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On the individual ergodic theorem for subsequences
by
RYOTARO SATO (Sakado)

Abstract. In this paper it is shown that the Dunford—Schwartz ergodic theorem
holds for uniform sequences. The result, obtained below, generalizes and extends
a result of Brunel and Keane Z. Wahrscheinlichkeitstheorie verw. Geb. 12 (1969),
pp. 231-240.

Let (2,%,m) be a o-finite measure space and let 7 be a positive
linear operator from I*(Q) to L*(Q) with [T|, <1. We shall say that
the individual ergodic theorem holds for T it for any uniform sequence
kyy &y, ... (for the definition, see [2]) and for any feI'(R2), the limit

1 n
f*(w) = lim — Tk"f(w)
n N ‘;

exists and is finite almost everywhere. In [2], Brunel and Keane showed
that the individual ergodic theorem holds for every measure preserving
trangformation on a finite measure space. In the present paper we shall
generalize and extend this result to one at the operator theoretic
level.

TumoreM 1. If T maps, in addition, L*(Q) into L?(Q) and | T, <1
for some p with 1 <p < co then the individual ergodic theorem holds
for 1.

Proof. Let ky, &y, ... be a uniform sequence, and let (X, &, u, @)
and y, Y be the apparatus connected with this sequence. @ will denote
the operator in I} (X) induced by ¢. Taking (', #', m') to be the direct
product of (2, #, m) and (X, Z, p) and T’ the direct product of T and &,
it follows that 7" is a positive linear operator from L'(Q) to L*(2") and
10, < 1. Since 17, < 1 by hypothesis, it also follows that 7' maps
LP(&) into ILP(Q) and |17|,< 1. Suppose first that feI'(Q)n L?(Q)
and 3> 0. As in [2], for any fixed &> 0, choose open subsets ¥', ¥~
and W of X such that ¥' ¢ ¥ <« ¥, u(¥'—Y)<¢ yeW and for
any xeW and any # = 0,

1r (") < Ly (0"Y) < 1po(g"a).
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Define
g(w, 8) = f(w)ly(2),
9 (0, ) = flo)ly(2),
9" (@, @) = f(w)Ly(x).

It follows from [1] that
7 (w,2) ——11m —~—2.’l’/’° (0, )

k=0

and
n—1

7' (w, ) -11m -——21’"‘9 (w, %)

k=0
exist and are finite almost everywhere. Clearly §' and §” belong to L”(2'),
and the mean ergodie theorem implies that

=1

. 1 /k 4 -
11}111 ;ZT g —7 !p
and
11111 21”’“ g ' = 0.
Put
1 n—1
=1 = > Tk oFy).
§(a) = limsup ; 1)1 (7"9)
1 n—~1
$(0) = limint —2T7“f(w)ly((p’“y).
" n k=0
It is clear that .
7w, o) <s(0) < 8(0) <7 (0,2)
almost everywhere on 2 x W. Thus for any Q, <% with m(2); < oo we have
1
f[S(w)»«s(w)]clm = [S{w)—s(w)]dm’
3 B e
<t f " —7"lam’
G) P A
— T"' po e (¢ 0) dm’
(W £ o D g

-1

I i N %
< gl J lim % Ly (F0) du <

&flla-
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Since ¢ was arbitrary, this demonstrates that S(w) = s() almost every-
where on £,. Since (2, #, m) is a o-finite measure space, we conclude that

S(w) = hm—ZT () 1(9%y)

k=60

exists and is finite almost everywhere. Hence we can apply the argument
of [2] to infer that

o) —lim L S
fho) =lim s D T (w)

exists and is finite almost everywhere. Next we suppose that feLl(2)
and f> 0. It is easily checked by an analogous argument as above that

n
1 O
— i
Slip " ijl Vi f(co) < oo

almost everywhere. Since I*(Q) n LP(Q) is dense in L'(Q), it follows
from Banach’s theorem (for example, see [3], p. 332) that for any f <L'(2),

1\,
—;;T"*f(w)

converges almost everywhere. The proof is complete.

CoROLLARY. Let ¢ be a point transformation from Q into 2 such that
¢ ' AeB if AcB and m(pTrA) =0 if m(4) = 0. Suppose there exists
a constant K such that

0 < limsup-- 2m(<p"’°A) Em(4)

k==0

for every measurable set A of positive measure. Then for any uniform

sequence ky, ks, ... and for any feL'(R), the limit
) M) —hm—« f ko)

exists and is finite almost everywhere.

Proof. It follows [6], [7] that there exists a o-finite measure » on
(2, #) such that ‘

(a) »(4) < E'm(4) for all AB;

(b) » is invariant under ¢;

(e) »(4) =0 if and only if m(4) = 0.
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Thus Theorem 1 implies that (1) exists and is finite almost everywhere (31
with respeet to ». This together with (c) completes the proof of the corol- [4]
lary.

Remark. Using the above corollary, it may be readily shown that -l
if ¢ is as in the corollary then for any uniform sequence ki) kyy ... and [6]
for any feI”(Q), where 1L < p < oo, (1) exists and is finite almogt overy-
where. Tn particular if ¢ is & measure preserving transformation ahd if (71

1 <p < oo, then it can also be shown [6] that

(2) lim

= 0.
»

[ Dt =1 o)

In case m(Q) < oo, (2) is true for p = 1 (see [2]).

THEOREM 2. If there ewists a strictly positive ﬁmciion heL*(Q) such
that the set )
1 n—1 - .
Bl %
LN
k=0 . .
is weakly séﬂéntially compact then the individual berg‘bdic theorem holds
for T. L
Proof. If we define an integrable function A'(w,s) on Q' =0Qx X
"by B (w, @) = h(w), then the set

Hova sk et

p5e

k=0

is weakly sequentially compact in L*(2"). Therefore 2 slightly moditied
argument of [4] shows that for any f'eI*('),

n—1
i N
) ;_%Téf(w,w),

converges almost everywhere and in the norm of LML) to a function
in L4{"). So an analogous argument' ag in the proof of Theorem 1 is suffi-
cient for the proof, and we omit the details.
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