

STUDIA MATHEMATICA, T. XLV. (1973)

Generalized convolutions II

by

K. URBANIK (Wrocław)

Abstract. The purpose of this paper is to prove the uniqueness theorem for a representation of the characteristic function of infinitely divisible measures in a generalized convolution algebra. This result is used to investigate stable and self-decomposable measures.

1. Introduction. For the terminology and notation used here, see [3]. In particular, $\mathfrak P$ denotes the class of all probability measures defined on Borel subsets of the positive half-line. Further, E_a $(a \ge 0)$ denotes the probability measure concentrated at the point a. For any positive number a the transformation T_a of $\mathfrak P$ onto itself is defined by means of the formula $(T_a P)(\mathscr E) = P(a^{-1}\mathscr E)$ where $P \in \mathfrak P$, $\mathscr E$ is a Borel set and $a^{-1}\mathscr E = \{a^{-1}x: x \in \mathscr E\}$. The transformation T_0 is defined by assuming $T_0 P = E_0$ for all $P \in \mathfrak P$.

A commutative and associative \mathfrak{P} -valued binary operation \circ defined on P is called a *generalized convolution* if it satisfies the following conditions:

- (i) the measure E_0 is a unit element, i.e. $E_0 \circ P = P$ for all $P \in \mathfrak{P}$;
- (ii) $(aP+bQ)\circ R=a(P\circ R)+b(Q\circ R)$, whenever $P,Q,R\in\mathfrak{P}$ and $a\geqslant 0,\ b\geqslant 0,\ a+b=1;$
 - (iii) $(T_a P) \circ (T_a Q) = T_a (P \circ Q)$ for any $P, Q \in \mathfrak{P}$ and a > 0;
- (iv) if $P_n \to P$, then $P_n \circ Q \to P \circ Q$ for all $Q \in \mathfrak{P}$ where the convergence is the weak convergence of probability measures;
- (v) there exists a sequence c_1, c_2, \ldots of positive numbers such that the sequence $T_{c_n} E_1^{c_n}$ weakly converges to a measure different from E_0 .

The power $\mathcal{B}_a^{\circ n}$ is taken here in the sense of the operation \circ . The class \mathfrak{P} with a generalized convolution \circ is called a generalized convolution algebra and denoted by (\mathfrak{P}, \circ) . Algebras admitting a non-trivial homomorphism into the real field are called regular. We say that an algebra (\mathfrak{P}, \circ) admits a characteristic function if there exists one-to-one correspondence $P \leftrightarrow \Phi_P$ between probability measures P from \mathfrak{P} and real-valued functions Φ_P defined on the positive half-line such that $\Phi_{aP+bQ} = a\Phi_P + b\Phi_Q$ ($a \geqslant 0, b \geqslant 0, a+b=1$), $\Phi_{P\circ Q} = \Phi_P \Phi_Q$, $\Phi_{T_aP}(t) = \Phi_P(at)$ ($a \geqslant 0, t \geqslant 0$) and the uniform convergence in every finite interval of

 Φ_{P_n} is equivalent to the weak convergence of P_n . The function Φ_P is called the characteristic function of the probability measure P in the algebra (\mathfrak{P},\circ) . It plays the same fundamental role in generalized convolution algebra as in ordinary convolution algebra, i.e. in classical problems concerning the addition of independent random variables.

It is proved in [3] (Theorem 6) that an algebra admits a characteristic function if and only if it is regular. Moreover, each characteristic function is an integral transform

(1)
$$\Phi_{P}(t) = \int_{0}^{\infty} \Omega(tx) P(dx),$$

where the kernel Ω satisfies the inequality $\Omega(x) < 1$ in a neighborhood of the origin and

(2)
$$\lim_{x\to 0} \frac{1-\Omega(tx)}{1-\Omega(x)} = t^{\kappa},$$

uniformly in every finite interval. The positive constant \varkappa does not depend upon the choice of a characteristic function and is called a *characteristic exponent* of the algebra in question. Moreover, there exists a probability measure M called a *characteristic measure* of the algebra for which

$$\Phi_M(t) = \exp\left(-t^*\right)$$

([3], Theorem 7).

Throughout this paper we assume that the algebra (\mathfrak{P}, \circ) is regular and $\Phi_{\mathcal{P}}$ is a fixed characteristic function in (\mathfrak{P}, \circ) .

2. Infinitely divisible measures. A measure $P \in P$ is said to be infinitely divisible if for every positive integer n there exists a measure $P_n \in \mathfrak{P}$ such that $P = P_n^{\circ n}$. The class of infinitely divisible measures coincides with the class of all limit distributions of sequences $P_{n1} \circ P_{n2} \circ \ldots \circ P_{nk_n}$, where P_{nk} $(k = 1, 2, \ldots, k_n; n = 1, 2, \ldots)$ are uniformly asymptotically neglegible (see [3], Theorem 12).

Taking an arbitrary number $x_0 > 0$ such that $\Omega(x) < 1$ whenever $0 < x \le x_0$, we put

$$\omega\left(x\right) \; = \; \begin{cases} 1 - \Omega(x) & \text{if} \quad 0 \leqslant x \leqslant x_0, \\ 1 - \Omega(x_0) & \text{if} \quad x > x_0. \end{cases}$$

In [3] (Theorem 13) I proved that the class of characteristic functions of infinitely divisible measures $P \in \mathfrak{P}$ coincides with the class of functions

(5)
$$\Phi_P(t) = \exp \int\limits_0^\infty \frac{\Omega(tx) - 1}{\omega(x)} m(dx),$$

when m runs over all finite Borel measures on the positive halfline and the integrand is defined as its limiting value $-t^x$ when x=0. The aim of the present paper is to prove that the representation (5) is unique, i.e. that the function Φ_P determines the measure m. The uniqueness of the representation (5) will lead to some results concerning stable and self-decomposable probability measures in the algebra (\mathfrak{P}, \circ) .

THEOREM 1. The representation (5) of the characteristic function of infinitely divisible measures is unique.

Proof. Suppose that Φ_P is given by formula (5). We introduce an auxiliary finite measure m_0 defined on the positive half-line by means of the formula

(6)
$$m_0(\mathscr{E}) = \int_{\mathscr{E}} \left(1 - \exp\left(-v^{\varkappa}\right)\right) \left(1 - \int_{s}^{1} \Omega(uv) du\right) \frac{m(dv)}{\omega(v)}.$$

We note that, by Theorems 1,5 and 6 in [3], the inequality $\int_0^1 \Omega(uv) du < 1$ is true. Consequently, the density function in (6) is positive for v > 0. Moreover, by (2) and (4), this density function is bounded which implies the finiteness of m_0 .

First we shall prove that the function Φ_P determines the measure m on the open half-line $(0, \infty)$. Of course, to prove this it suffices to prove that Φ_P determines the measure m_0 . Let us introduce the notation

$$I(t) = \int_{0}^{\infty} \left(1 - \Omega(tv)\right) \left(1 - \int_{0}^{1} \Omega(uv) du\right) \frac{m(dv)}{\omega(v)}.$$

Taking into account the formula

$$\varOmega(tv) \varOmega(uv) \, = \, \varPhi_{E_t}(v) \, \varPhi_{E_u}(v) \, = \, \varPhi_{E_t \circ E_u}(v) \, = \, \int\limits_0^\infty \varOmega(yv) (E_t \circ E_u) (dy)$$

by a simple computation we get the equation

(7)
$$I(t) = -\log \Phi_P(t) - \int_0^1 \log \Phi_P(u) du + \int_0^1 \int_0^\infty \log \Phi_P(v) (E_t \circ E_u) (dv) du.$$

Further, integrating with respect to the characteristic measure M of the algebra we get, by virtue of (1) and (3), the formula

$$\int_{0}^{\infty} I(ty) M(dy) = \int_{0}^{\infty} (1 - \exp(-t^{x}v^{x})) \left(1 - \int_{0}^{1} \Omega(uv) du\right) \frac{m(dv)}{\omega(v)}.$$

Thus, by (6),

$$\int_{0}^{\infty} \exp\left(-t^{\varkappa}v^{\varkappa}\right) m_{0}(dv) = \int_{0}^{\infty} I\left(\left(t^{\varkappa}+1\right)^{1/\varkappa}y\right) M(dy) - \int_{0}^{\infty} I(ty) M(dy).$$

Hence and from (7) it follows that the function Φ_P determines the modified Laplace transform of the measure m_0 . This proves that the measure m_0 and, consequently, the measure m is uniquely determined by Φ_P on the open half-line $(0, \infty)$.

It remains to prove that $m(\{0\})$ is also determined by Φ_P . But this is a direct consequence of the formula

$$m(\{0\})t^{x} = -\log \mathcal{O}_{P}(t) + \int_{(0,\infty)} \left(\Omega(tx) - 1\right) \frac{m(dx)}{\omega(x)}$$

which completes the proof.

3. Stable measures. A measure $P \in \mathfrak{P}$ is said to be *stable* if for any pair a,b of positive numbers there exists a positive number c such that $T_a P \circ T_b P = T_c P$. The class of stable measures coincides with the class of all limit distributions of sequences $T_{c_n} P^{o_n}$ where $c_n > 0$ $(n = 1, 2, \ldots)$ and $P \in \mathfrak{P}$ (see [3], Theorem 15). A description of the characteristic function of stable measures was given by Theorem 16 in [3]. By the uniqueness of the representation (5) we are now in a position to establish a simpler description of these functions. We start with a Lemma.

LEMMA 1.

$$\overline{\lim}_{x\to 0}\frac{\omega(x)}{x^*}<\infty.$$

Proof. Suppose the contrary, i.e.

$$\lim_{n\to\infty}\frac{\omega(x_n)}{x_n^{\star}}=\infty$$

for a sequence $\{x_n\}$ tending to 0. Since, by (2) and (4),

$$\lim_{n\to\infty}\frac{1-\Omega(xx_n)}{\omega(x_n)}=x^*$$

we have, for every positive number x, the formula

$$\lim_{n\to\infty}\frac{1-\Omega(xx_n)}{x_n^n}=\infty.$$

Obviously, the characteristic measure M of the algebra is not concentrated at the origin. Consequently, the Fatou Lemma yields the equation

$$\lim_{n\to\infty}\int\limits_0^\infty \frac{1-\Omega(xx_n)}{x_n^{\varkappa}} \ M(dx) = \infty.$$

On the other hand, by (3),

$$\int_{0}^{\infty} \frac{1 - \Omega(xx_n)}{x_n^x} M(dx) = \frac{1 - \exp(-x_n^x)}{x_n^x} \to 1$$

which implies a contradiction. The Lemma is thus proved.

THEOREM 2. The class of characteristic functions of stable measures in (\mathfrak{P},\circ) coincides with the class of functions

$$\Phi_P(t) = \exp\left(-ct^p\right),$$

where $o \geqslant 0$ and $0 ; <math>\varkappa$ being the characteristic exponent of the algebra in question.

Proof. By Theorem 16 in [3] it suffices to prove that the integral $\int\limits_0^1 \frac{\omega\left(x\right)}{x^{1+p}}\,dx$ is finite if and only if $p<\varkappa$. The finiteness of this integral for $p<\varkappa$ is a direct consequence of Lemma 1. It remains to prove that

$$\int_{0}^{1} \frac{\omega(x)}{x^{1+\kappa}} dx = \infty.$$

Contrary to this let us assume that the last integral is finite. Then the measure $m_{\rm x}$ defined by the formula

$$m_{\kappa}(E) = b \int_{E} \frac{\omega(x)}{x^{1+\kappa}} dx,$$

where $b^{-1} = \int_{0}^{\infty} \frac{1 - \Omega(x)}{x^{1+\kappa}} dx$ is finite. Moreover,

$$\int_{0}^{\infty} \frac{\Omega(tx) - 1}{\omega(x)} m_{\kappa}(dx) = -t^{\kappa}.$$

Thus, by (3), m_{κ} is the representing measure in (5) corresponding to the measure M. On the other hand, the unit measure E_0 has the same property which contradicts the Theorem 1. Theorem 2 is thus proved.

4. Self-decomposable measure. A measure $P \in \mathfrak{P}$ is said to be *self-decomposable* if for every number o satisfying the condition 0 < c < 1 there exists a measure $Q_o \in \mathfrak{P}$ such that $P = T_c P \circ Q_o$.

The following Lemmas is used in the sequel. They are a generalization of Lemmas which are well-known for ordinary convolution algebra.

LEMMA 2. The characteristic function of a self-decomposable measure does not vanish.

63

Proof. Suppose the contrary and assume that $\Phi_{\mathcal{P}}(a) = 0$ and $\Phi_{\mathcal{D}}(t) \neq 0$ whenever $0 \leq t < a$. We note that for each number c satisfying the condition 0 < c < 1 the formula

(8)
$$\Phi_P(t) = \Phi_P(ct) \Phi_{Q_o}(t)$$

is true. Hence we get the relation

$$\lim_{c \to 1} \Phi_{Q_c}(t) = 1$$

in the interval $0 \le t < c$. Applying the Compactness Lemma ([3], 230) we can choose then a sequence $\{c_n\}$ $(0 < c_n < 1)$ tending to 1 such that the sequence of measures $\{Q_{c_n}\}$ is weakly convergent to a measure from \mathfrak{P} . Thus

$$\lim_{n\to\infty} \Phi_{Q_{c_n}}(t) = 1$$

uniformly in the interval $0 \leqslant t \leqslant a$ and, consequently, $\Phi_{Q_a}(a) \neq 0$ for for sufficiently large n which yields a contradiction. The Lemma is thus proved.

LEMMA 3. Let P be a self-decomposable measure. Then for each c (0 < c < 1) the associated measure Q_c is infinitely divisible. Further, setting

(9)
$$P_1 = P, \quad P_n = T_n Q_{\frac{n-1}{n}} \quad (n = 2, 3, ...)$$

we have

(10)
$$P = T_{n-1}(P_1 \circ P_2 \circ \dots \circ P_n) \quad (n = 1, 2, \dots).$$

Moreover, the measures $T_{n-1}P_k$ $(k=1,2,\ldots,n; n=1,2,\ldots)$ are uniformly asymptotically negligible.

Proof. By Lemma 2 the characteristic function $\Phi_{\mathcal{P}}$ does not vanish. Since

(11)
$$\Phi_P(t) = \Phi_P(ct) \Phi_{Q_c}(t),$$

we have the equations

(12)
$$\Phi_{P_1} = \Phi_P, \quad \Phi_{P_n}(t) = \frac{\Phi_P(nt)}{\Phi_P((n-1)t)} \quad (n=2,3,\ldots),$$

which imply

$$\Phi_P(nt) = \prod_{k=1}^n \Phi_{P_k}(t).$$

Formula (10) is a direct consequence of the last equation. Further, by (12), $\varPhi_{T_{n-1}P_k} \to 1$ uniformly in $k\ (k\leqslant n)$ which shows that the measures $T_{n^{-1}}P_k$ $(k=1,2,\ldots,n;\ n=1,2,\ldots)$ are uniformly asymptotically negligible.

Given a number c (0 < c < 1) we put

$$R_n = T_{n-1}(P_{[cn]+1} \circ P_{[cn]+2} \circ \dots \circ P_n) \quad (n = 1, 2, \dots),$$

where the square brackets denote the integral part of a real number. By (11) and (12)

$$arPhi_{R_n}(t) = rac{arPhi_P(t)}{arPhi_P\left(rac{[on]}{n} t
ight)}
ightarrow rac{arPhi_P(t)}{arPhi_P(ct)} = arPhi_{Q_c}(t)$$

uniformly in every finite interval. Thus $R_n \to Q_0$. Since the measures $T_{n-1}P_k$ (k = [cn] + 1, [cn] + 2, ..., n; n = 1, 2, ...) are uniformly asymptotically negligible, the limit measure Q_c is infinitely divisible ([3], Theorem 12) which completes the proof.

LEMMA 4. If the measures $T_{c_n}P_k$ $(k=1,2,\ldots,n;\ n=1,2,\ldots)$ are uniformly asymptotically negligible and the sequence $T_{c_n}(P_1 \circ P_2 \circ \ldots \circ P_n)$ converges to a probability measure P different from E, then

$$\lim_{n \to \infty} c_n = 0$$

and

$$\lim_{n\to\infty} \frac{c_n}{c_{n+1}} = 1.$$

Proof. Contrary to (13) let us suppose that there exists a subsequence $k_1 < k_2 < \dots$ for which

$$\lim_{n\to\infty}c_{k_n}^{-1}=b<\infty.$$

Then, taking into account that the measures $T_{c_{k_n}}P_k$ $(k=1,2,\ldots,k_n;$ $n=1,2,\ldots$) are uniformly asymptotically negligible, we infer that

$$P_k = T_{c_{k_n}^{-1}}(T_{c_{k_n}}P_k) \to T_b E_0 = E_0 \quad (k = 1, 2, \ldots).$$

Hence we get the equation

$$T_{a_n}(P_1 \circ P_2 \circ \dots \circ P_n) = E_0 \quad (n = 1, 2, \dots)$$

Consequently, $P = E_0$ which contradicts the assumption. Formula (13) is thus proved.

Let us turn next to (14). Suppose that we could find a subsequence $s_1 < s_2 < \dots$ for which the condition

$$d = \lim_{n \to \infty} \frac{c_{s_n+1}}{c_{s_n}} \neq 1$$

is fulfilled. First we consider the case $d < \infty$. Since $T_{c_n} P_n \to E_0$, we have

$$T_{c_{s_n+1}}(P_1 \circ P_2 \circ \ldots \circ P_{s_n+1}) = T_{d_n} T_{c_{s_n}}(P_1 \circ P_2 \ldots \circ P_{s_n}) \circ T_{c_{s_n+1}} P_{s_n+1} \to T_d P,$$

where d_n denotes the quotient c_{s_n+1}/c_{s_n} . Thus $P=T_dP$ and, consequently, $P=T_dkP$ ($k=0,\,\pm 1,\,\pm 2,\ldots$). Since 0 is a limit point of the sequence d^k ($k=0,\,\pm 1,\,\pm 2,\ldots$) the last equation yields $P=T_0P=E_0$ which contradicts the assumption.

It remains the case $d=\infty.$ Then, denoting c_{s_n}/c_{s_n+1} shortly by q_n we have the relation

$$T_{c_{s_n}}(P_1 \circ P_2 \circ \ldots \circ P_{s_n}) \circ T_{q_n}(T_{c_{s_n+1}}P_{s_n+1}) \to P.$$

On the other hand this sequence being equal to

$$T_{a_n}(T_{c_{s_n+1}}(P_1 \circ P_2 \circ \ldots \circ P_{s_n+1}))$$

tends to T_0P , i.e. to E_0 . Consequently, $P=E_0$ which contradicts the assumption. The Lemma is thus proved.

We are now in a position to give a characterization of self-decomposable measures.

THEOREM 3. The class of self-decomposable measures in (\mathfrak{P}, \circ) coincides with the class of limit distributions of sequences $T_{c_n}(P_1 \circ P_2 \circ \ldots \circ P_n)$ where $T_{c_n}P_k$ $(k=1,2,\ldots,n;\ n=1,2,\ldots)$ are uniformly asymptotically negligible.

Proof. First suppose that P is a limit distribution of a sequence $T(c_nP_1\circ P_2\circ\ldots\circ P_n)$ where $T(c_nP_k)$ $(k=1,2,\ldots,n;\ n=1,2,\ldots)$ form a triangular array of uniformly asymptotically negligible measures. Since the unit measure E_0 is obviously self-decomposable, we may assume that $P\neq E_0$. Then, by Lemma 4, for any number $c\ (0< c<1)$ we can find sequences $k_1< k_2<\ldots$ and $s_1< s_2<\ldots$ such that $s_n< k_n$ and

 $\lim_{n\to\infty}\frac{k_n}{s_n}=c.$ Setting

$$egin{aligned} U_n &= T_{c_{k_n}}(P_1 \circ P_2 \circ \ldots \circ P_{k_n}), \ &V_n &= T_{c_{s_n}}(P_1 \circ P_2 \circ \ldots \circ P_{s_n}), \ &W_n &= T_{k_n}(P_{s_n+1} \circ P_{s_n+2} \circ \ldots \circ P_{k_n}), \end{aligned}$$

we have the relations

(16)
$$U_{n} = \frac{T_{k_{n}}}{s_{n}} V_{n} \circ W_{n} \quad (n = 1, 2, ...),$$

$$(17) \qquad U_{n} \to P, \quad \frac{T_{k_{n}}}{s_{n}} V_{n} \to T_{c}P.$$

From (16) it follows that $\Phi_{W_n}(t)$ tends to $\Phi_P(t)/\Phi_P(ct)$ in a neighborhood of the origin. Applying the Compactness Lemma ([3], p. 230) we infer that the sequence $\{W_n\}$ is compact. Let Q_c be its limit point. Then, by (16) and (17), $P = T_c P \circ Q_c$ which shows that P is a self-decomposable measure.

The converse implication is a direct consequence of Lemma 3, which completes the proof.

We proceed now to a representation problem for characteristic functions of self-decomposable measures. First we establish some properties of measures m corresponding to self-decomposable probability measures by the representation formula (5).

Let $[0, \infty]$ denote the compactified half-line. A subset of $[0, \infty]$ is said to be separated from the origin if its closure is contained in $(0, \infty]$. Let m be a finite Borel measure on $[0, \infty]$. For any Borel subset $\mathscr E$ of $[0, \infty]$ separated from the origin we put

$$I_m(\mathscr{E}) = \int \frac{m(dx)}{\omega(x)},$$

where, according to (4), the integrand is assumed to be $(1-\Omega(x_0))^{-1}$ if $x = \infty$. Denote by $\mathfrak M$ the set of all finite Borel measures m on $[0, \infty]$ satisfying for all numbers o (0 < o < 1) and all Borel subsets $\mathscr E$ separated from the origin the following condition

$$(18) I_m(\mathscr{E}) - I_m(c^{-1}\mathscr{E}) \geqslant 0.$$

It is clear that the set \mathfrak{M} is convex. Let \mathfrak{R} be the subset of \mathfrak{M} consisting of probability measures on $[0, \infty]$. The set \mathfrak{R} is convex and compact.

Suppose that the measure m is concentrated on the open half-line $(0, \infty)$ and put

(19)
$$J_m(x) = \int_x^\infty \frac{m(du)}{\omega(u)} \quad (x > 0).$$

Obviously, $I_m([a,b]) = J_m(a) - J_m(b)$. It is easy to see that $m \in \mathfrak{M}$ if and only if the inequality (18) holds for all c (0 < c < 1) and all subsets $\mathscr E$ of the form [a,b). Consequently, $m \in \mathfrak{M}$ if and only if for every triplet a,b,c satisfying the conditions 0 < c < 1, 0 < a < b the inequality

$$J_m(a) - J_m(b) - J_m\left(\frac{a}{c}\right) + J_m\left(\frac{b}{c}\right) \geqslant 0$$

is true. Introducing the notation

$$(21) F(x) = J_m(e^x) (-\infty < x < \infty)$$

and substituting $a = e^{x-h}$, $b = e^x$, $c = e^{-h}$ $(-\infty < x < \infty, 0 < h < \infty)$ into (20) we get the inequality

$$F(x) \leqslant \frac{1}{2} \left(F(x-h) + F(x+h) \right).$$

Thus the function F is convex on the real line. Moreover, by (19), it is also monotone non-increasing with $F(\infty) = 0$. Consequently, it can be represented in the form

$$F(x) = \int_{x}^{\infty} q_m(u) du,$$

where q_m is monotone non-increasing and non-negative. Further, by (19) and (21),

(22)
$$m(\mathscr{E}) = \int_{\mathbb{R}} \omega(x) q_m(\log x) \frac{dx}{x}.$$

Conversely, if q is monotone non-increasing and non-negative function and

$$\int_{0}^{\infty} \omega(x) q(\log x) \frac{dx}{x} < \infty$$

then the measure m defined by means of the formula

$$m(\mathscr{E}) = \int_{\mathbb{R}} \omega(x) q(\log x) \frac{dx}{x}$$

belongs to \mathfrak{M} . Indeed, then $J_m(x) = \int\limits_x^\infty q(\log u) \frac{du}{u}$ and the inequality (20) is evident. Moreover $q_m = q$ at all continuity points.

We may assume that the function q_m is continuous from the right. In this case q_m is uniquely determined by the measure m. Thus we have proved the following Lemma.

Lemma 5. Equation (22) establishes a one-to-one correspondence between measures m from $\mathfrak M$ concentrated on the open half-line $(0, \infty)$ and nonnegative monotone non-increasing continuous from the right functions q_m on the real line satisfying the condition

$$\int_{0}^{\infty} \omega(x) q_{m}(\log x) \frac{dx}{x} < \infty.$$

Further, the measures m from \Re corresponds to functions q_m satisfying the condition

(23)
$$\int_{0}^{\infty} \omega(x) q_{m}(\log x) \frac{dx}{x} = 1.$$

We define a family $m_x(x \in [0, \infty])$ of probability measures on $[0, \infty]$ as follows: $m_0 = E_0$, $m_\infty = E_\infty$ and

$$(24) m_x(\mathscr{E}) = a(x) \int_{\mathscr{E} \cap [0,x]} \omega(u) \, \frac{du}{u} \quad (0 < x < \infty),$$

where $a(x)^{-1} = \int\limits_0^x \frac{\omega(u)}{u} \, du$. We note that, by Lemma 1, a(x) is finite for all x. It is obvious that m_0 and m_∞ belong to \Re . Since the measures m_x $(0 < x < \infty)$ are concentrated on the open half-line $(0, \infty)$ and

(25)
$$q_{m_x}(u) = \begin{cases} a(x) & \text{if } u < \log x \\ 0 & \text{if } u \geqslant \log x \end{cases}$$

we infer, by Lemma 5, that $m_x \in \Re$ too.

LEMMA 6. The set $\{m_x: x \in [0, \infty]\}$ coincides with the set of extreme points of \Re .

Proof. Let $m, w_1, w_2 \in \Omega$. It is evident that $m = cw_1 + (1-c)w_2$ if and only if $q_m = cq_{w_1} + (1-c)q_{w_2}$. Thus a measure m from Ω is an extreme point of Ω if and only q_m can not be decomposed into a convex combination of two different q-functions satisfying condition (23). It is very easy to verify that for $x \in (0, \infty)$ the function q_{m_x} is not a convex combination of two different q-functions with property (23). Consequently, the measures m_x $(x \in (0, \infty))$ are extreme points of the set Ω . Further, m_0 and m_∞ are extreme points too.

On the other hand the only q-functions which can not be decomposed into a convex combination of two different q-functions satisfying condition (23) are the functions of the form $q_m(u) = b$ whenever u < y and $q_m(u) = 0$ in the remaining case. By (23) we have the relation $b = a(e^y)$. Thus $m = m_{e^y}$. Consequently, each extreme point of $\mathcal R$ concentrated on the open half-line coincides with one of the measures m_x $(x \in (0, \infty))$. It is clear that a measure belongs to $\mathfrak M$ if and only all its restriction to $(0, \infty)$, $\{0\}$ and $\{\infty\}$ respectively belong to $\mathfrak M$. Hence it follows that the extreme points of $\mathcal R$ which are not concentrated on the open half-line $(0, \infty)$ are supported by the one-point sets $\{0\}$ and $\{\infty\}$ respectively. Consequently, they coincide with one of the measures m_0 and m_∞ . The Lemma is thus proved.

One can easily prove that the mapping $x \to m_x$ is a homeomorphism between $[0, \infty]$ and the set of extreme points of \Re . Once the extreme points of \Re are found we can apply a Theorem by Choquet ([1]). Since each element of \Re is of the form ew, where $e \ge 0$ and $w \in \Re$ we then get the following Lemma.

LEMMA 7. A measure m belongs to \mathfrak{M} if and only if there exists a finite Borel measure p on $[0, \infty]$ such that

$$\int\limits_{[0,\infty]} f(u) \, m(du) = \int\limits_{[0,\infty]} \int\limits_{[0,\infty]} f(u) \, m_x(du) \, p(dx)$$

for all continuous functions f on $[0, \infty]$.

COROLLARY. A measure m concentrated on $[0, \infty)$ belongs to \mathfrak{M} if and only if there exists a finite Borel measure p on $[0, \infty)$ such that

$$\int_{0}^{\infty} g(u) m(du) = \int_{0}^{\infty} \int_{0}^{\infty} g(u) m_{x}(du) p(dx)$$

for all continuous bounded functions g on $[0, \infty)$.

Now we shall give a description of measures associated by representation formula (5) to self-decomposable probability measures. We note that by Theorem 3 of the present paper and Theorem 12 in [3] self-decomposable measures are infinitely divisible.

LEMMA 8. A measure m concentrated on $[0, \infty)$ is a representing measure in (5) of a self-decomposable probability measure if and only if $m \in \mathbb{M}$.

Proof. Suppose that the characteristic function of a probability measure P is given by formula (5). Taking into account Lemma 3 we infer that P is self-decomposable if and only if the quotient Φ_P/Φ_{T_cP} for every number c satisfying the condition 0 < c < 1 is the characteristic function of an infinitely divisible measure. Since

$$\varPhi_P(t)/\varPhi_{T_0P}(t) = \varPhi_P(t)/\varPhi_P(ct) = \exp\int\limits_0^\infty \frac{\varOmega(tx)-1}{\omega(x)} \left(m(dx) - \frac{\omega(x)}{\omega\left(c^{-1}x\right)} m\left(c^{-1}dx\right)\right)$$

we infer, by Theorem 1, that the measure

$$r_c(\mathscr{E}) = \int\limits_{\mathscr{E}} m(dx) - \int\limits_{\mathscr{E}} \frac{\omega(x)}{\omega(c^{-1}x)} m(c^{-1}dx)$$

for every $c\ (0 < c < 1)$ is non-negative. Of course, the last condition is equivalent to the condition

$$\int_{\mathbb{R}} \frac{r_c(dx)}{\omega(x)} \geqslant 0$$

for every c (0 < c < 1) and every Borel set $\mathscr E$ separated from the origin. But the left-hand side of the last inequality is equal to $I_m(\mathscr E)-I_m(e^{-1}\mathscr E)$. Consequently, P is self-decomposable if and only if $m\in \mathfrak M$ which completes the proof of the Lemma.

Lemma 8, Corollary to Lemma 7 and representation formula (5) yield the following Theorem.

THEOREM 4. The class of characteristic functions of self-decomposable measures in (\mathfrak{P},\circ) coincides with the class of all functions of the form

$$\Phi_{P}(t) = \exp \int_{0}^{\infty} \int_{0}^{x} \frac{\Omega(tu) - 1}{u} du \left(\int_{0}^{x} \frac{\omega(v)}{v} dv \right)^{-1} p(dx),$$

where p is a finite Borel measure on $[0, \infty)$.

5. An example. As an example of a generalized convolution we quote the (1, r)-convolutions $(1 \le r < \infty)$ considered by J. F. Kingman in [2] (see also [3], p. 218). The (1,1)-convolution is defined by means of the formula

$$\int\limits_{0}^{\infty}f(x)(P\circ Q)(dx)\,=\,\tfrac{1}{2}\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}\big(f(x+y)+f(|x-y|)\big)P(dx)Q(dy)$$

where f runs over all bounded continuous functions on $[0, \infty)$. The (1, r)-convolution for r > 1 is defined by the formula

$$\int\limits_0^\infty f(x)(P\circ Q)(dx)=\frac{\varGamma\left(\frac{r}{2}\right)}{\varGamma\left(\frac{r-1}{2}\right)}\int\limits_0^\infty\int\limits_0^\infty\int\limits_{-1}^1 f(x^2+y^2+2xyz)(1-z^2)^{\frac{r-3}{2}}dz P\left(dx\right)Q(dy)\,.$$

All (1, r)-convolution algebras are regular. As a characteristic function in these algebras we can take the integral transformation

(26)
$$\varPhi_{P}(t) = \int_{0}^{\infty} P\left(\frac{r}{2}\right) \left(\frac{2}{tx}\right)^{\frac{r}{2}-1} J_{\frac{r}{2}-1}(tx) P(dx)$$

where J_k is the Bessel function.

The (1, r)-convolution is closely connected with a random walk problem in Euclidean r-space. Namely, consider a random walk in r-space given by

$$S_n = X_1 + X_2 + \ldots + X_n \quad (n = 1, 2, \ldots)$$

where X_1, X_2, \ldots are independent random r-vectors having spherical symmetric distribution. The probability distribution of the length $|S_n|$ is determined by that of the length $|X_1|, |X_2|, \ldots, |X_n|$ (see [2]). More precisely, the probability distribution of $|S_n|$ is the (1, r)-convolution of the probability distributions of $|X_1|, |X_2|, \ldots, |X_n|$. The asymptotic behaviour of $|S_n|$ $(n = 1, 2, \ldots)$ can be described in terms of the limit distribution of the sequence $c_n |S_n|$ $(n = 1, 2, \ldots)$ where c_n are suitable chosen positive numbers. It is clear that the class of all possible limit distributions coincides with the class of all self-decomposable probability distributions in the (1, r)-convolution algebra. Since

$$\int_{0}^{x} \frac{\omega(u)}{u} du \sim \log(1+x^{2})$$

on the whole positive half-line, we get, by virtue of Theorem 4, the following statement:

K. Urbanik

70

The class of all possible limit distributions of sequences $c_n|S_n|$, where $c_n>0$ and $S_n=X_1+X_2+\ldots+X_n$ $(n=1,2,\ldots)$ X_k being independent random r-vectors with spherical symmetric distribution coincides with the class of all probability distributions P on $[0,\infty)$ whose integral transform (26) is of the form

$$\varPhi_P(t) = \exp\int\limits_0^\infty \int\limits_x^x \frac{\Gamma\!\left(\frac{r}{2}\right)\!\left(\frac{2}{tu}\right)^{\!\!\frac{r}{2}-1}\!\!J_{\frac{r}{2}-1}(tu) - 1}{u} du \frac{m(dx)}{\log(1+x^2)},$$

where m is a finite Borel measure on $[0, \infty)$.

References

- [1] G. Choquet, Let théorème de représentation intégrale dans les ensembles convexes comvacts. Ann. Inst. Fourier, 10 (1960), pp. 333-344.
- [2] J. F. Kingman, Random walks with spherical symmetry, Colloquium on Combinatorial Methods in Probability Theory, Aarhus (1962), pp. 40-46.
- [3] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), pp. 217-245.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

STUDIA MATHEMATICA, T. XLV. (1973)

On generalized variations (II)

b;

R. LEŚNIEWICZ and W. ORLICZ (Poznań)

Abstract. A φ -function is a non-decreasing function, continuous for u > 0, $\varphi(u) = 0$ only for u = 0 and $\lim_{x \to 0} f(u) = \infty$ when $u \to \infty$. For a function x with domain [a, b] put

$$V_{\varphi}(x) = \sup_{\nu=1}^{n} \varphi(|x(t_{\nu}) - x(t_{\nu-1})|),$$

supremum is taken over all partitions of [a, b], $\mathscr{Y}^{*\varphi}$ denotes the class of all functions x defined on [a, b] for which x(a) = 0 and $V_{\varphi}(\lambda x) < \infty$ for certain $\lambda > 0$, and $\mathscr{CY}^{*\varphi}$ denotes the class of all functions continuous on [a, b] belonging to $\mathscr{Y}^{*\varphi}$. Among all φ -functions the log-convex φ -functions are distinguished i.e. ones satisfying the condition

$$\varphi(u^{\alpha}v^{\beta}) \leqslant \alpha\varphi(u) + \beta\varphi(v)$$
 for $u, v > 0$, $\alpha, \beta > 0$, $\alpha + \beta = 1$.

There are presented two proofs of L. C. Young's Theorem that if φ and φ^{\sim} are log-convex φ -functions satisfying the following L. C. Young's condition

$$\sum_{\nu=1}^{\infty} \varphi_{-1}(1/\nu) \varphi_{-1}^{\sim}(1/\nu) < \infty$$

where φ_{-1} and φ_{-1}^{∞} are the inverse functions to φ and φ^{\sim} respectively then the integral $\int_0^{\infty} x(t) \, dy(t)$ for functions $x \in \mathscr{CY}^{*\varphi}$ and $y \in \mathscr{Y}^{*\varphi}^{\sim}$ exists in the sense of Riemann–Stieltjes. Estimations of this integral with the use of series in (*) are given. On the same assumptions is proved the theorem on passing to the limit under the sign of RS-integral, in particular — the analogue of Helly's theorem. It is shown also that if φ and φ^{\sim} are convex φ -functions satisfying the certain conditions for which L. C. Young's condition (*) does not hold then there are functions $x \in \mathscr{CY}^{*\varphi}$ and $y \in \mathscr{CY}^{*\varphi}^{\sim}$ such that their RS-integral does not exist. These results proved for scalar functions are generalized for functions with values in Banach spaces.

0. Introduction. The present paper can be regarded as a second part of paper [9] which, under the same title, appeared in Studia Math. in 1959 (results of [9] were earlier announced in [8]). In the present paper the notations essentially differ from those employed in [9] i.e. in all places where in [9] and other papers dealing with the theory of Orlicz spaces symbols M, N etc. were used we now write φ, ψ, \ldots The purpose