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Generalized convolutions IT
by
K. URBANIK (Wroclaw)

Absteact. Tho purposo of this paper is to prove the uniqueness theorem for
a ropresentation of tho eharacteristic function of infinitely divisible measures in a gen-
eralized convolution algebra. This result is used to investigate stable and self-decom-
posable measures.

1. Introduction. ¥or the terminology and notation used here, see
[3]. In particular, ¥ denotes the class of all probability measures defined
on Borel subsets of the positive half-line. Further, B, (o> 0) denotes
the probability measure concentrated at the point a. For any positive
number & the transformation T, of P onto itself is defined by means of
the formula (7,P)(&) = P(a~&) where P<P, & is a Borel set and o1&
= {a"'s: wed}. The transformation T, is defined by assuming T,P = H,
for all PeP. )

A commutative and associative PB-valued binary operation o defined
on P is called a generalized convolution if it satisfies the following condi-
tions:

(i) the measure F, is a unit element, i.e. B,oP = P for all PeP;

(ii) (P +bQ)oR = a(PoR)+b(QoR), whenever P,Q,ReP and
az0,b20, at+b=1;

(iil) (L P)o(T,@) = T,(PoQ) for any P,QeP and a> 0;

(iv) it P, - P, then P,0Q — Po@ for all Qe P where the convergence
is the weak convergence of probability measures;

(v) there exists a sequence ¢y, ¢y, ... of positive numbers such that
the sequence T, U weakly converges to a measure different from .

The power JI5" is taken here in the sense of the operation o. The
clagy P with a generalized convolution o is called a generalized convolu-
tion algebra and denoted by (P, o). Algebras admitting a non-trivial
homomorphigm into the real field are called regular. We say that an
algebra (P, o) admits a characteristic function if there exists one-to-one
correspondence P « @, between probability measures P from P and
real-valued functions @5 defined on the positive half-line such that Pup 0
= a@p+bPy (a2 0,020,a-+b =1), Ppp = PPy, Ppp(t) = Pp(at)
(20,1t 0) and the uniform convergence in every finite interval of
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©Op, is equivalent to the weak convergence of P,. The function @, iy
called the characteristic function of the probability measure P in the
algebra (P, o). It plays the same fundamental role in generalized con-
volution algebra as in ordinary convolution algebra, i.e. in classical prob-
lems concerning the addition of independent random variables.

It is proved in [3] (Theorem 6) that an algebra admits a character-
istic function if and only if it is regular. Moreover, each characteristic
function is an integral transform

) = f Qtw) P (dx),

where the kernel 2 satisfies the inequality Q(») < 1 in a neighborhood
of the origin and

2 lim ——— *

(2) %@

uniformly in every finite interval. The positive constant » does not depend
upon the choice of a characteristic function and is called a charactoristio
exponent of the algebra in question. Moreover, there exists a probability
measure M called a characteristic measure of the algebra for which

(3) By (t) = exp (—t7)
([3], Theorem 7).

Throughout this paper we assume that the algebra (8, o)
lar and ®p is a fixed characteristic function in (B, o).

1— Q(tm)

is regu-

2. Infinitely divisible measures. A measure PeP is said to De
infindtely divisible if for every positive integer n there exists a ineasure
P, P such that P = P;™ The class of infinitely divisible measures coincides
with the class of all limit distributions of sequences P,;0P,0 ... oP .
where P (k =1,2,...,k,; » =1,2,...) are uniformly asymptotically
neglegible (see [3], Theorem 12).

Taking an arbitrary number z,> 0 such that Q(«) < 1 whenover
0< o<, we put
@) (@) = ‘1~Q(w) it 0L ey,

L—Q(x) if 2> .

In [3] (Theorem 13) I proved that the class of eharacteristic funetions
of infinitely divisible measures Pe¢ P coincides with the class of functions

v ()

when m runs over all finite Borel measures on the positive half-
line and the integrand is defined as its limiting value —1* when # == 0,

(5) Op(t) = exp [ .“?.(fm‘)_:}_ m(da),
i
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The aim of the present paper is to prove that the representation (5)
ig unique, i.e. that the function @, determines the measure m. The uni-
queness of the representation (5) will lead to some results concerning

_ stable and self-decomposable probability measures in the algebra (B, o

TuworEM L. The representation (5) of the characteristic fumction of
imfimitely divisible measures 48 unique.

Proof. Suppose that @ is given by formula (5). 'We introduce an
auxiliary finite measure m, defined on the positive half-line by means
of the formula

( f.Q 'Lw)du) m(clv)

(6) mo(#) = ,f (L —exp( —0* ®)

‘We notie that, by Theorems 1,5 and 6 in [3], the inequality f Q(uwv)du < 1
0

is true. Consequently, the density function in (6) is positive for o > 0.
Moreover, by (2) and (4), this density function iy bounded which implies
the finiteness of my,.

First we shall prove that the function @, determines the measure m
on the open half-line (0, oo). Of course, to prove this it suffices to prove
that @y determines the measure m,. Let us introduce the notation

(1) = f (1—2()) (1- Of Q(w:)du) _”ciu%’)l

Taking into account the formula

Q1) 2(uv) = By (0) By (v) = Bigoy, (v) = [ 2(yo) (Fyo B,) (dy)
¢

by a simple computation we get the equation

(1) 1) = ~log®u(t) f log @y (1) do -+ [ { log ®p(v) (B0 B,,) (dv) du.
Further, integrating with réspect to the characteristic measure M of the
algebr we got, by virtue of (L) and (3), the formula

~ o m(dv)

[ T (ty) M (dy) + f (L—exp (- - ) (L~ f!’ ) dfw) PO

o
[ o

Thuy, by (6), ’

o0 (s8] [=+]
f OxP (0% 1y () fI (- 1)y f I (ty) M ().
0 0 0
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Hence and from (7) it follows that the function @, determines the modified
Laplace transform of the measure m,. This proves that the measure m,
and, consequently, the measure m is uniquely determined by &, on the
open half-line (0, oo).

It remains to prove that m({0}) is also determined by @p. But this
is a direct consequence of the formula

P
m({O)# = —log@p(t)+ f(@(m)—l) W;(g:;"
(0,00)

which completes the proof.

3. Stable measures. A measure Pe is said to be stable if for any
pair a, b of positive numbers there exists a positive number ¢ such that
T, PoTyP = T,P. The clags of stable measures coincides with the class
of all limit distributions of sequences 7., P°’” where ¢, > 0 (n =1, 2,...)
and Pe P (see [3], Theorem 15). A descrlptlon of the characteristic func‘rmn
of stable measures was given by Theorem 16 in [3]. By the unigueness
of the representation (5) we are now in a position to establish a- simpler
description of these functions. We start with a Lemma.

LeMmA 1,

m2 o o

a0 @
Proof. Suppose the contrary, i.e.

lm....gfv_n_)_ = 00
n-+o0 mn

tor a sequence {,} tending to 0. Since, by (2) and (4),

lim 1—Q(xw,) —
N0 w (wn)

we have, for every positive number @, the formula
lim, }_'—‘Qn(mmn) —

N—00 [

Obviously, the characteristic measure M of the algebra is not concen-

trated at the origin. Consequently, the Fatou Lemma vields the equation

hmf LM_’L M (do) =

P00
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On the other hand, by (3),

P10 (e —exp( — "
f I=00m) 4 iy S rzesplza)
"I"'n, &,

n

which implies a contradiction. The Lemma is thus proved.
TuxoreM 2. The class of characteristio functions of stable measures
in (B, o) coincides with the class of functions
Bp(t) = exp(—et?),
where 62 0 and 0 < p <
i question.
Proof. By Theorem 16 in [3] it sutfices to prove that the integral

;5 % boing the characteristic exponent of the algebra

[
f ;1(! p) dw is finite if and only if p < x. The finiteness of this integral
0

for p < x is a divect consequence of Lemma 1. It remains to prove that

Contrary to thig let us assume that the last integral is finite. Then the
measure m, defined by the formula

m,, (K -bf W‘ ,

fw Lie)~1

Thus, by (3), m, is the representing measure in (3) corresponding to the
measure M, On the other hand, the unit measure K, has the same prop-
erty which contradicts the Theorem 1. Theorem 2 is thus proved.

4. Self-decomposable measures.. A measure PeP is said to be self-
decomposable if for overy humber ¢ satistying the condition 0 <e <1
there exists a measure @, e P such that P = T, Po@,.

The following Lemmas is used in the sequel. They are a generali-
zation of Liemmas which are well-known for ordinary convolution algebra.

Ligmma 2. The characteristio fmmon of a self-decomposable measure
does not vamish,
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Proof. Suppose the contrary and assume that Pp(a) =0 and
@p(t) # 0 whenever 0 <t < a. We note that for each number ¢ satisfying
the condition. 0 < ¢ < 1 the formula

(8) Dp (1) = Dp(et) Do, (1)
is true. Hence we get the relation

lm @y, (¢) =

-1
in the interval 0 <<t < ¢. Applying the Compactness Lemma ([3], 230)
we can choose then a sequence {¢,} (0 < ¢, <1) tending to 1 such that
the sequence of measures {Q%} is weakly convergent. to a measure from .
Thus

lim g, (1) =1

n-+o0 (g
uniformly in the interval 0 < ¢ < & and, consequently, @Q(‘, (@) # 0 for
sufficiently large indices n. Hence and from (8) it follows that (Dl,(o,, =0

for sufficiently large » which yields a contradietion. The Lemma is thus
proved.

LemmA 3. Let P be a self-decomposable measure. Then for each ¢
(0 < ¢ < 1) the associated measure Q. is infintiely divisible. Further, seiting

(9) -P1=P; n“" nQn— (”’3213’”')
we have
(10) P =T,1(PoPy0...0P,) (n=1,2,...).

Moreover, the measures T,—1 P, (b =1,2,...,n; n =1,2,...) are uni-
Sformly asympiotically negligible.

Proof. By Lemma 2 the characteristic function @, does not vanish.
Since

(11) Dp(t) = Bp(ct) By, (1),
we have the equations

[}
(12) G =0, O u)@P((;‘fii),)- (n=2,3,..),

which imply
n
&p(nt) = [[ o, (1)
Ie=1

Formula (10) is a direct consequence of the last equatidn. Further, by (12),
J)Tn_ 1, —> 1 uniformly in % (k < ») which shows that the measures 7',-1.P;

(b =1,2,...,m; n =1,2,...) are uniformly asymptotically negligible.

Generalized comvolutions IT 63
Given a number ¢ (0 < ¢ << 1) we putb

B, = Ly-1(l [cn]{lqp[nn]kzo"-opn) (w=1,2,..,

where the square brackets denote the integral part of a real number.
By (L1) and (12)

Bp (1) Dp(t) _
(f"%] )b> oty — Lot
.l

By (1) =

uniformly in every finite interval. Thus R, - @,. Since the measures
Ty Py (ko == [en] -1, [on]-+2, ..., n; # =1,2,...) are uniformly asym-
ptotically negligible, the umn, meagure @, is infinitely divisible ([3],
Theorem 12) which completes the proof.

LamMA 4. If the measures T, Pr (h=1,2,...,mn=1,2,...)
are uniformly asymptotically negligible and the sequence Ty (PioPyo ... oP,)
comverges to a probability measure P different from B, then

(13) lime, = 0
N—-r00
and
(14)
neves O g1

Proof. (‘ontmw to (13) let us suppose that there exists a subsequence
ky < Ty << ... for which

limeg! = b < oo.

N 00
Theu, taking into account that Lhe measures Ty, P (h=1,2,...; ky;
=1,%2,...) are uniformly agymptotically negllnxble, we mfel that

Py Ba(Ty P) > TyBy =By (b =1,2,..).
C.

Henee wo got the equation
Ty, (B0 Pyo o 0ly) = By (m=1,2,...).

tonsequently, L == ¥, which contradicts the assumption. Formula (13)
iv thus proved.

Yot us turn next to (14). Suppose that we could find a subsequence
8y %% 8y << .. for which the condition
Ospte1

d == lim
Nep OO

#1

n
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is fulfilled. First we consider the case d < cc. Since T, P, — E,, we have

T

¢
Sn+1

(P1oPyo ... 0P, ) =Ty, Py )oT

Tcsn(P%on .0 %m‘ll’s‘n.}n1 —- TP,
where d, denotes the quotient o, ../0;,
P=TyP k=0, +1, +2,...). Since 0 is a limit point of the sequence
© (b =0, +1, +2,...) the last equation yields P = T,P = F, which

contradicts the assumption. '
It remains the case d = oo. Then, denoting ¢, /0, .. shortly by q,

we have the relation

. Thus P = T,P and, consequently,

T,,sn(l’lol’zo . Yoy, (T, .\.11)%-1«1) -+ P.

"n,
On the other hand this sequence being equal to
Tq"(Tc,,"H(PlOPzO wen 0Py 1))

tends to T,P, i.e. to E,. Consequently, P == F, which contradicts the
assumption. The Lemma is thus proved.

‘We are now in a position to give a characterization of self-decomposs
able measures.

THEOREM 3. The class of self-decomposable measures in (T,
with the dlass of limit distributions of sequences T, (PioP,o0 ..
ToPp (k=1,2,...,0; n =1,2,
gzble )

o) coincides
. 0.P,) where
...) are umfmmly asymplotically negli-

Proof. First suppose that P is a limit distribution of a sequence
T(,Pr10Py0 ... 0P,) where T, Le (B=1,2,..,n; n=1,2,...) form
a trla,ngnlar array of umformly asymptotlcally neghglble measures.
. Since the unit measure E, is obviously self-decomposable, we may assume
that P # B,. Then, by Lemma 4, for any number ¢ (0 < ¢ < 1) we can
find sequences k; <k, <... and s, <s$,<... such that s, <%, and

kﬂ
lim — = ¢. Setting

N—>00 O
.Un = *[1% (P OPZO O-Pk,n)i
Vo = .’l’aan(l?lol’zo oI’an),
Wy =14, (Py 110P, 40 ... oPy),
we have the relations
(1.6) U,= Tkn VoW, (n=1,2,..),
=
(17) Un">1)7 -Tknvn""TcP'

Sn
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From (16) it follows thait By, (t) tends to @p(#)/Dp(0t) in a neighborhood of
the origin. Applying the 001npaetness Lemma ([3], p. 230) we infer that the
sequence { W, } is compact. Let @, be its limit point. Then, by (16) and (17),
P = T,Po@, which shows that P is a self-decomposable measure.

The converse implication is a direct consequence of Lemma 3, which
completes the proof.

‘We proceed now to a representation problem for characteristic func-
tions of self-decomposable measures. First we establish some properties
of meagures m corresponding to self-decomposable probability measures
by the representation formula (5).

Let [0, co] denote the compactified half-line. A subset of [0, oo]
is said to be separated from the origin. if its closure is contained in (0, oco].
Let m be a finite Borel measure on [0, co]. For any Borel subset & of
[0, co] separated from the origin we put

d;
Im( éa) = "Z)((wm)) )

where, according to (4), the integrand is assumed to be (L—Q(w))™
if ¥ = 0. Denote by M the set of all finite Borel measures m on [0, o]
satistying for all numbers ¢ (0 < o < 1) and all Borel subsets & seperated
from. the origin the following condition

(18) In(8)=In(c™ )20

It is clear that the set M iy convex. Let & be the subset of M consisting
of probability measures on [0, co]. The set & is convex and compact.

Suppose that the measure m is concentrated on the open half-line
(0, o) and put

7 m(du
(19) ) = [ 20 @>0.
Obviously, I,([a,b)) = Jp(@)—Jn(b). It is easy to see that mei if

and only if the inequality (18) holds for all ¢ (0 < ¢ < 1) and all subsets &
of the form [a, b). Consequently, me M if and only if for every triplet
w,b, 0 satistying the conditions 0 <¢ <1, 0 <a<b the inequality

b
T =945} () >0

i true. Introducing the notation
(21) F(w) = Jp(e%)
and substituting @ = ¢®*, b =6,
into (20) we get the inequality
F(n) < k(l«’(w——h)-}-ﬁ'(m-kh)}.

(20) Jm(a’) -

(—o0 < @< 00)
0=0¢"(—0< @< o0, 0 <h< c0)

b — Studie Mathematica XLV.1
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Thus the function ¥ is convex on the real line. Moreover, by (19), it is
also monotone non-increasing with I'(o0) = 0. Consequently, it can
be represented in the form

F(z) = f(lm('u’) du,

where ¢, is monotone non-increaging and non-negative. Further, by
(19) and (21),

! da
(22) (&) = [ w(z)g (logn) ==
i
Conversely, if ¢ is monotone non-increasing and non-negative function and
f w(m)q(logm)-%ﬁ <
o
then the measure m defined by means of the formula

m(8) = [ o@)aloga)
B

i o0
belongs to M. Indeed, then J,,(z) = j g(logu)%—ji and the inequality

@
(20) is evident. Moreover g,, = ¢ at all continuity points.
‘We may assume that the function ¢, is continuous from the right.
In this cage g,, is uniquely determined by the measure m. Thus we have
proved the following Lemma. '
LeMMA 5. Bouation (22) establishes a one-to-ome correspondence bo-
tween measures m from I concentrated on the open half-line (0, oo) and non-
negative monotone non-increasing continuous from the vight fumctions g,
on the real line satisfying the condition
~ dw
[ w@)gnltoge) - < co.
d @
Further, the measures m from K corresponds to functions g, satisfying the
condition : '

(23) f () q,,,(logm)-fg{ 'y
J p

‘We define a family m, (z<[0, oo]) of probability measures on [0, oo]

ag follows: my, = Hy, m, = H, and
(24) my (&) = a(w) o) — (0 < &< o0),
&nfo,a] ‘
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@
Yo (w
where a(z)™* = J o)
h U

for all «. It is obvious that m, and m,, belong to K. Since the measures m,
(0 < @ < o) are concentrated on the open half-line (0, o) and

du. We note that, by Lemma 1, a(z) i finite

a(w) it u<logw

[ p—
(25) Qmm(“) 0 it u> loga
we infor, by Lemma 5, that m,ef too.

LoMMA 6. The set {m,: @we[0, o]} coincides with the set of ewtreme
points of K. ‘

Proot. Let m,w;, w,ef. It iy evident that m = cw,+(L—e)w,
it and only if g, = 6y, + (1 —0)gy,. Thus a measure m from & is an
extreme point of & if and only g, can not be decomposed into a convex
combination of two different g¢-functions satisfying condition (23). It
is very easy to verify that for #¢(0, oo) the function g, is not a convex
combination of two different g-functions with property (23). Consequently,
the measures 1, (we(0, oo)) are extreme points of the set {. Further, m,
and m,, arve extreme points too.

On the other hand the only g-functions which can not be decompos-
od into a convex combination of two different g-functions satistying
condition (28) ave the functions of the form g,(u) = b whenever u <y
and g, () = 0in the remaining case. By (23) we have the relation b = a(e").
Thus m = mmy. Consequently, each extreme point of { concentrated on
the open half-line coincides with one of the measures my, (we(0, ).
Tt ig clear that @ measure belongs to M if and only all its restriction to
(0, o), {0} and {co} respectively belong to M. Hence it follows that the
extreme points of § which are not concentrated on the open half-line
(0, oo} are supported by the one-point sets {0} and {co} respectively.
Consequently, they coincide with one of the measures m, and m,. The
Lemma is thus proved.

One ean easily prove that the mapping & — m, is a homeomorphism
betwoen [0, co] and the set of extreme points of K. Once the extreme
points of K are found we can apply 2 Theorem by Choquet ([1]). Since
onch oloment of M is of the form cw, where ¢ > 0 and we & we then get
the following Lemma.

LA 7. A measure m belongs to MM 4f and only if there ewisls a finite
Borel measure p on [0, ool such that

ff(u)m(dlu,)rz f ff(u)mx(d%)p(dw)

[0,00] {0, 20] [0,00]

for all continuous funclions [ on [0, ool
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COROLLARY. 4. measure m concentrated on [0, oo) belongs to M if and
only if there ewists a finite Borel measuwre p on [0, oo) such that

[ gwym(an) = [ [ g(w)ym,(du)p(da)
0 [

for all continuous bounded functions g on [0, oo).

Now we shall give a description of measures associated by represen-
tation formula (8) to self-decomposable probability measures. We note
that by Theorem 3 of the present paper and Theorem 12 in [3] self-cle-
composable measures are infinitely divisible.

LeMMA 8. A measure m concentrated on [0, o) i8 o representing mea-
sure in (B) of a self-decomposable probability measure if and only if me M.

Proof. Suppose that the characteristic function of a probability
meagure P is given by formula (8). Taking into account Lemma 3 we
infer that P is self-decomposable if and only if the quotient Pp/Pyp
for every number ¢ satisfying the condition. 0 < ¢ < 1 is the characteristic
function of an infinitely divisible measure. Since '

w(®)

()

F Q (tw) —1
@3 (1) r,p (1) = Po()]@o(et) = oxp [ (f”(;) 1(m(dw) L R
[}

we infer, by Theorem 1, that the measure

@
re( &) = fm(dw)-—f—g(?}——m(o“ldm)
. (¢ w)
& &
for every ¢ (0 < ¢ < 1) is non-negative. Of course, the last condition is
equivalent to the condition

[ECre

PR (o)

for every ¢ (0 < ¢ < 1) and every' Borel set & separated from the origin.
But the left-hand side of the last inequality is equal to I,,( &) —.IL,,(¢™* &).
Consequently, P is self-decomposable if and only if m « M which completes
the proof of the Lemma.

Lemma 8, Corollary to Lemma 7 and representation forinula (D)
yield the following Theorem.

THROREM 4. The class of characteristic functions of self-decomposable
measures in (B, o) coincides with the class of all functions of the form

Dol = exp [ [ 20 du( [ dv)“p(dm,
o 0 0

v

where p i3 a finite Borel measure on [0, oo).
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5. An example. As an example of a generalized convolution we
quote the (1, r)-convolutions (1< # < co) considered by J. F. Kingman
in [2] (see also [3], p. 218). The (1,1)-convolution is defined by means
of the formula

[ @ (Po@)am) =4 [ [ (fl@+y)+f(le—y))P(d2)Q(dy)
0 0 0

where f runs over all bounded continuous functions on [0, o). The (1, 7)-
convolution for » > 1 is defined by the formula

r—38

1
[#lat+y+ 20y (L—) T 2P (@0)QU)-

o 1‘(—;—) o o
[1@@eayan =—- =3[
r—1
0 I 00
)
All (1, 7)-convolution algebras are regular. As a characteristic function
in these algebras we can take the integral transformation

For\(2 i
(26) Bp(t) = of F(E) (E) Jg_l(tw.)P(dw)

where J, is the Bessel function.
The (1, »)-convolution is clogely connected with a random walk
problem in Buclidean r-space. Namely, consider a random walk in r-space

given by
8, =X;4+X,+...+X,

where X, X,,... are independent random r-vectors having spherical
symmetric distribution. The probability distribution of the length |S,}
is determined by that of the length |X,|, |Xal, ..., |Xul (see 2D- More
precisely, the probability distribution of |8,| is the (1, r)-convolution of
the probability distributions of |Xy|, [Xal, ..., [ Xyl The asymptotic
behaviour of |8,} (n =1,2,...) can be described in terms of the limit
digtribution. of the sequence ¢, |8, (v =1,2,...) where ¢, are suitable
chosen. positive numbers. It is clear that the class of all possible limib
distributions coincides with the class of all self-decomposable probability
distributions in the (1, r)-convolution algebra. Since

(m=1,2,..))

@
f ﬁ)—(—@—idu ~log(1l+2*%
w

on the whole positive half-line, wé get, by virtue of Theorem 4, the following
statement:
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The class of all possible limit distributions of sequences ¢, [8,], where
¢, >0and S, =X, +X,+...+X,'(n =1, 2,...) X being independent
random r-vectors with spherical symmetric distribution coincides with
the class of all probability distributions P on [0, co) whose integral trans-
form (26) is of the form

Pp(t) = i
= () expff % du log(1-+a%)’

where m is a finite Borel measure on [0, o),
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On generalized variations (IX)

by
R.LESNIEWICZ and W. ORLICZ (Poznaii)

Abstract, A g@-function is a non-decreasing function, continuous for = > 0,
@(w) = 0 only for u = 0 and limf(u) = oo when % — oo, For a function » with domain
[a, D] put

Volw) = sup Y @it —zE-1)),

r=1

gupremum is taken over all partitions of [@, b], #*? denotes the class of all functions »
defined on [a, b] for which @(a) = 0 and Vy(Aw) < co for certain 1> 0, and €V*?
denotes the class of all functions continuous on [a, b belonging to ¥ *o_ Among all
@-funetions the log-convex g-functions are distinguished i.e. ones satisfying the con-
dition
) < ap(u)+ fp(v)  for w,v>0, @, f>0,a+f=1.

There are progented two proofs of L. C. Young’s Theorem that if ¢ and ¢~ are log-
convex -functions satisfying the following L. C. Young’s condition

(%) N o1 (Ap)pza(ljy) < oo
pe=1

whoré @_, and @2, are the inverse functions to ¢ and ¢~ respectively then the integral
13

[ @ (t)dy(t) for functions x € ¥ *p and ye ¥~ exists in the sense of Riemann—Stieltjes.
a :
Estimations of this integral with the use of geries in (*) are given. On the same assump-

tions is proved the theorem on passing to the limit under the sign of RS-integral, in
particular — the analoguo of Helly's theorem. It ig shown also that if ¢ and ¢~ are
convex g-funetions satisfying the corbain conditions for which L. C. Young’s condi-
tion (%) does not hold then thore are functions e @¥™*? and ye<®¥™*?~ such that
their RY-integral does not exist. These results proved for scalar functions arc genera-
lized for fmnctions with values in Banach spaces. ‘

0. Introduction. The present paper can be regarded as a second
part of paper [9] which, under the same title, appeared in Studia Math.
in 1959 (results of [9] were earlier announced in [8]). In the present paper
the notations essentially differ from those employed in [9] ie. in all
places where in [9] and other papers dealing with the theory of Orlicz
spaces symbols M, NV etc. were uged we now write ¢, v, ... The purpose
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