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Added in proof. J. Lindenstrauss and L. Tzafiri have shown that every Iy,
contains a gubspace isomorphic to some ly; that there is a reflexive [y having at least
two non-equivalent symmetric bases; and that there is a reflexive Iy which does not
contain any I, as a complomented subspace. These results and others related to the
topies of this paper appear in Israel J. Math., On Orlicz sequence spaces, 10 (1971),
p. 379,.and Israel J. Math., On Orlice sequence spaces 11, 11 (1972), p. 365.
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STUDIA MATHEMATICA T. XLV, (1973)

Differentiable mappings on topological veector spaces
by
JOHN LLOYD (Canberra, Australia)

Abstenet. Thig paper is concerned with the connections between differentiable
maps, their derivatives, and the properties: strong continuity, collective precom-
paetness and collective boundedness. The mappings considered are between topologieal
vector gpaces. Typical problems in which we are interested are the following: suppose
a differentiable map f is strongly continuous. What can we say about the derivatives
' (@), at each , or the derivative f*? If f* is precompact, does f inhexit this property ?

1. Preliminaries. This section containg some basgic definitions, con-
ventions on terminology, and three vergions of the mean value theorem,

“which will be needed in many of the later proofs.

We begin with the definitions of GAteaux and Fréchet differentiability.
These definitions in topological vector spaces are due to Averbukh and
Smolyanov [6], [7]. In these definitions and throughout the paper, E and F
will denote arbitrary Iausdorff topological vector spaces (separated by
their duals) over the real field R. % (¥, F) will denote the set of all continu-
ous linear maps from H into F. % will denote the collection of all neighbo-
urhoods of 0 in I, and & the colléetion of all bounded subsets of E.

DemNrrioN 1.1. A mapping f: B~ F is Qdteaux differentiable at
we B, it there cxists we % (¥, ) such that, for each he  and for each
Uea, there exists 4> 0 such that f(x-+h)—f(2) —u-thetU, whenever
1) < 6.

DermNrtioN 1.2. A mapping f: B —~F is Fréchet differentiable at
@e B, it there oxists ue % (H, F) such that, for cach Be# and for cach
Ued, there oxists §> 0 such that f(x+th)—f(x) —u-the tU, whenever
he B and | = 4.

Tn ench ease, the continuows linear mapping w is determined uniquely
and is denoted by f (@), Tt is called the Gdieaur (vesp., Fréchet) derivative
of f at a. f i Gdleaun (vosp., Fréchet) differentiable, it it is Géiteaux (resp.,
Fréchet) ditferentiable at each we 2.

‘Wo will also need the topological vector space version of uniform
diffontiability ag defined by Vainberg ([16], p. 45). ‘

DERINITION 1.3, Suppose f: B - F is Fréchet differentiable at each
point of some set w < B, Then fis uniformly (Fréchet) differentiable on w,
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if for each Be # and for each Ue %, there exists 6 > 0 such that (@ th)
—f(®)—f'(2)-the tU, whenever [t| < J, he B and #e o.

Three versions of the mean value theorem will be needed. The proofs
of the first and second versions (Theorems 1.4 and 1.5) may be casily
obtained by following the Banach space case in Vainberg ([16], pp. 36-37),
and so are omitted. The third version (Theorem 1.6) is due to Averbukh
and Smolyanov ([6], p. 219). The notation CI'(4) will denote the closed
convex hull of the set 4. E* will denote the dual & (B , %) of H.

TenorEM 1.4. Let f: B - TF be Qdteaus differentiable at each poing
of some convex set o < H. Then, for each ee F* and for each 0,54 hew,
there exisis e (0, 1) such that (f(w+h)—f(@), &) = {f (@-+Ch)-h, >

TumoreM 1.5. Let f: B — F be Gdteaun differentiable at each point
of some convex set o < B, and suppose F is a locally convew space. Then
Jor each continuous seminorm p on F and for each @, -+he w, there exists
£ (0,1) such that p[f(x+h)—=f(@) 1< p[f (w+ k) h).

TemorEM 1.6. Let f: B —F be Gdteauw differentiable at each point
of some conves set w = B, and suppose T is a locally convex space. Then if
z, &+hew, we have f(o+h)—f(@)e OT{f (w--2h)-h| Ce [0, 11}

The theory of topological vector spaces which will be needed can be
found, for example, in Schaefer [15] and Robertson and Robertson [14].
The latter book will be regarded as our standard reference, and we adopt
their terminology, except we will use the more common term “locally
convex space” instead of their “convex space”.

We will alwaiys regard the set £ (H, F) as having the topology of uni-
form convergence on bounded subsets of ([15], p. 79), under which it
becomes a topological vector space. (B, V) will denote a basic neigh-
bourhood of 0 in this topology. Thus (B, V) = {we (B, F): w(B) < V},
where Be # and Ve .

Finally, we require some simple properties of nets. These may be
found in Kelley [10]. Nets will be denoted by (24, aed). Thus 4 is a direc-
ted set. (), y < I") will denote a subnet of (@5 ac4). The phrase “(@,, acd)
is a bounded net in B will mean that {@}gens € 8.

Sections 2, 3 and 4 contain the results. Section 5 contains some exam-
ples. We also present three diagrams which illustrate the main results.
In these diagrams an arrow represents implication. The numbers next
to the arrows indicate the theorem which states the precise result.

2. Strong continuity. In this section, we will investigate the connection.
between strong continuity and differentiability. As a bonus for working
in' topological vector spaces, instead of normed spaces, we obtain some
corollaries on weak continuity as well.

Previous results in this direction have been obtained in normed
spaces by Palmer [13] and Vainberg [16]. Palmer has shown that under
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certain conditions, the strong continuity of a differentiable map f implies
the strong continuity of the derivative f'. Vainberg has shown the cloge
connections between strongly continuous and compact differentiable
maps ([16], pp. 14, 17, 47-50). .
We begin with some definitions. Throughout, x, -« will denote
convergence of the net (x,, aed) to , and z, — # will denote convergence
in the weak topology.
DEFINITION 2.1. A mapping f: B — I is strongly continuous, if o, — x,
where (#,, aed) is a bounded net in F and xe H, implies f(@,)—f(2).
In view of the fact that a weakly convergent sequence in a Banach
space is bounded, the strong continuity defined here is a natqral generali-
gation of the definition used by, say, Vainberg ([16], p. 10) in a Banach
space.
DEFINITION 2.2. A mapping f: B — F is weakly continuous, it &, — ,
where (,, aed) is a bounded net in F and ze< H, implies f(x,) — f(»).
In. the next two definitions, f: B — F is Géiteaux differentiable. The
mapping f': B -2 (B, F) is defined by a— f'(2).
DERNIION 2.3, The mapping f: B -2 (B, T) is jointly strongly
continuous, if for each x¢ B, ye B and bounded nets (:og, aed), (¥,, acd)
in B, such that », =& and y, — ¥, then f'(w.) -y, —f (#)y.
DrrNitioN 2.4. The mapping f: B 2 (8, F) is jointly weakly
continuous, if for each < B, ye B and bounded nets (m‘,’, aed), (Yg, acd)
in #, such that z,— @ and y,— ¥, then @) ye —f (.w)--y. .
The most obvious question coneerning strong continuity is: What
does the strong continuity of f imply about its derivatives?
THEOREM 2.5. Let fi B —~ I be Fréchet differentiable at xe E. If fis
strongly contimuous, then f'(): B —F is strongly conn‘mwus.
Proof. Let @,¢ B and (#,, aed) be a bounded net in H such that
@, — @. Suppose U e%. Choose a balanced Ve# such that V+V+V < U.
1086 {8, ey Y (%} = Be.
Sumgi;cé j('}.i.sJFrécﬁlt differentiable at =, ﬂlere exigts 6> 0 such that
fla+ Ohy—f(w) —f (x)+ She 8V, whenever he B: Further, »+ éz, — = -+ dx,.
Honeo, f( - 6m,) - (@ dzo)y and so there exists feA such that f(@ -+ dm,)
— (- 0my) ¢ 8V, whenever a 3= f.

Now

f/ (m) ' 6‘%’1! "‘"'f, (‘/I’l) ' 6(1’0
e= [ (@) Ot A-F (@) — F (@ -+ 8w,) ] -+ [f (@ + 0o} —f (%) —f'(2) - 0] +
A [f (a4 d1,) — (@4 diwg) e 8V 40V + 6V = 68U,

whenever a3 f. That is f () @,—f (#)-%,e U, whenever a2 f§. Thus
f'(#) is strongly continuous.
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We would like to know the connection between the strong continuity
of f, and the joint strong continuity of f'. It. turns out that under a uniform
differentiability condition on f, they are equivalent.

THEOREM 2.6. Let f: B —F be Gdteaun differentiable, where F 4
a locally convex space. Then f': T —~Z (B, F)is jointly strongly continuous
implies f is strongly continuous. If f is uniformly differentiable on bounded
subsets of B, the converse holds. ‘

Proof. Let (#,, acd) be a bounded net in B, with o, - 2, say. Let p
be a continuous seminorm on 7. For each. aed, there exists {,¢ (0, 1) such
that p[f(z.) ~F(2)] < p[f (@+Lu(3,— ) (2, —2)].

Now s+ (n,~a) = o, and so f'(v4 {a(®y—1)) (25~ @) - 0. Thug
PLf(@) —f(#)] — 0, and f is strongly continuous. .

Conversely, suppose f is uniformly differentiable on bounded subsets
of B, and f is strongly continuous. Let (@a; aed), (y,, xcd) be bounded
nets in B with #, —2 and y, — 4. Let Ue# and choose a balanced
Vea such that V+V+V+V < T, Suppose {Yutues U {y} = BB, and
{Zataes U {8} = Byea. : '

Now since f is uniformly differentiable on B,, there exists 6 > 0 such
that f(z+ 6h)—f(2)—f'(#)- 6he 6V whenever he B, and #eB,. Further
T(@e) > f(a) and f(z,+ dy.) — f(w+ oy). ‘

Thus

f’("p‘u) : ‘Sya _"f,(m) : 61/ = [f’(ma) ) aya 'I‘f(wa) '"‘f(ma + 6?/:1” EE

+ @+ 0y) (@)~ (@) by] +
+ @) = (@) 1+ [f (22 + 8ya) — f(w+ 6y)]
€ V40V 6V 46V < 4T,

eventually. Thus f'(2)-y,~ f' () -y, and so §' i jointly strongly eontinuous.

COROILARY 2.7. Let f: B — F be Gdtoaus differentiable. Then f': B
% (B, F) is jointly weakly continuous implies S is weakly continuous.
If f is uniformly differentiable on bounded subsets of B, the comverse holds.

Proof. It suffices to remark that S will remain Géteaux differentiable
and uniformly differentiable on bounded sets, if 7' is given the wealk topo-
logy. Further, f': E —Z (B, F) is jointly weakly continuous if and only
if f* is jointly strongly continuous, when I has the weak topology.

Next we examine the relationship between the strong continuity
and joint strong continuity of .

TuEOREM 2.8. Let f: B — T be Gateaus differentiable, Then

(X) of bounded subsets of B are relatively weally compact, [ B2 (8,1
18 jointly strongly continuous implies f' is sirongly continuous, and

(A1) if f(z): B — T 4s strongly continuous, for each e B, f'is strongly
‘continuous implies f' is Jointly strongly continuous.

icm®

Differentiable mappings on topological westor spaces 151

Proof. (I) Suppose the conditions of the theorem hold, but f’ is not
strongly continuous. Hence there exists a bounded net (o, aed) in I,
such that @, — », say, but f' (z,) + ' (#). Thus there exists a neighbourhood
of 0, (B, V), in #(H, F), and & subnet (a}, acd) of (z,, acd) such that
I (@) —f (@)¢ (B, V), for each acA. Thus there exists a net (hyy aed)in B
such that f(w)-h,—F (#) k¢ V, for each aed.

Now choose a balanced Ue% such that U+ U < V. Since B is rela-
tively weakly compact, (h,, ae.d)has a weakly convergent subnet (h,, y I")
With %y, = h, say. Lot (w,’,’ 1 7el’) be the corresponding net of ’s.

Since f' i jointly strongly continuous, F@)) by —f (@) h and
I/ (@) hy = (%) h. Hence, for a sufficiently large y, we have

F @) Ty~ F (@) Ty, = [f (a)) Ty — ' () -] + Lf (@) h—f'(@)-h,]
eU+Uc V.
Thus we have a confradiction, and so f* must be strongly continuous.

(IX) Let (2., aed) and (y,, acd) be bounded nets in B, with 2, -z
and y, — ¥, say. Lot U< and choose a balanced V % such that V+Ve U.
Suppose {Yo}ea = Be#. Since f' iz strongly continuous, and f'(x) is
strongly continuous, f' (z,)—f ()¢ (B, V) eventually and f' (#) y, —f (x)y
¢V eventually.

Thus - '

F @) Y= @)y = U @) ya~F (@) 9.1+ [f (@) -gu—F (2) 9]
V4V eU
eventually. Thus f* is jointly strongly continuous.

COROLLARY 2.9. Let f: B —TF be Gdteaus differentiable. Then B
~Z (1, T) is strongly continuous implies f' is jointly weakly continuous.

Finally, we present three vesults which are obtained by ecombining
the results of this seetion. Theorem 2.11 was proved in normed spaces
by Palmer ([13], p. 442). .

TumoreM 2.10. Let f: B —F be Gdteaus differentiable, where F is
a locally comvew space. If f' is strongly continuous, and f'(z) is strongly
continwous, for each we B, then f is strongly continuous.

Tunovkm 2,11, Let f: B F be uniformly differentiable on bounded
subsels of 1, where bounded subsels of 1 are velatively weakly compact. Then f
is strongly continuous implies f' is strongly continuous.

TomoreM 2,12, Let f: B -» I be uniformly differentiable on bounded
subsets of 1y where bounded subsets of Bl are relatively wealkly compact and F
s a locally convew space. Then f is strongly continuous if and only if f' s
strongly continuous and f'(x) is strongly continuous, for each we H.

3. Collective precompactness. Oullective compactness has been studied
intensively in recent years, partly beeause of its intrinsic interest as
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a generalisation of compactness for a single map, and partly becauge of
its applications. The concept was introduced by Ansclone and Moore [3]

. in connection with the approximate solution of integral equations. Various
properties of collectively compact maps have been studied by Anselone
[1], [2], Ankelone and Palmer [4], [5], Daniel [9] and Moore [11]. Vain-
berg [16] has studied the compactness of a single mapping.

We wish to study such mappings in topological vector spacés. It turns
out to be more convenient to consider collectively precompact mappings,
ingtead of collectively compact mappings. If 7 ig a Banach space, or more
generally, a quasi-complete topological vector space, the two concepts
coincide. # will denote a family of mappings from ¥ into 7.

DeriNttIoN 3.1. The family & iy (Fréchet) equidifferentiable at ze B,
if each fe# is Fréchet differentiable at #, and given Be%# and Ue<%, the
4 > 0 chosen (in the definition of Fréchet differentiability) is independent
of fe#.

The family & is (Fréchet) equidifferentiable, it it is equldlfferentmble
at each ze¢ F.

DerINTION 3.2. The family & is wniformly (Fréchet) equidifferentiable

on o < B, if each fe# iy uniformly differentiable on o, and given Be%#
and Ue%, the § > 0 chosen (in the definition of uniform differentiability)
is independent of fe#.

DerivirioN 3.3. The family & is collectively precompact, if for each
Be#, U f(B) is a precompact subset of F.
feF

In the next definition, we suppose that each fe&# is Gateaux differ-
entiable. The family %' is defined bv F' = {f'| feF}, where, for cach
fe#F, f' is defined as in Section 2.

DeFINITION 3.4. The family &' is collectively jointly precompact, it
given B % and B;e#, ) f'(B;)-B, is a precompact subset of F.

feF

It is eagsy to see that the collective joint precompactness of F' is
equivalent to the collective precompactness of the induced family {f:
ExF—>1’1 feZ} where each f': ExH —F is defined by f((=,v))
=f(x

DDFINITION 3.5, F is weakly eqmconnnuom, if for each xe¢ ¥ and
bounded net (2., ced) such that , —», then f(s,) — f(2), uniformly
over fe%.

The phrase “f(x,) — f(), uniformly over fe %‘ ” iy to mean, gwen
¢ I* and s > 0, there exists fed such that |(f(x,)—f(z), ed|< & when-
ever a>>f and fe#.

The next result is Schauder’s approximation theorem, generalised
to collectively precompact mappings between topological vector spaces.
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We omit the proof which may be easily supplied by using the following
lemma due to Nagumo [12], and following the proof of the corresponding
theorem in Banach spaces, due to Daniel [9].

Lmvma 3.6. Let T be a locally convex spa(‘c, and K o precompact subset
of B. Then for any neighbowurhood of 0, U, there exists a finite dimensional
subspace By, in B, and o continuous map S K — B, such that

(I) S(x)—we U, for each xe¢ K;

(IX) S(K) is a bounded subset of K,

e

TuroREM 3.7. Suppose I is a locally convex space. Then F is collectively
precompact and each feF is continuous, if and only if, for each Be® and
each Ue U, there ewists o family F* = {f [ feF} of continuous maps from B
into B such that

(@) fM(@y—F(@)e U, for each f<F and cach xe B;
(I1y U f*(B) is a bounded subset of a fimite dimensional subspace T,
JeF
of I

It is well know that the compactness of f’ implies f is weakly contin-
uous ([16], p. 47). The next result extends this to collections of mappings.

TnworeM 3.8. Let F be a family of Qdieaun differentiable maps. from B
into I, Then F' is collectively precompact implies F is weakly equiconti-
AUOUS. ;

Proof. Suppose the conditions of the theorem hold, but & is not
weakly equicontinuous, Thus there is a bounded net (z,, acA) in &, such
that @, - @, say, but f(wz,)+ f (@), uniformly over fe#. Hence there
exists ee I, & > 0, a subnet (v, acd) and a net (f,, aed) in # such that
[<F (@) f( )y €3] > & for cach acd.

By the mean value theorem, for each ae.d, there exists ¢,¢ (0,
that

1) such

ful@a) s 0 = {folo 4 Culw,—a)- (@, —a), &)

Put 2, = fi(» ~|»-t,,(w”--m)), for cach aed.
Hince e i continuous, there exists Ue% such that <y, e}
ever ye U. )
© Lot B denote the balanced hull of {w,,}a,,l x. Then Be#. Now
gince S iy collectively procompact, yU J'(z+B) is a precompact subset

< ¢/2, when-

of 1. Thuy (#,, aed) has o Caunchy subnet (2, Ae A) gmall of order (B, U).

Ohoose any fixed £, and denoto it by 2 Thus, it (273, Ae /1) ig the subnet

of (a), ued) corresponding to (s}, Ae A), we have |(z(z —m) ed| 0.
Thus, for a sufficiently large 2, we have

[<fa( '('/1 (@), €)= |<z,1(m,1 — ), 6]

< (s 2) () —a), ]+ <oy — ), )< ef2+6/2 = e
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Thus we have a contradiction, and so & must be weakly equicontin-

uous.
We now extend a result of Moore ([11], p. 66) to topological vector

spaces.
THEOREM 3.9. Let F be equidifferentiable at z¢ B. Then F is collectively

precompact implies {f' (¢)};. 45 collectively precompact. :
Proof. Let Be# and Ue<%. Since F is equidifferentiable at we B,
there exists 6 > 0 such that (1/6) [f(x+ 6h) —f(#)]~F (2)-he U, whenever
heB and fe#. Now (1/8) | [f(z+ 0B)—f(2)] is precompact, since &
JeF

is collectively precompact and so |J f'(#)-B is also precompact.
JeF

Next we examine the connection between the collective precom-
pactness of &', and the collective joint precompactness of &,

TeEOREM 3.10. Suppose each feF is Qdteaus differentiable. Then F'
is collectively precompact, and f'(x) is precompact, for each feF, and cach
we B, implies that F is collectively jointly precompack.

Proof. Let B;c%, Bye B and Ue%. Choose a balanced Ve such
that V+V < U. Now | f'(B,) is a precompact subset of Z (I, F). Hence

«F

f
there exists a finite. set {f{(w,), ..., fr(®,)} in U f/(B,) such that
feF

.

i
-

Lfi (@) + (Bs, V)] = fg;f’(Bl)'

For each i =1,2,...,n, fi(#)-B, is a precompact subset of F.

Hence there exists a finite set {¥s}i—1jes in B, such that, for each 4,
m
'U1 Ufi(@) 955+ V1 > fi(@) B,.
i

We show the finite set {f;(z;)-y;y}",™, is a U-net for U f(By):B,.

. feF
Suppose f'(x)-yelJ f'(B,)-B,. First choose ¢ such that T (@) —file;)

feF

€(By, V). Then choose j such thab f;(w,)-y—fi(a;) ye V. Then

fla) y~filz) Yy
= [f" @)y =fi(@) y1+ [fi@) -y —fil@) - yyle V+V < U.

Thus {J f'(B,)*B, is precompact.

JeF .

We would like to find some conditions wnder which & is collectively
precompact. However, as an example in Section § will ghow, Z#* collec-
tively jointly precompact does not imply this, nor does the stronger condi-
tion of #7 collectively Drecompact, and {f' (z)}nes collectively precompact,
for each @< . However, in case & consists of only finitely many maps,

the first condition is sufficient. The proof of Theorem 3.11 is due to Sa-
dayuki Yamamuro. ‘
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TueorEM 3.11. Suppose F is a finite family of Gdteaus differentiable
maps and I is a locally comvex space. Then F' is collectively jointly pre-
compact implies F 48 collectively precompact.

Proof. Obviously, it suffices to only consider the case when & con-
sists of a single map f, say. Let Bed. If ze B, then by the mean value
theorem (1.6),

f@)=F(0)e CI{f'(tw)-a| £ [0, 1]}

Let B, denote the balanced hull of B. Then, by [14], pp. 25, 50.
0]‘( f’(‘Bl)-B) i precompact, sinee f’ is jointly precompaect. Thus since
J(B)e CL(f"(By) - B)+£(0), f(B) i precompact.

Finally, we examine a converse to Theorem 3.11.

Towmorum 3.12. Suppose F is uniformly equidifferentiable on bounded
subsets of H. Then F is collectively precompact implies F' is collectively
Jointly precompact.

Proof. Let By« %, Bye# and Ue%. Now F is uniformly equidiffe-
rentiable on By. Thus there exists 6 > 0 such that (1/8)[f (@ + 6h) — f(2)]—
—f'(®)- he U, whenover h e By, we By, feF. Now (1/8) U [f(B,+ 0B;) —f(By)]

feF

is precompact, since & iy collectively precompact. Hence UJS (B B, is
. JeF
also precompact.

4. Collective houndedness. In this section, we investigate possible
analogies Dbetween collectively precompact and collectively bounded
mappings. It turng out that collectively bounded mappings are better
behaved than in the precompact case. For example, the concepts of collec-
tive boundedness and collective joint boundedness for &' coincide. We
begin with. two definitions. :

DeriNieion 4.1. The family & is collectively bounded if for each Bes,
U f(B) is a bounded subset of F.

JeF

In thoe next definition, we suppose that & is a collection of Gateaux
differentiablo maps. F' iy defined as in Section 3.
DurNreton 4.2, The family # is collectively jointly bounded, if for
cach Byedt and Byed, \Jf(By) By is & bounded subset of F.
JaF

It is easy to soo thut the colleetive joint boundedness of # is equiv-
alent to tho colleetive boundednoss of the induced family {f': Bx B
= | feF} dofined as in Soection 3.

Trworum 4.3, Let F be equidifferentiable at w< B. Then F is collectively
bounded implies {f' (x)}pz i collectively bounded.

Proof. Tt Bed and Ue%. Choose a balanced Ve# such that
V-V e U, Choose §:3> 0 such that (1/8) [f(w+ 6h) —f(@)]—Ff (z) ke V,
whenover fe.# and he B.
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Now (1/8) U [f(z+ 6B)—f(»)] is a bounded subset of F. Thus there
feF
exists Ae R such that (1/8) U [f(z+ 6B)—f(#)] =« AV. We may assume
feF

A=l
Then, for all he B and fe#, we have

J(@)h = {f' (@) h—(1]6) [f(w+ 0h) —f (@)1} +(1/8) [f(2 + 0h) —f(x)]
eV4AV e« AVHAV < AU.
Thus (Jf' (#)-B < AU, and so Lgf’(w)-B is bounded.
JeF . Je

THEOREM 4.4. Suppose F is a finile family of Gdteauw differentiable
maps and F is a locolly convex space. Then F' is collectively  jointly
bounded implies F is collectively bounded.

Proof. This result is a corollary of Theorem 3.11 gince in a locally
convex space the bounded sets are precisely the weakly precompact sets
([14], pp. 50, 67). We remark here that if we assume F is a locally convex
space in each of the theorems in this section (except Theorem 4.6), they
become corollaries of the corresponding results for collective precompa-
ctness in Section 3.

TeEoREM 4.5. Suppose F is uniformly equidifferentiable on bounded
subsets of . Then & is collectively bounded implies F' is collectively jointly
bounded.

Proof. Let B,c#, B,c# and Ue%. Choose a balanced Ve such
that V4V « U. Now & is uniformly equidifferentiable on B,, and so
there exists 8 > 0 such that (1/6) [f(z -+ Oh)—f(@)]—f'(») - heV, whenever
e By, heB, and fe#. But (1/6)fU [f(By+ 6B,)—f(B,)] is a bounded

e F

subset of F. Thus there exists 1>1 such that
(1/5)ﬁUf[f(B1+6Bz) —f(B.)] = AV.
Then, for each xeB,, he B, and fe#F, we have
F@) b = {f (@) h—(1/6) [f(w+ 6h) —f ()]} +(1/6) [f(x + oh) —f(=®)]
eV4AV < AU.
Thus ]gf’ (By)- B, is bounded.

THEOREM 4.6. Let # be a family of Géteaun differentiable maps from B
into F. Then F' is collectively bounded if and only if F' is collectively jointly
bounded.

Proof. Let B,e%, Bye# and Ue#. Then UF(By) By = AU if and
. JeF
only if IL}J_f’(Bﬂ < A(B,, U), where ie R. The result follows.
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S’ strongly continuous

]

E
o f' (@) strongly
semi- A28 (I) 2.8 (IL)y continuons
reflexive .
l f' jointly strongly co‘nbinuous—l
S uniformly 6 9
differentiable A 26 6y
, f strongly continuous ]
2.5y
[ f'(2) strongly continuous |
l F' collectively precompact I
3.10 J' ()
/‘/ Y precompact

I F' collectively jointly 1)recdmpactl

F
uniforly

equidifferentiable

A 3.12

3.11

{ & finite

l

# collectively precompact |

3.9

# cquidifferentiable

I {/'(x)} collectively precompact I
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, F' colleétively bounded I
A 4.6 4.6

I Z' collectively jointly bounded I

F
uniformly - A 4.5 4.4 Y & finite
equidifferentia,blg
I Z collectively bounded I ,

4.3 y. # equidifferentiable

L{f’(w)} collectively -bounded ]

5. Examples. The purpose of this section ig to present some examples
related to the results which have been obtained. For convenience, we
define the following mappings:

(a) f: * > R, where f(z) = (2, ®). f i8 Fréchet differentiable, and
f'(#): ¥ — R is defined by f' () y = 2(z, y). _

(b) For each positive integer n, we define g,: B+ R, by g,(«)
= sinnz, for each ze R.

(e) h: B -1’ where h(z) = (a2), & = (). b is Fréchet differentiable,

and b'(z): I —1* ig defined by
W(@)y =2(y,), y=(y,).

(d) yv: B — R, where y(z) = #*in(1/2), (% # 0) and 9(0) = 0. Then
v’ (4) = 2@sin(1/m) —cos (1 /), (2 + 0) and o' (0) = 0, .

(e) @: 1.3-—>R, where @(2) = #?sin(1/w2), (# # 0) and @(0) = 0. Then,
o' (2) = 2a8in (1 /22) — (2 /z) cos (1 /a?), (& 0) and ¢'(0) = 0.

(1) m: B —P, where w(2) = m, for cach el

(g) For each positive integer n, we define tn: B — R, where u, (v) = n,
for each ze R.

Then, we have the following examples:

(I) The converse of Theorem. 2.5 does not hold, sinee () is
strongly continuous, for each wel’, but h is not strongly continuous.
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(II) We cannot drop the assumption of uniform differentiability on,
bounded sets in Theorem 2.6 and Corollary 2.7, since the map v is strongly
continuous, but y’ is not jointly strongly eontinuous. y 18 also weakly
continuous, but 9’ is not jointly weakly continuous.

(IIT) The condition: f'(») is strongly continuous, for each ze B,
is needed in Theorem 2.8 (II), since the map &' is strongly continuous,
but #’ is not jointly strongly continuous.

(IV) The converse of Corollary 2.9 does not hold, since ' is jointly
weakly continuous, but not strongly continuous.

(V) The converse of Theorem 3.8 does not hold, since ¢ is weakly
continuous, but ¢’ is not precompact.

(VI) The converse of Theorem 3.9 does not hold, since h'(w) is
precompact, for each we ¥, but & is not precompact. This example is due
to Yamamuro ([17], p. 131) and Bonic ([8], p. 392).

(VII) In Theorem 3.12 the agsumption that # be uniformly equidif-
ferentiable on bounded sets cannot be omitted, since @ i3 precompact,
but ¢ i8 not jointly precompact. This example also shows that uniform
equidifferentiability cannot be dropped in Theorem 4.5.

(VIII) The map f is precompact and uniformly differentiable on i,
but f’ is not precompact.

(IX) The condition that f'(») be precompact, for each we B and
each fe#, cannot be dropped in Theorem 3.10, since ' is precompact,
but not jointly precompact.

(X) The collection &F' = {u,} is collectively precompact, and
{un(®)} is collectively precompact, for each ze B but & = {¢s} is not
collectively precompact. Thus Theorem 3.11 does not hold for infinite .
This example also shows that Theorem 4.4 does not hold for infinite &,
and the converse to Theorem 4.3 does not hold.

(XI) The assumption of equidifferentiability cannot be omitted
from the Theorems 3.9 and 4.3, since the collection # = {g,} is collectively
bounded and collectively precompact, but {g,(0)} is neither collectively
bounded nor collectively precompact.
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Optimal control by means of switchings
by
J. ZABCZYK (Warszawa)

Abstract. A stochastic control model is considered. A general theorem about
the optimal strategy and. the maximal reward is proved. In two special cases the
optimal solutions are found effectively.

Introduction. Let {X%,, be a finite family of Markov processes
and let non-negative functions f, ¢; (d< D), be defined on the state space B.
At time ¢ = 0, when being in a state #< B we choose a process X%. The
cost arising from thig choice is equal to ¢a,(%). We observe the process X%
and at the stopping time 7, we choose a process X%. Our reward at any
time ¢ < 7y is equal to :

i
[ Fa)ds — e ().
0

Next we observe the process X% and at the stopping time 7, > 7, we choose
& process X%, At time te [z, 7,) our reward is equal to

( [ Fioyas — o, (@) + ( f £ (i) ds — o ().

0 Ty

Suppose that we can repeat these selections N times. What is the
maximal total expected reward? Which strategies should be chosen to
maximize the total expected reward starting in some state ze BY

In this paper we prove a theorem which gives an answer to these
questions. In two special cases we tind cffectively the maximal reward
and optimal strategies. _ :

The author of this paper wishes to thank Professor B.B. Dynkin
whose questions, posed on his Seminar in Moscow, suggested the subject
of this note.

The optimality theorem. To precise the above problems we shall.
formulate the described situation in terms of controlled Markov: chains.
To do this we assume that the Markov processes X¢ are equal to (2, M,
My, X, 0,, P where only P¢ depends on d (see [1], p. 20).
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