then agsume that M (z) is an M-function with a strictly increasing,
continuous derivative. Let N(z) be the M-function complementary to
M (). Since %y is isomorphic to I, and 73, is isomorphic to Iy, using the
remark following Proposition 2.11, we have I, is reflexive iff hy = ly.
This occurs iff N () satisfies the 4, condition for small , which, by Pro-
position 2.16, occurs iff a,, > 1. Therefore if I,, is reflexive, 1 is not con-
tained in [a, b];,, . Tf U5, is not reflexive, then for any M’ (x) such that Lag
is isomorphic to Iy, @z =1 by Proposition 2.16; and hence [a, b,
contains 1. '

3. Subspaces of Orlicz sequence spaces. The following lemma and
proposition are used to show that for a separable Orlicz sequence space,
Lo, [a, b],M is a non-empty interval.

LeMMA 3.1. Let M (z) be an M-function which satisfies the 4, condition
for small . Let [ay, byl be the interval associated with M (x). Further, let
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{Drie1 be a striotly incroasing sequence of mon-negative integers amd let
{Bitiwy be a semi-normalized block basic sequence with respect 1o the unit
1

. Pl
vectors basis of ly,, where B, = 3 t,e,. Then for all & > 0, 4f > a, By, conver-
t=Dy41 I

. . =Dy, . e
ges in Ly, then 3)|a,|"M** converges. And, if 21| " conwerges, then, DB,
k k& ’ T "

converges in ly,.

]
Proof. It can be assumed that M (%) = [ p(t)dt where P (%) i8 a conti-
0

nuous, strictly increasing function such that p(0) = 0, Algo, mince a bloek
!oasw Sequence with respect to an unconditional basis ix unconditional
11:. can be assumed that [[By, = 1 for all %, and hence M (&) < 1 for all ii
Since for all X > 0 and o > 0, KM (a) is an equivalent M-function with
the same interval, [ay, by, ], a8 M (), it can be assumed, given & > 0, that

zp (»
M(1)=1 and “M“S<‘]—£—((5;-<5M+8 for all 0 < 2 < 1. Hence for

each ¢ and all 0 < 21

12}
(@p—s) f

Il

1 (A
PRLAS f
Il

Or, for all ¢, £ 0 and el

p(t g
*j[—(—%dt < (b te) f

164l

1
—d.

’

(3.1) T B A UL I
Tue) T
Now let {a,}3; be a sequence of real numbers. It can be assumed that
: Pl
0 < |ay < 1. Then %‘a,c_B,c converges in I, iff ' i’ M (4;a;) converges.
L d=py+1
Php1 I
But this converges iff M) o
5 il M (1) HM(t) converges, for 130,

P41

. Z’F]M(ti) = 1, which follows
=D+l
=1 and B[, = 1, the following holds

But, using (3.1) and the fact that for all %,
from the assumption that M (1)

for |7, 5 0:
by N
ap| e ) bpre
;/” &l %,{ 2} ) M(ti)};Zm}cV}ul .
=Pkl I

The conclusion of the lemms follows immediately.
PROPOSITION 3.2. Let M (%) and M’ (z)
the 4y condition for small . Suppose [ayy, by, and [aarry bapl, the imtervals

Zssocz’ateo.l with M (w? and M’ () respectively, are disjoint. Then 1y, and 1y,
ave. mo wsomorphic infinite dimensional subspaces.

be two M-functions which satisfy
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Proof. Since the intervals are disjoint it can be assumed that 1 < ay,
K by < app < by < o0, and hence Iy, is reflexive by Proposition 2.19.
Suppose X is an infinite dimensional subspace of Iy, isomorphic to ¥,
a subspace of 1y, where T is the isomorphism 7(X) = -¥. By ([1], 0.2),
there is a basic sequence {m. )i, in X equivalent to a normalized block
basic sequence {B,}., with respect to the unit vectors basis of 1,,. Now
{T'(w)}i=; is a semi-normalized basic sequence in Y. And sinee I, is
reflexive, the basic sequence {T'(x;)}7, converges weakly to zero by
Proposition 1.7. Hence by ([1], C.1)there is & subsequence, call it {7 ()},
which is equivalent to a normalized block basic sequence with respect
to the unit vectors basis of I,,.. Choosing &> 0 and {a,}2,, 0< |, < 1,
such that by +e<< azr—e and Zlakl”MJ“i diverges and ' |a,|* ~° con-

3 : 2

verges, it follows, by Lemma 3.1, that } a,u; does not converge in X while
k

2,7 (@) converges in ¥. Hence X and Y cannot be isomorphic; and I,
and 1, have no isomorphic infinite dimensional subspaces.

It now follows that for I, a separable Orlicz sequence space, [a, bty
is a non-empty interval. If I,, is isomorphic to I, [a, b},, = [1]. Otherwise,
Iy 18 generated by an M-function, M (x). If M'(») is equivalent to .M (z),
l3r and 1, are isomorphic; hence by Proposition 3.2, the intervals associated
with M (z) and M'(z) are not disjoint. It follows that [a, b1y, is equal
to the interval.[a, b] where o = sup{a,.: M (z) is equivalent to M (2)}
and b =inf{b,,: M'(z) is equivalent to M (x)} where for each M'(x),
[, bar] is the interval associated with M (). :

The following theorem is a restatement of Proposition 3.2 in terms
of the intervals associated with the spaces.

TrworEM 3.3. Let Iy, and ly, be separable Orlicz sequence spaces.
If la, b],M1 and [a, b]lM2 are disjoint, then 1y, and lag, have no infinite
dimensional isomorphic subspaces.
Proof. If neither I,; nor Iy, is isomorphic to 7, there are M-functions
M () and M,(x) equivalent to M,(z) and M,(z) respectively, such that
[@ .,b .]and [a_.,b .]are disjoint. In this case the conclusion of the
LIS 'H M,

theorem follows from Proposition 3.2. If, say, l;; is isomorphic to I,
then there is an M-function M. (x), equivalent to M, (z), such that [aM, , bM, 1
2 2

does not contain 1. Now, since every normalized block bagic sequence
with respect to the unit vectors basis of I, is equivalent to the unit vectors
basis of I,, the reasoning of the proof of Proposition 3.2 yields the conclu-
sion of the theorem in this case.

. Any two Orlicz sequence spaces with equivalent unit vectors bases
have the same interval associated with them. The converse to this does
not hold as can be seen in the following example. )
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ExampLE 3.4. Consider the M-function M (») which on some interval
1 .
[0, x,] i3 equal to 2%In (;) with p > 1. On some interval (0, @], f5 (),

the ‘fun’ction agsociated with M (z), equals

e -

= _p — .

pufa) ol

: ® @
Hence, the interval associated with M (z) is the interval congisting of
the point p. Consider the M-function #”. The interval associated with P
is algo the single point p. It can easily be seen that 2% is not equivalent
to M (x). Hence, the unit vectors basis of I, and 1, are not equivalent.
But since all symmetric bases of I, are equivalent to its unit vectors basis
by Proposition 1.4, it follows that I,, is not isomorphic to 7,,. ‘

Tt should be noted that by Corollary 4.7 the Orlicz space of Bxample 3.4
does contain a subspace isomorphic to I, and does not show the converse
to Theorem 3.3 is false. It is not known whether this converse is false.

The following proposition initiates a study of specific subspaces of 1,,.

ProposITION 3.5. Let 1), be an Orlice sequence space.

() If Uy is separable, then Uy, is separable iff Ly contains no comple-
mented subspace isomorphic to 1, .

(b) If M () and N (x) are complementary M-functions, then ly is sepa-
-rable iff hy contains no complemented subspace isomorphic to 1.

(¢) The space Uy is separable iff 1y contains no subspace isomorphic
10 1o tff hyy contains no complemented subspace isomorphic to c,.

Proof. If M(x) is not an M-function, 1, is isomorphic to either i,
or I, by Proposition 2.14. In this cage () and (c) are immediate. Hence,
assume M (z) is an M-function complementary to N (z). From the defini-
tion of Ay, we have that the unit vectors basis of hy is boundedly complete
if hyr = 1y, which, by Proposition 2.10, occurs iff I, is separable. Also,
using the remark following Proposition 2.11, we have that the bagic
sequence in h}, biorthogonal to the unit vectors of iy i8 equivalent to the
unit vectors basis of ky; and, therefore, by Proposition 2.10 and Proposi-
tion 2.11, the unit vectors basis of by is shrinking iff 1, is separable. Now
using Proposition 1.8 we eagily obtain the desired results.

LeMmA 3.6. Let 1y, be a separable Orlice sequence space. Let {B )., be
a semi-normalized block basic sequence with respect 1o the unit vectors basis

of lyr. Then there is a subsequence of the {B,}2., equivalent 1o the unit vectors
basis of some Orlicz sequence space, Ly .
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Proof, Since all semi-normalized block basic sequences with respec.t
to the unit vectors basis of I, are equivalent to the unit vectors bajms
of 1,, it can be assumed that M (z) is an M-function with representation

l l s . . -
M(z) = f p(t)dt for all 0 < 2] <1 such that p(¢) is a strictly increasing,
0

continuous funetion with p(0) = 0. In addition, it can be assumed .tl‘lalt

IBillar = 1forall kand M (1) = 1. And, since M (») satisfies the 4, condition

' ap(@) _

M(w)

for all 0 <2< 1. Now let {p;}i, be a strictly increasing sequence of
Pr+1

for small #, it can be assumed that for some K >0, 1<

non-negative integers and let B, = > t¢; where {g}, is the unit
in_'pk-i-l
vectors basis of Iy,. Then for any sequence {a;}i, such that 0 < a, <1,
Ppy1

Dla, By, converges in I iff > 3 M(ayt) converges.pBut the last sum
k Pr+1

k i=pp+1 k41
converges iff %;' ) pZ'H-M(ka) converges. Let by () =":=i‘;k:+1 M (zt;]). Note
o ]
;0

that {b (%)} i a family of convex functions which are non-negative
with b(1) = 1 and b,(0) = 0 for all k. Also, for all 0 <2< 1

Pr4-1 Ph+1
%2 (= [8:])
b) = D ltp(@l) = > S M
T=pp+1 i=pg1 g
;70
R e 3
i P (i _
LaPl%) yrt < K M) =K.
<2 e THSE 2
t=pp+1 %
%0

The last equality follows from the assumption that || By ==1' anq M (1)
= 1. Hence on the interval [0,1], {b,(»)}i=, form an eqmeontl'nuous
bounded family of continuous functions and therefore, there exists a
continuous function J;(z) and a subsequence {b ()}, su(:l.l that
| M, (%) — by, ()] < 1/2° for all § and all # in [0,1]. My(%) i3 a continuous,
non—negati\wre, convex function with M,(0)= 0, M,(1)= 1. Hence, M, (z)
is an Orlicz function.

Now for sequences {a;}3, with 0 < a,<{1, and hence all sequences,
ZafB,%, converges in 1,, iff Zbki(a’:) converges, and from the choice of

{by,(2)}2, the last sum converges iff M, (a;) converges. Therefore, the
* 1

subsequence {B;}%, is equivalent to the unit vectors basis of I, .
Lemma 3.6 hag several implications concerning the subspaces 'ot‘
Orlicz sequence spaces. These are seen in the following theorems and its

corollaries.
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TrrorEM 3.7. Bvery infinite dimensional subspace of a separable
Orlice sequence space contains a subspace with a basis equivalent to the unit
vectors basis of an Orlicz sequence space.

Proof. Let X be an infinite dimensional subspace of lyr, & separable
Orlicz sequence space. By ([1], C. 2), X contains a basic sequence {2,
equivalent to a normalized block basic sequence with respect to the wnit

vectors basis of I;,. By Lemma 3.6 there is a subsequence, {@p 71, which

is equivalent to the unit vectors basis of an Orlicz sequence space, Iy, .

CorOLLARY 3.8. Let {®}2, be a semi-normaliced basie sequence

in Ly, & separable Orlicz sequence space. Let {f,}2., be the sequence biortho-

gonal to the unit vectors basis of ly,. If limf,(x,) = 0 for each ", then there
k

oo

is a subsequence {m};2, equivalent to the unit vectors basis of some Orlics
sequence space.

Proof. By ([1], Thm. 3), the condition on {@;}i2; assures the existence
of a normalized block basic sequence, with respect to the unit veectors
basis of 1,7, which is equivalent to 2 subsequence of {#;};=1. The corollary
now follows from Lemma 3.6. :

COROLLARY 3.9. Let X be a subspace of Ty with a symmetric basis or,
more generally, with a normalized unconditional, subsequence imvariant
basis, {w;}ie,. Then {m}2, is equivalent to the wnit veclors basis of some
Orlicz sequence space.

Proof. Let {f,}x., be the sequence biorthogonal to the nunit vectors
basis of 1, There is a K > 0 such that for each 7 and % | (@) < K. Hence,
by choosing a subsequence of {z,},, if necessary, it can be assumed that
fu(®;) converges for each n. There is no loss in generality since {@,}%2; is
subsequence invariant. Now Jn(®3i11 —@y;) converges to zero for each .
Using Corollary 3.8, {my;, 1 — @y}, is equivalent to the unit vectors basis
of some Orlicz sequence space. But, using the unconditionality of {z,}%,,
;‘ai(wﬁﬂ—wﬁ) converges iff Z‘aimziﬂ and Sz, converge. But, since

T 9

{®;}2, is subsequence invariant, the last statement ig equivalent to con-
vergence of ;’aﬂci. Hence {z,}{2, is equivalent to the unit vectors basis

of some Orlicz sequence space.

COROLLARY 3.10. Let {,}2, be a semi-normalized unconditional basis
Jor X, a subspace of a separable Orlicz space. Then X has a complemented
subspace isomorphic to an Orlice sequence space.

Proof. It X is reflexive, {®;};2, converges to zero weakly by Propo-
sition 1.7. Hence, by Corollary 3.8 there is a subsequence of {x;}3>, equiv-
alent to the wunit vectors basis of some Orlicz space. Since {w,}2, is
unconditional, by Proposition 1.1 there is a Projection onto the space
spanned by any subsequence. Hence the conclusion follows. If XX ig not

icm
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reflexive, by Proposition 3.5, Iy, and hence X, does not contain an iso-
morph of ¢,. Therefore, X contains a complemented subspace isomorphic
to I, by Proposition 1.5 and Proposition 1.8.

The remainder of this section is concerned with certain Orlicz sequence
spaces some of which are subspaces of L, for some p,1<p< 2. In [2],

, . M . .
it is shown that if M (2) is an M-function such that —w(gl is equivalent

to a decreasing function and for some p,1< p< 2, ) is equivalent

. z®
to an increasing function, then the unit vectors basis of 13 is equivalent
to a normalized basic sequence {z,}7, in L,, and furthermore, {m, )5, may
be chosen to be a sequence of independent, identically distributed, infi-
nitely-divisible symmetric random variables.

If M(x) is an M-function. with associated interval [@ar, by, then

for all &> 0, is a decreasing function and is an

@€
20ar+e) 2829

increasing function. This is true since, assuming M (#) has a continuous,

M ’
strictly increasing derivative p(w), (},}Iwi—fl) < 0 near zero iff ap(x)—
—(byr +&)M(z) <0 near zero. But @p(w)— (by+e) M (2) < O near zero

%p (#)

iff i) < by +e near zero, which follows from the definition of by,.
M(z) . . Mz) .
Hence PG is decreasing mnear zero, and similarly, = is

increasing near zero.

Hence, if 1, is a reflexive Orlicz sequence space which has an asso-
ciated interval [a, bl,, with 1<a<b<2, then I is isomorphic to
2 subspace of L, for 1< p < a.

In [2] it is also shown that each reflexive subspace of L, which has
a symmetric basis is isomorphic to 7, where M (2) is an M-function such

that i‘[»gw)— i equivalent to a decreasing function and for some p > 1,
x

M(x) . . . .
——— I8 equivalent to an increasing function.
P

This section is concluded with an example of an M-function for each

M(z
1< a< b< oo, which has an interval [a, b] such that wi

M (w)

and  -—— is decreasing.
@

) is increasing

Exampre 3.11. Let M (z) be a function with range and domain the
non-negative reals such that M (0) = 0 and near zero, M () = g?+*sin(in(-Inz))
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— l|
where &> 0, p > 1+V2k. M (x) fp(t ) @t where p (1) = g1+ Fsin(la(=Ina))

X[p—i—ksm(ln(——lnm))—}—kcos (In( —ln:v))] for # >0 and p (0)= 0. A calcula-
tion shows that M"(v) = p’(x) > 0 near zero if p—1-ksin (In( (—Ino))
+%eos(In (-—Inm)) > 0 for all # near zero, which oceurs when p > 1+V2%.
Hence M (z) is an M-function with a continuous strictly increasing deri-
vative p(z). The function associated with M () is

Fa(®@) = p+k(sin (In(—1nw)) -+ cos (In( ~Inm)))
and the interval associated with M (x) is [p—V2k, p +V2k]. Since p— V2k
> 1, by Proposition 2.19, I,, is reflexive.

It now follows that for any 1< @< b << oo, there is an M-function
M (x) such that the interval associated with M(z) is exactly [a, b]. Let

% and > 0 be such that ¢ = p— V2% in the example above. Now,

( MSD)) = gP-irethsninC-ha) [y g4 ksin (In(—1ng)) + keos(In(—Inz)) | > 0
2 \
except for a finite number of zeros in each finite interval not containing

M (x)

zero. Hence =

M (x
is increasing mear zero. Similarly 70%)- is decreasing
near zero.

4. Complemented subspaces isomorphic to l,. In this section the
existence of contractive projections onto subspa,ces of I, isomorphic
to 1, is investigated. By Proposition 1.3 such projections exist if with
respect to the unit vectors basis of I,, there are block basic sequences
with constant coefficients equivalent to the unit vectors basis of by.

The first lemma genera.hzes the observa,tlon that for the M- func‘mons

¥ and 2% where })—+E =1, for each an’y ei

el = .

Lmnyoea 4.1, Let M (x) be an M-function wzth a smozlg/ inereasing conti-

nuoys derivative and let N (z) be the M funotwn complementary to M (x )
Then for each integer n>1, $n < | Z"“MHZ%”N n where {e}e, are

the unit vectors.
Proof. By Proposition 2.4, the following holds:

CRO | j]ei
¢ 1
e M=m. And “’2

n.

k3
b J
y e
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The last equality can be understood by observing, with the use of Lagrange

n
multipliers, that the maximum of f(2,, @,, ..., ,) = > %; with restrictions

i=1
i 1
ZM (;) =1 ocours where @ =@, =... = @, = M~ (~) Substituting
y n
i 1 1
el =—— =M (—) into (4.1), the lemma
N F=
n

follows.

The following theorem improves the results of Proposition 3.5.

THEOREM 4.2. Let Uy be a separable Orlicz sequence space. Suppose Uiy
18 not separable. Then there is a normalized block basic sequence with constant
coefficients with respect to the unit vectors basis of 1y, equivalent to the wnit
vectors basis of Uy Furthermore, if M (x) is an M-function with complementary
Sfunction N (x), then there is a normalized block basic sequence with constant
coefficients with respect to the unit vectors basis of hy, equivalent to the unit
vectors basis of ¢,.

Proof. If 1, is isomorphic to l,, then the unit vectors bases of I,
and I, are equlvalent by Proposition 1.4. Therefore, it can be assumed

that M ()
increasing. If M (x) does not have this property, by Proposition 2.15,

M () is equivalent to an IM-function which does satisfy this property.

zp (Z)) =1 and N (2) does

f P (t)dt where p(0) = 0 and p(t) is continuous and strictly

Since 1, is not reflexive, by Proposition 2.19 lim
z—0

not satisfy the 4, condition for small #. It is possible to choose a se-

quence of positive reals {y,},-,, converging to zero such that N(y,) < o

and In (y)") > 9" where N'(z) =
n
= oN' (% ) it follows that
(4.2) N(2¢,) Z 4N (4,) = 2"V (y,).

It is now possible to choose integers m, > 1 such that

N(y.) <

p7(x). Since for all x>0, N(2x)

1 1
(4.3) 72—"-< My oL
P41

Z‘ ¢; where {¢;}3>, are the

n
Define p,,, = > m; with p, = 0. Let 2, =
i=1 i=pp+1

Pptl
unit vectors. Now, since Z N (—yf) =m, N (2¢,) = m, 2" N (y,) > 1, by

t=pp+1
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(4.2) and (4.3), it follows that |ly,z,ly > % for each n. Also 3y, 2, is an ele-
ment of Iy, since "
Pn+1

D D N =D m Ny, <2.
n =P, n
Now by Proposition 2.4,
P
“;' Yn2p N< “'; Y|y = 2‘]3&]5“1 (; i“;m.l ?/nmi) .
But by Proposition 2.5,
: Pnl
)
‘Hence, by (4.3), for each n,
(4.4) 3 < Wn2ally < || 3 vn < 3-

Jdentitying U3, with Iy, let f be the linear functional in I}, corresponding

to the element 3y,2, in Iy. From (4.4) it follows that % < |If]ly< 3. Con-
n z o0

sider the normalized block basic sequence {—”jﬁ———
“nlld

unit vectors basis of I, Now from Lemma 4.1 and (4.4) it follows that

} with respect to the
N=]

B\ _ Mt ,
(4:5) ! ( |1zn|lM) = Tl = Wntalv> 4

For all sequences {t,};.., and all positive integers ¢, using v(4.5),

q"l L z’n f z z‘n,
21 |3 ol ] Fily (Z Ml )

n=1 ”zn”M
a 2 q
n
51y nnlf(———) >1 Y.
= ]l g =

2, |~ . .
Hence{ n } Is equivalent to the unit vectors basis of I,.
. ”zn“M n=1 '

Also {Y,,2, ). Which by (4.4) is a semi-normalized block basic sequencoe
with respect to the unit vectors hasis of hy, is equivalent to the unit
vectors basis of ¢,. This is true since for every sequence {@p oy, fOr caCh 0
and integer g > 1, using (4.4),

q
% Ia'nl < ”a’nynanN < “Z a’nynzn
n=1

[]
D Yt
ne=1

N

<sup|a,| v < 35up|a,.
n n

icm
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Hence, for each ¢>1,

aq
sup e, <[ Y a,9,2,
n n=1

NS 38upla,l.
n
Therefore, }a,y,2, converges iff {@y}ne; converges to zero. Then
n

2,
Ynutlo, and {—L}
e el o

The next theorem gives a sufficient condition for the existence of
contractive projections onto a subspace of 1, isomorphic to 7,. The fol-
lowing proposition and lemma are needed in the proof of Theorem 4.5.

PROPOSITION 4.3. Let M (x) be an M-function such that Jor all z, M ()

Iz}
= f p(t)dt where p(0) = 0 and p (1) is strictly increasing and continuous.

oo

are equivalent to the unit vectors basis of Gy.

0
Suppose M (@) satisfies the A, condition for small z. Then for all positive
a’n

sequences {a,}o..y converging to zero such that Lim
n an—\Ll

M-t
stants K, > 0, Ky > 0, such that for all n, K, < - (@)
M ()

=1, there are con-

< K, where

M~ (@) is the inverse function of M ().
Proof. Let [a, b] be the interval associated with M (). Then for all

= t is ¢ h, toa—e<
1> 2> 0, there is an &> 0 such that a—e < M(M‘l(m))

<L b-+Fe.

1

Noting that (M~'(z))" = @)

, the following holds for all1 > # > 0:

M~ ()

— \x_(mgb—(—e.

Hence, fixing » and assuming that a,,; <a, <1, we have

1M (M (@) 1 M
— “de> - dw > f —dx.
a—s f P f @ P4 ) 3

-1 1 Ont1

Integrating, we have

..»1%1]1(, W, )zln(i[———lﬁ%)—)>;1n( G )

- =
a—e Fp1 M (a‘n+1) b+e 1
. s . . Ay,
If @, = a,, the inequalities are, of course, reversed. Since lim p =1,
" Yntl
 M7a) ; ot
lim — = 1 and therefore X, and K, ean be chosen as stated.

W M (1)
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Levua 4.4. Let M (w) be an M-function with a strictly inereasing conti-
nuous derivative such that 1y, is separable. If {m )2, is a sequence of positive
reals converging to zero, then, with respect to the wwit vectors basis of ly,

" there is @ mormalized block basic sequence {Biee: with constant coefficients

1 M (@)

such that for all sequences {a ).
TS k=11 %‘ M(wk)

converges  iff X a,B,
. k -
converges i ly,.
Proof. Assume M (1) = 1. Choose positive integers m;, such that for

1
each f, < M(z,) < —. Hence,

l—'—%k N

1 1
4.6 -1 < =
(46) (1+”k)\w}‘<M ("”/a),

Ny
(4.7) i< T < mM(2) <1,
and

1
(4.8) IS m)M (@) <=2 <o,
3

Therefore, for all #, using (4.6),

(4.9) 3 (L0 M (mM—l(l—]—nk ))<  (L4m) M (2,0).
Now gince

L 0) =1 1) M) ),
using (4.8), (4.9) becomes,

_ 1 M (way,)

4.10 1 e ) g o 22
e N
But by (4.6),

M (wm,) Wy a1
M (m) S el (ay) M(‘”M (?»7))

and hence using this and (4.7), (4.10) becomes

1 ))< M ()
1+m,)) M (@)

1

(@11 304wy M(Mp( <M (mm—l (__))

Moy

icm®
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1
”,
Since lim ¥ = 1, by Proposition 4.3, there is a K > 0 such that
k
for- all %,
gl
. Ny,
(4.12) 1< —H <R,
Mt 1
1+4m,

Since Iy, is separable, M () satisfies the 4, conditions and there is a ¢ > 0
and @,> 0 such that for all 0 < o< oy, M(K2) < OM(z). Now by the

1
assumption that M (1) =1, for all 0< <z, 0 <ML (m)<wo;
k

and therefore for all 0 < 2 < «,,

1 1 X -1 1

i

1j’n) M_l( 1 )

Now, using (4.12), it follows that

(4.14) n,cM(mM“l(i)) <(A4n)M wM“l(
Ty

\ 14-ny

<A +n)M (K“M_l (1j o )) '

From (4.11), (4.13) and (4.14), we have that for all 0 < # < @, and for

all T,
1
S () A o2

(4.15) 50 - U (@) "

Hence, for any sequence {a,}5.;,

M (0, 25,) ; ( aft
4.16 ——— converges iff M |0 M~ |—]| converges.
010 3205 comngen it 3o (-2 (%
z g . .
Letting p,.y = dmy, py =0 and 2, = > ¢;, where {¢}2; is the unit
d=1 i=ppt+1
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—— for each k, then for

1
vectors basis of Iy, [#ully = ————— I By =
llz IcHM

all sequences, {a,}5,,

"k

1
(4.17) deBzc converges in I, iff Z’kaﬂf[ (a,GM =1 (;—)) converges.
e I

But this along with (4.16) implies the desired results.

(e ()

Remark. Since for all &, M (mM‘1 (7’7)) == e
&

)

follows from (4.17) that for any normalized block basic sequence
with constant coefficients, {Bj}i.;, there is a sequence {®,}3., such that
v M (a0,

Z%Bk converges in I, iff 2 W

converges. For each %, let

1 . . . N
=M “1(-—) where #y, is the number of unit vectors in B, with nonzero
N
coefficients.

THEOREM 4.5. Let M,(x) be an M-function such that lyr, 18 separable
with associated interval [a, b). Suppose for some M-function M (z) equivalent
to My (), fr (), the function associated with M (), satisfies the following
condition: There ewists a sequence {&,}mn, of positive reals, converging to zero
such that for each &> 0, the sequence of functions, indexed by n, |fa(®,)—
—fu(m,)| comverges to zero wniformly for & in the closed interval [8,1].
Then with respect to the unit vectors basis of 1y, there is a normalized block
basic sequence with constant coefficients which is equivalent to the unit vectors
basis of 1, for some a < p < b.

Proof. From the definition of fM o) it cam bo seen ﬂm, there is no

fp )dt where p(0) =0

and p (%) is continuous and strictly increaﬂlng Let [y, byr) be the interval
agsociated with M (z). Hence, ay < 0 < b < by Tt can be assumed that
ay > 1 since if a;; = 1, the conclusion of the theorem follows from Theo-
rem 4.2 with p =1, Ohoose & sequence of positive reals, {I{,c},, 1y Converg-

ing to zero, such that ZK,C 1. Now sinece ay < lim f,,, ) ’l1mfw(rn

loss of generality by assuming that

< by, it can also be assumed, choosing a subsequence if necessary, that
Ju(®,) converges to p for some ay < p < by. Now using ([8], Thm. 1)
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we may choose g, > 0 such that 1< p—e, and for all sequences {a;}i

- _ ) -
2 (@)% converges iff Z(ak)“‘k converges.
k k

Now choose a subsequence {m,, beey of {@,}%; such that for K, <éE,

D—ep <, M(Em,,]) p+rk‘ From the definition of Sfar(®), for each % and
all & such that K, < &< 1,

Ing, 1 gy P(t) Zny, 1
—z —ars [P g l
(»—a) f ; Ny B a) [ .
g &ty Sy,

Integrating, we have ‘
(p— )ln(l)/ =l m (%
V4 % 3 M(Emnl)w(pﬁ-ek)n z

for all &k and I, < &< L. Hence for all k and K, < £< 1

o f’ﬂ"t””"k)
M ()

Ny

> £Il+tk

From this it follows that for any sequence {a, )3, such that K, < lag] <1,
(4.18) T converges iff 2 |ag? converges.
k k

But then (4.18) holds for all sequences {a;}7,, since in order that either
sum in (4.18) converges it is necessary that for only a finite number of %’s
oz > 1, and for 0 < |a| < K, both sums in (4.18) are not greater than one.
This follows from the fact that for 0 < ey < K,

M (a 1 (%, )
\1 ,fih”’_ﬁ_\zl h|~~ " <2K,c<1
n,/‘ ”k) E
Dl < Y 1B <1,
I k

Now Lemma 4.4 and (4.18) show that with respect to the unit vectors
basig of Iy, there is a normalized block basic sequence with constant coef-
ficients equivalent to the umit vectors basis of I, where ay < p < by,.
But since the interval associated with I, is [a, b], @ < p < b by Theo-
rem 3.3. And since M,(z) is equivalent to M (z), the conclusion follows
for Iy, .

and also,

3 — Studia Mathematica XLV.2
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COROLLARY 4.6. Let 1y, be separable with M-function M (x). If for so;mc
My (2) equivalent to M (x) the interval associated with My (x) is a point, p,
then the conclusion of Theorem 4.5 holds for 1, and for mo l,, q¢ + p.

Proof. Observe ironfMl(w) = p which assures the existence of {z,}r,

as in Theorem 4.5. Since [a, bl = {p}, 1, ¢ # p, it not isomorphic to
a subspace of Iy by Theorem 3.3.

COROLLARY 4.7. For each p > 1, there is a reflexive Orlice sequence
space X not isomorphic to 1, such that there is & contractive projection in X
onto a subspace isomorphic to l,. For p = q, X contains no subspace iso-
morphic to 1,.

Proof. BExample 3.4 gives an example of an Orlicz sequence space

. . , 1
with M-function, M (x)= m"ln(;) near zero. The function associated with

Mz) 8 fy(z) =p— and limf,, (@) = p. Now use Corollary 4.6.

1
II].(-];) ‘ -0
m .
Remark. If [a, bl,, = {p}, it is not known whether 1, is isomorphic
to a subspace of 1. However, by Theorem 3.3, for p # ¢, there is no
subspace of I3, isomorphic to 1.
CoROLLARY 4.8. Let Uy be o separable Orlice space with M-function
M (z). Suppose the interval associated with 1y is [a, b]. Also suppose for
some M, (x) equivalent to M (w), for each § > 0, | Far, () ~ Jar (€@)| converges

to zero umiformly for § < &< 1. Then the conclusion of Theorem 4.5 holds
Jor all p, a < p < 0.

Proof. ay, = lim fu, () < a < b < M for, () = by, Since fiy () is

T~ x—0

contlguous, for each ay, < p < by, it is possible to choose {,} o such

that limfar, (#,) = p. Now the proof of Theorem 4.5 shows that ity con-
n

clusion holds for this p since {x,}, is as in Theorem 4.5. But then by
Theorem 3.3, a < p < b. Hence Qpry = Gy by = b,

COROI:LARY 4.9. For all 1 < a < b < oo, there exists a reflemive Banach
space X with a symmetric basis such that for all Dy, a <P L b,there is a con-
tractive projection in X onto a subspace isomorphic to 1,,.

P.roof. For &H;l{ 4 << b < oo, Bxamplo 3.11 gives an example of
an Orlicz sequence space, 1,,, such that the function

fule) =p+ k(sin (In(—Inx))+ eos(In( — lnm))) ,

where @ = p—kV2,b= p+kV2. Observe that for any 0 << 0< 1 |fp(2)—
—far(éx)| converges to zero as x converges to zero, uniformly for § < &< 1.

icm
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This is easily seen by noticing that

In(—Ine) —1n(—In(£a))| =

( Ina )
In|———
In(&) +In(w)

which converges to zero uniformly for § < £ < 1. Now apply Corollary 4.8.
JOROLLARY 4.10. For each 1< a < 2, there is o reflewive subspace X
of Ly with o symmetric basis such that for all p in [a, 2] there is a comple-
mented subspace of X isomorphic to 1,.
Proof. The space Iy, in Corollary 4.9 for the interval [a, 2] is shown

M (2
in Example 3.11 to have the property that»»—w(—rﬁ is increasing near zero
@

M (x .
and ~ﬁ%)11 decreasing near zero, Hence, by [2], as indicated in the

discussion preceding Ixample 3.11, there is an isomorphic embedding
of Iy, into L.

Concluding remarks: Open questions. The main motivation for this
research is the guestion: Does every separable Orlicz sequence space Iy,
contain a complemented subspace isomorphic to 1,, for some p,1l<p
< c0? Wo associate with [, an interval I. Theorem 3.3 shows that I,
contains no subspace isomorphic to 7, for p not in this interval. Theorem 4.5
shows that if one member of the equivalence class of M-functions which
generate Iy, satisfies a given condition then I, contains a subspace iso-
morphie to I, for some p in I. Therefore an affirmative answer can be
given to the above question if the following question hag an affirmative
answer: Is every M-function which satisfies the 4, condition for small z
equivalent to an M-function which satisfies the condition of Theorem 4.5?
We may ask the same question regarding the condition of Corollary 4.8.
If this question has an affirmative answer, then I, hag a complemented
subspace isomorphic to I, iff p iy in I, the interval associated with I,,.
Thiy motivates tho more general question: Is it possible to assign to each
separable Orlicz sequence space some interval such that the space has
a complemented subspace isomorphic to 1, iff p is in the assigned interval?

A differont group of questions concerns symmetric bases for [
By Proposition 1.4, I,, 1< p << oo, has a unique symmetric basis. Is this
true for separable Orliez sequonce spaces? Is every symmetric basis for Iy,
equivalent to the unit vectors basis of 15,2 Corollary 3.9 shows that any
gymmotric basis of I;, is equivalent to the unit veetors basis of some Orlicz
gpace, L,y . Therefore the above question reduces to the question: Is M(x)
equivalent to M, (#)? Another way to phrase this question is: If I, is
isomoxrphic to le iy M (%) equivalent to M,(v)? Of course, the converse
is true by Proposition 2.13.
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Added in proof. J. Lindenstrauss and L. Tzafiri have shown that every Iy,
contains a gubspace isomorphic to some ly; that there is a reflexive [y having at least
two non-equivalent symmetric bases; and that there is a reflexive Iy which does not
contain any I, as a complomented subspace. These results and others related to the
topies of this paper appear in Israel J. Math., On Orlicz sequence spaces, 10 (1971),
p. 379,.and Israel J. Math., On Orlice sequence spaces 11, 11 (1972), p. 365.
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Differentiable mappings on topological veector spaces
by
JOHN LLOYD (Canberra, Australia)

Abstenet. Thig paper is concerned with the connections between differentiable
maps, their derivatives, and the properties: strong continuity, collective precom-
paetness and collective boundedness. The mappings considered are between topologieal
vector gpaces. Typical problems in which we are interested are the following: suppose
a differentiable map f is strongly continuous. What can we say about the derivatives
' (@), at each , or the derivative f*? If f* is precompact, does f inhexit this property ?

1. Preliminaries. This section containg some basgic definitions, con-
ventions on terminology, and three vergions of the mean value theorem,

“which will be needed in many of the later proofs.

We begin with the definitions of GAteaux and Fréchet differentiability.
These definitions in topological vector spaces are due to Averbukh and
Smolyanov [6], [7]. In these definitions and throughout the paper, E and F
will denote arbitrary Iausdorff topological vector spaces (separated by
their duals) over the real field R. % (¥, F) will denote the set of all continu-
ous linear maps from H into F. % will denote the collection of all neighbo-
urhoods of 0 in I, and & the colléetion of all bounded subsets of E.

DemNrrioN 1.1. A mapping f: B~ F is Qdteaux differentiable at
we B, it there cxists we % (¥, ) such that, for each he  and for each
Uea, there exists 4> 0 such that f(x-+h)—f(2) —u-thetU, whenever
1) < 6.

DermNrtioN 1.2. A mapping f: B —~F is Fréchet differentiable at
@e B, it there oxists ue % (H, F) such that, for cach Be# and for cach
Ued, there oxists §> 0 such that f(x+th)—f(x) —u-the tU, whenever
he B and | = 4.

Tn ench ease, the continuows linear mapping w is determined uniquely
and is denoted by f (@), Tt is called the Gdieaur (vesp., Fréchet) derivative
of f at a. f i Gdleaun (vosp., Fréchet) differentiable, it it is Géiteaux (resp.,
Fréchet) ditferentiable at each we 2.

‘Wo will also need the topological vector space version of uniform
diffontiability ag defined by Vainberg ([16], p. 45). ‘

DERINITION 1.3, Suppose f: B - F is Fréchet differentiable at each
point of some set w < B, Then fis uniformly (Fréchet) differentiable on w,
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