

STUDIA MATHEMATICA, T. XLV. (1973)

On the individual ergodic theorem for subsequences

by

RYOTARO SATO (Sakado)

Abstract. In this paper it is shown that the Dunford-Schwartz ergodic theorem holds for uniform sequences. The result, obtained below, generalizes and extends a result of Brunel and Keane Z. Wahrscheinlichkeitstheorie verw. Geb. 12 (1969), pp. 231-240.

Let (Ω, \mathcal{B}, m) be a σ -finite measure space and let T be a positive linear operator from $L^1(\Omega)$ to $L^1(\Omega)$ with $||T||_1 \leq 1$. We shall say that the individual ergodic theorem holds for T if for any uniform sequence k_1, k_2, \ldots (for the definition, see [2]) and for any $f \in L^1(\Omega)$, the limit

$$f^*(\omega) = \lim_n \frac{1}{n} \sum_{i=1}^n T^{k_i} f(\omega)$$

exists and is finite almost everywhere. In [2], Brunel and Keane showed that the individual ergodic theorem holds for every measure preserving transformation on a finite measure space. In the present paper we shall generalize and extend this result to one at the operator theoretic level.

THEOREM 1. If T maps, in addition, $L^p(\Omega)$ into $L^p(\Omega)$ and $\|T\|_p \leqslant 1$ for some p with 1 then the individual ergodic theorem holds for <math>T.

Proof. Let k_1, k_2, \ldots be a uniform sequence, and let $(X, \mathscr{X}, \mu, \varphi)$ and y, Y be the apparatus connected with this sequence. Φ will denote the operator in $L^1(X)$ induced by φ . Taking $(\Omega', \mathscr{B}', m')$ to be the direct product of (Ω, \mathscr{B}, m) and (X, \mathscr{X}, μ) and T' the direct product of T and Φ , it follows that T' is a positive linear operator from $L^1(\Omega')$ to $L^1(\Omega')$ and $\|T'\|_1 \leq 1$. Since $\|T\|_p \leq 1$ by hypothesis, it also follows that T' maps $L^p(\Omega')$ into $L^p(\Omega')$ and $\|T'\|_p \leq 1$. Suppose first that $f \in L^1(\Omega) \cap L^p(\Omega)$ and $f \geqslant 0$. As in [2], for any fixed $\varepsilon > 0$, choose open subsets Y', Y'' and W of X such that $Y' \subset Y \subset Y''$, $\mu(Y'' - Y') < \varepsilon$, $y \in W$ and for any $x \in W$ and any $n \geqslant 0$,

$$1_{\mathcal{F}'}(\varphi^n x) \leqslant 1_{\mathcal{F}}(\varphi^n y) \leqslant 1_{\mathcal{F}''}(\varphi^n x).$$

Define

$$g(\omega, x) = f(\omega) \mathbf{1}_{Y}(x),$$

$$g'(\omega, x) = f(\omega) \mathbf{1}_{Y'}(x),$$

$$g''(\omega, x) = f(\omega) \mathbf{1}_{Y''}(x).$$

It follows from [1] that

$$\bar{g}'(\omega,x) = \lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} T'^{k} g'(\omega,x)$$

and

$$\bar{g}''(\omega, x) = \lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} T'^{k} g''(\omega, x)$$

exist and are finite almost everywhere. Clearly \bar{g}' and \bar{g}'' belong to $L^p(\Omega')$, and the mean ergodic theorem implies that

$$\lim_{n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T'^{k} g' - \bar{g}' \right\|_{p} = 0$$

and

$$\lim_{n} \left\| \frac{1}{n} \sum_{i=1}^{n-1} T'^{k} g'' - \overline{g}'' \right\|_{p} = 0.$$

Put

$$egin{aligned} S(\omega) &= \limsup_n rac{1}{n} \sum_{k=0}^{n-1} T^k f(\omega) \mathbb{1}_Y(arphi^k y). \ s(\omega) &= \liminf_n rac{1}{n} \sum_{k=0}^{n-1} T^k f(\omega) \mathbb{1}_Y(arphi^k y). \end{aligned}$$

It is clear that

$$\bar{g}'(\omega, x) \leqslant s(\omega) \leqslant S(\omega) \leqslant \bar{g}''(\omega, x)$$

almost everywhere on $\Omega \times W$. Thus for any $\Omega_1 \in \mathcal{B}$ with $m(\Omega)_1 < \infty$ we have

$$\begin{split} \int_{\Omega_1} \left[S(\omega) - s(\omega) \right] dm &= \frac{1}{\mu(W)} \int_{\Omega_1 \times W} \left[S(\omega) - s(\omega) \right] dm' \\ &\leqslant \frac{1}{\mu(W)} \int_{\Omega_1 \times W} \left[\overline{g}'' - \overline{g}' \right] dm' \\ &= \frac{1}{\mu(W)} \lim_n \int_{\Omega_1 \times W} \frac{1}{n} \sum_{k=0}^{n-1} T^k f(\omega) \mathbbm{1}_{Y'' - Y'} (\varphi^k x) dm' \\ &\leqslant \frac{1}{\mu(W)} ||f||_1 \int_{\mathbb{R}} \lim_n \frac{1}{n} \sum_{n=0}^{n-1} \mathbbm{1}_{Y'' - Y'} (\varphi^k x) d\mu \leqslant \varepsilon \, ||f||_1. \end{split}$$

Since ε was arbitrary, this demonstrates that $S(\omega) = s(\omega)$ almost everywhere on Ω_1 . Since (Ω, \mathcal{B}, m) is a σ -finite measure space, we conclude that

$$\overline{S}(\omega) = \lim_{n} \frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(\omega) \mathbb{1}_{X}(\varphi^{k} y)$$

exists and is finite almost everywhere. Hence we can apply the argument of [2] to infer that

$$f^*(\omega) = \lim_n \frac{1}{n} \sum_{i=1}^n T^{k_i} f(\omega)$$

exists and is finite almost everywhere. Next we suppose that $f \in L^1(\Omega)$ and $f \ge 0$. It is easily checked by an analogous argument as above that

$$\sup_n \frac{1}{n} \sum_{i=1}^n T^{k_i} f(\omega) < \infty$$

almost everywhere. Since $L^1(\Omega) \cap L^p(\Omega)$ is dense in $L^1(\Omega)$, it follows from Banach's theorem (for example, see [3], p. 332) that for any $f \in L^1(\Omega)$,

$$\frac{1}{n}\sum_{i=1}^n T^{k_i}f(\omega)$$

converges almost everywhere. The proof is complete.

COROLLARY. Let φ be a point transformation from Ω into Ω such that $\varphi^{-1}A \in \mathcal{B}$ if $A \in \mathcal{B}$ and $m(\varphi^{-1}A) = 0$ if m(A) = 0. Suppose there exists a constant K such that

$$0<\limsup_n\frac{1}{n}\sum_{k=0}^{n-1}m(\varphi^{-k}A)\geqslant Km(A)$$

for every measurable set Λ of positive measure. Then for any uniform sequence k_1, k_2, \ldots and for any $f \in L^1(\Omega)$, the limit

(1)
$$f^*(\omega) = \lim_n \frac{1}{n} \sum_{i=1}^n f(q^{k_i}\omega)$$

exists and is finite almost everywhere.

Proof. It follows [5], [7] that there exists a σ -finite measure ν on (Ω, \mathcal{B}) such that

- (a) $\nu(A) \leqslant K^2 m(A)$ for all $A \in \mathcal{B}$;
- (b) ν is invariant under φ ;
- (c) $\nu(A) = 0$ if and only if m(A) = 0.

Thus Theorem 1 implies that (1) exists and is finite almost everywhere with respect to ν . This together with (c) completes the proof of the corollary.

Remark. Using the above corollary, it may be readily shown that if φ is as in the corollary then for any uniform sequence k_1, k_2, \ldots and for any $f \in L^p(\Omega)$, where $1 \leq p < \infty$, (1) exists and is finite almost everywhere. In particular if φ is a measure preserving transformation and if 1 , then it can also be shown [6] that

(2)
$$\lim_{n} \left\| \frac{1}{n} \sum_{i=1}^{n} f(\varphi^{k_{i}} \omega) - f^{*}(\omega) \right\|_{p} = 0.$$

In case $m(\Omega) < \infty$, (2) is true for p = 1 (see [2]).

THEOREM 2. If there exists a strictly positive function $h \in L^1(\Omega)$ such that the set

$$\left\{\frac{1}{n}\sum_{k=0}^{n-1}T^kh\right\}$$

is weakly sequentially compact then the individual ergodic theorem holds for T.

Proof. If we define an integrable function $h'(\omega,x)$ on $\Omega'=\Omega\times X$ by $h'(\omega,x)=h(\omega)$, then the set

$$\left\{\frac{1}{n}\sum_{k=0}^{n-1}T'^kk'\right\}$$

is weakly sequentially compact in $L^1(\Omega')$. Therefore a slightly modified argument of [4] shows that for any $f' \in L^1(\Omega')$,

$$\frac{1}{n}\sum_{k=0}^{n-1}T'^kf'(\omega,x)$$

converges almost everywhere and in the norm of $L^1(\Omega')$ to a function in $L^1(\Omega')$. So an analogous argument as in the proof of Theorem 1 is sufficient for the proof, and we omit the details.

References

- [1] M. A. Akcoglu and R. V. Chacon, A convexity theorem for positive operators, Z. Wahrscheinlichkeitstheorie verw. Geb. 3 (1965), pp. 328-332.
- [2] A. Brunel and M. Keane, Ergodic theorems for operator sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 12 (1969), pp. 231-240.

- [3] N. Dunford and J. T. Schwartz, Linear operators I, New York, 1958.
- [4] Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), pp. 222-227.
- [5] C. Ryll-Nardzewski, On the ergodic theorems. I. (Generalized ergodic theorems), Studia Math. 12 (1951), pp. 65-73.
- [6] R. Sato, On a decomposition of transformations in infinite measure spaces, Pacific J. Math. (to appear).
- [7] S. Tsurumi, On the ergodic theorem, Tôhoku Math. J. (2) 6 (1954), pp. 53-68.

DEPARTMENT OF MATHEMATICS, JOSAI UNIVERSITY SAKADO, JAPAN

Received July 28, 1971

(367)