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Directional contractors and equations
in Banach spaces

by
M. ALTMAN (Baton Rouge, La.)

Abstract. Directional contractors extend the notion of contractors introduced
in [1]. Hypotheses involving directional contractors are less restrictive than those
uging Géteaux differentiability. A global existence theorem for operator equations
in Banach spaces as well as a generalization of a local existence theorem by Gavurin
are presented. An application to evolution equations and a generalization of the
Banach fixed point theorem are also included.

1. Introduction. Let P: X - Y be a nonlinear . operator from
a Banach space X to a Banach space Y. A bounded linear operator I'(z):
Y — X is called an 4nverse Fréchet derivative of P at w<X (see [1]) if

(L.1) Plo+I(n)y)—P (@) —y = o(lyl),

where o([yl)/lyll -0 a8 y — 0, and I'(z) is said to be a contracior, if there
are positive numbers 5 and ¢ < 1 such that

(1.2) |P o+ I'(@)y) —Po—y||< qlyl for lyll<n, yeX.

Inequality (1.2) is called the comtractor imequality. Put §(z,,r) = [@:
[l —@oll < 7y @, e X]. Suppose that I'(z,): ¥ —X and

(1.8) | (@ + I'(wo)y) — P —y]| < gyl

for all e 8(w,r) and all yeX such that @+ I'(z,)y e 8@, 7). Then I'(x,)
is called a stromg contractor of P at #,. If, for instance, the Fréchet deriv-
ative P’ (w), we 8(a,, r), is continuous at @, and P'(w,) is nongingular,
then I'(z,) = P'(%,)™" is a strong contractor. Conditions (1.2) or (L.3)
can be applied to prove local existence theorems for the equation Py = 0
and to construct iterative procedures convergent toward such a solution.
However, for global theorems the contractor inequality (1.2) is required
to be satisfied for all yeY. Such a contractor may be called a global
condractor. To prove only existence theorems it iz sufficient to define
a weaker kind of a contractor. The method used in this paper combines
Gavurin’s [2] method of transfinite induction and the notion of a direc-
tional contractor. :
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2. Let P: D(P) < X — ¥ be anonlinear operator and let I'(z): ¥ —»X
be a bounded linear operator, where X and Y are Banach spaces, and
D(P) is a linear subset of X. Suppose that I'(z) (¥Y) = D(P) and

(2.1) P(w+tf(w)y) —Px—ty =o(t) for every ye¥,

where [[o(f)||t™'— 0 as ¢ — 0.
Then I'(z) is called the Gdieauw inverse derivative of P at we D(P).
It follows from this definition that I'(z) is one-to-one, and if P has
a nonsingular Gateaux derivative P'(z), then I'(z) == P’ ()~ is an inverse
Gateaux derivative.
" Suppose now that there exists a positive number g < 1 such that

(22)  |Plo+il(@)y)—Po—ty < gyl for 0<i< b(s, ).

Then we say that I'(#) is a directional contractor of P at #. It follows
from this definition that I'(#)y = 0 implies y = 0, i.e. I'(x) is one-to-one,
and an inverse Gateanx derivative is obviously a directional contractor.

In order to apply the transfinite induction method of Gavurin [2],
[3] we shall make use of the following two lemmasg of Gavurin (see [2],
[3D).

Lemma 2.1, Let a be an ordinal number of first or second class and
let {t}ocy<e D6 @ maturally well-ordered sequence of real mumbers provided
that for numbers B of second kind we have

tp = limt,.
»t8

Then the following equality holds.
ta = t0+ 2 (ty+1_‘tv)‘

o<y<a .
LeMMA 2.2. Let o be an ordinal number of first or second class and
lot {®,}ocy<a b6 & well-ordered sequence of elements of X provided that

@ = lima,.
vi8
Then

lee—aol < ) loyqa—a, ).
Iy <a

3. An operator P: D(P) « X - ¥ ig said to be closed if w, o and
Pz, -y imply e D(P) and y = Pu.

We say that the nonlinear operator P has a bounded directional
contractor I'(x) if (2.2) is satisfied and, in addition, [1'(@)] < B for all
#e D(P) and some constant B. It is also assumed that D(P) « X is linear
and I'(z) (¥) « D(P) for all zc D(P).
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TamorEM 3.1. A closed nonlinear operator P: D(P) c X — Y which
has a bounded directional contractor I'(x) is a mapping onto Y.

Proof. Since for arbitrary fixed yeX¥ the operators Pz and Pz —y
have the same bounded directional contractor I'(z), it is sufficient to
prove that the equation Pz = 0 has a solution. To prove this we shall
construct well-ordered sequences of numbers ¢, and elements x,e D(P)
as follows. Put 3, = 0 and let z, be an arbitrary element of D(P). Suppose
that ¢, and @, have been constructed for all y < a, provided that: for
arbitrary number y < o inequality (3.1,) is satisfied.

(3.1,) P, || < 6~ 0D || Pagy 15

for first kind numbers y+1 < a the following inequalities are satisfied:
(3.2,11) 12y —a, | < B ”Pmo”‘r(l_q)t"(iy-}-l ~1,),

(3:3,11) 1P,y —Pa, || < (1+ ) IPwoll 6™~ D (2, —1,);

and for second kind numbers y < o the following relations hold:

(3.4,) P, = lim Pa,.

Bty
Then it follows from (3.2), (3.4), Lemmas 3.1 and 3.2 that for arbitrary
y<aand 1< a we have

(3.5)  lo,~al< > gl < BIPayl > 0 o(t,,, —t)

t, =limt;, x, =lima,,
Bty Bty

A<y I<pay
gy ty
< BlPgl > [ e %9dt = B|Pa| [ et-ata
0 - 0 .
A<p<y tg i

In the same way we obtain from (3.3), (3.4), Lemmas 3.1 and 3.2
(3.6) .
IPa, —~Pu| < D) 11Pwpy—Pogll < (L+) [Pargll D) 67 C~a (1, ~1,)

A<B<y 1Py
ta11 1y

<@+QIPnl Y [ et = (1+9)|Pay) [ o=0~as.
Asp<y g P

Suppose that o+1 is a firgt kind number. If Pz, = 0, then the proof
of the theorem is completed.
If px, + 0, then we put

(37) ta+1 = ta+ra7 wﬂ-{—l = ma*TnF(mu)Pwuﬂ
where 7, i3 chosen so as to satisfy (2.2) with y = —Puw,, Le.
(3.8) 1P (0. — % (@) Pa) — Po,+ 7,Pa| < gra|lPa.
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Then we obtain by using the induction assumption (3.1,) and (8.8)

(39:41)  I1POpall < (1—7,) [P, + 7, IPa, | = (1— (1—q),)|Pa,|
< 670-0% | Py | < 6~ O~ Dlat1 | Py,

by (38.7). It follows from (3.7) and (8.1,) that

(310041)  Bars =2l < B IPo, || < B(fyqy )6~ O~ [ Pay|.

In virtue of (3.7), (3.8) and (3.1,) we obtain

(BXlopn) WPy —Patg|| < (L4 9) 7 1Pl < (L4 g) 1Pargll 6= Dl (s, —1).

Thus, conditions (8.9,,,), (3.10,,;) and (8.11,4,) are satisfied for ¢,
and #,,,.
Now, suppose that a is a number of second kind and put by = limi,.

?ia
Let {y,} be an increasing sequence convergent toward o. It follows from
(3.5) that ‘

|{m,,n+g~—m,,n]| 0 a8 # > co.

Hence, the sequence {z,,} has a limit @, and so does {@,}. It follows from
(8.6) that the sequence {Pw, } has a limit y, and so does {Pum,}. Since I’
is closed we infer that w,e D(P) and y, = Pu,. If t, < oo, then the limif
Passage in (3.1, ) yields (3.1,). The relationships (8.4,) are satisfied by
the definition of ¢, and =,, since g, = Pm,, The process will terminate
if ¢, = o0, where o i§ of second kind. In this cage (38.1,) yields Pa, =0
and the proof is completed. :

4. For operators P =I—F, where X = ¥ and I iz the identity
mapping of X, it is convenient to have contractors of the form I + ().
Then the contractor inequality (2.2) becomes

(4.1) [P {o+t(y+ I'(a)y)) - Fo—tI'(@)y] < gty

for 0<t< 6(w,y), we D(F), yeX.

Thus, Theorem 8.1 yields immediately

TEEOBEM 4.1. A dosed nonlinear operator F: D(F) c¢ X X which
has & bounded direotional contractor satisfying condition (4.1) and |I"(w)|
< B, 8¢ D(F), has & fiwed point &*, i.6. & = Fa*, Moreover, I—T" is
@ mapping onto X.

This theorem generalizes the well-known Banach fixed point theorem.
In fact, it F: X >X is a contraction with Lipschitz constant ¢ < 1,
then I4 I'(x) with I'(e) =0 is obviously a bounded contractor (see [1])
and this notion is much stronger than a directional contractor. Iowever,

sinee the hypotheses of Theorem 4.1 are rather weak, we cannot prove
the existence of the inverse mapping of I—F,
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3. We shall apply Theorem 4.1 to prove an existence theorem for
nonlinear evolution equations.
Consider the initial value problem

(5.1) —%=F(t,w), 0<i<T, 2(0)=¢,

where # = x(t) is a function defined on the real interval [0,T] with
values in the- Banach space X, and F: [0, T]xX --X. Denote by Xyp
the space of all continuous functions # = #(f) defined on [0, 7] with
values in X and with the norm |jzlly = max[jjz @ 0 <t < T]. Instead
of (8.1) we consider the integral equation

H
(5.2) at)— [ Fs,n(s))ds = &
- 0‘

as an operator equation in Xy and we assume that the integral operator
is closed in X.

For arbitrary fixed o« X and te [0, T]let I'(t, 4): X —X be a bounded
linear operator, strongly continuous with respect to (¢, ) in the sense
of the operator norm. Suppose that there exist positive numbers K and B
such that the inequality

:
(5.3)  max ”F(t, a(f)+e [ Ifs, m(s))y(s)cls) —Pli, o)
o<t<T H

—eol'(t, a0}y ()] < Kolylo
is satisfied for arbitrary continuous functions o = x(f), y = y(t) e Xy,
0< o< d(x,y), where ||I'(¢, #)|| < B for all zeX and te[0,T]. Then we
f i
say that (¢, z) has a bounded directional contractor {I + [ I} of integral
0

type.

THEOREM 5.1. Suppose that (¢, x) has a bounded directional contradior
satisfiying (5.3) and T is such that TK = g < 1. Then for arbitrary EeX
cquation (5.2) has a continuous solution (%),

Proof. Tollowing the method of proof of Theorem 3.1 we ghall
construct well-ordered sequences of numbers o, and elements @,,
Yo Xy Pub oy =0, 0y = w,() = & for te [0, T] and y, = Yo(t) = a,(3)—

t

— [Fs, @ (s))ds — £. Suppose that o,, #, and y, have been constructed
0
for all y << ¢, provided that: for arbitrary y < a inequality (6.4,,) is satisfied.

(5.4,) Iy llo < 6P llyqlo;
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'

for first kind numbers y+1 < o the following inequalities are satisfied:

18,51 — & llg < (L +BT) e~ %0, ., ) Wollery
1y — Uslle < (14 )6~ 0%, — 0,) Wolles

(5.5,.41)
(8.6541)

and for second kind numbers y < o the following relations hold:

5.7 o, = limo, z, = lima,, ¥, = limy,.
(57 e T T bty

Then, in the same way is in the proof of Theorem 3.1, it follows from

(6.5)—(5.7), Lemmas 3.1 and 3.2 that for arbitrary y < ¢ and A < a we
have .
. UY
(5.8) o, —@llo < (1+ BT) f e da |yl
(5.9) Iy, — ?!a”c' (L+BT) f =" do [yl

Suppose that «+1 iy a first kind number. Then we putb

. _t
(510) Ogq1 = au+ Qus mﬂ'-l-l(t) = wa(t)" Qu [ya(t)+ J ‘17(87 (I?a(&)) yu(s)dsl?
4 ) ’

t
(5.11) Yalt) = ou(t) = [ Pls, z,(s))ds — &, 1[0, 1],
0

where g, is chosen 50 as to satisfy (5.3) with ¢ = g,, & = 2, and Y =19, Le

(512)  max | (t, 2,0) 4, ft Ils, @,(s))y.(s)ds) —
0

o<i<T
® -F(i o, (l )'—Qar(t @, (t))’\'/a(t) < “%Hc’

If y, = 0, then the proof of the theorem is completed. Otherwise, we
have

Yarr ) — Ya (1) +- 00 (1)

i
= — f [.F(S‘, 94',,4.1(‘5'))

*F(‘g’ wa(’g)) 4 Qulv( )yu ]ds

Henee, it follows, by (5.11) and (6.12) with —y, replacing y,, that
(5.18) a1
Hence,

—?/a+ Qnya”O < 0, ”" a”(}'

Warlle < (L~ (1—g) 0 Ialy < 6=C=0%fy g < 6™ Doara 1y,
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in virtue of (5.4,) and (5.10). Thus, (5.4,)
obtain from (5.10) and (5.4,)
01— 2oll < (1 +BI) g, allo < (14 BT)e™ =90,y — 0,) Wllo,
that is (8.5,,,) is satisfied. Now, we have
Wer1 =Yl < (L4 @) 0uWallo < (L4 9) 6D (0,1 — 02) Wollos

by (5.13) and (5.4,). Thus, conditions (5.4,,,), (5.5,,,) and (5.6,,,) are
satisfied for o,.,, #,.; and 4,,,.
Now, suppose that a is a number of second kind and put ¢, = lim#,.

implies (5.4,,,). Further, we

Let {y,} be an increasing sequence convergent toward a. It fo]lowsy%rom
(5.8) that |,  —wm,llc—+0 as % — co. Hence, the sequence {, . has
a limit , and so does {z,}. It follows from (5.9) that the sequence ¥y}
has a limit y, and so does {y,}. Since the integral operator in (5.2) is closed
in X by assumption, we conclude that y, satisfies (5.11). If ¢, < + oo,
then the limit passage in (5.4,,) yields (5.4,). The relations (3.7,) are
also satisfied by the definition of ¢,, @, and y, and since we proved that
(5.11) holds for y,. The process will terminate if o, = -+ oo, where a is
of second kind. In this case (5.4,) yields y, = 0, i.e. @, is a solution of
(5.2) and the proof is completed.

Remark 5.1. It is not necessary that F(¢; #) be defined on. the whole
of X. It is sufficient to assume that #(t, #) is defined for z D, where D
is a linear subset of X. Then we assume in addition that I'(, ) (X) = D
for each xe¢ D and t¢[0, T]. .

6. Using the directional contractor method we shall prove a local
existence theorem for solving nonlinear equations. Let X, be a linear
subset of the Banach space X. Put 8§ = S(zy,7) = [#: v —a,| < 7]
for a given 2,¢X, and U = X,n S, where § is the closure of §. Let
P: U~—Y be a nonlinear operator closed on U, i.e. z,¢U,x, > and
Pg,—+yeY imply 2¢U and y = Px. Suppose that P has a directional
contractor I'(z): ¥ - X for xeU, = X,NS, i.e. there exists a positive
constant ¢ < 1 such that

(6.1) | P (o + 40 (2)y) — Po—ty] < gty

for ze U, and 0

space Y.
TurorREM 6.1. Suppose that the following hypotheses are satisfied:
1) P is closed on U,

2) P has a bounded directional coniractor
condition(6.1) and

8) M=)l < B for wel,,
4) = B(1—2¢)7" | Pall,

<t< o(w, y), y being an arbitrary element of the Banach

(&), weU, satisfying

0<g<1/2.


GUEST


108 M. Altman

Then equation Pz = 0 has a golution. in U.

Proof. In the same way as in the proof of Theorem 3.1 we construct
the sequences of numbers ¢,(f, = 0) and elements @, U/, satisfying condi-
tions (3.1,), (3.2, 1)-(8.4, ,), and additionally (6.2, ) for first kind numbers
y+l<a
(62,..) 0 <y~ < (L~ ) In(Lq) (1 —~2¢) ",

Then using the same argument as in the proof of Theorem 3.1 wo obtain
for arbitrary y < a and 1< a

loy =l < D lpys— gl

A<y
<B|Pay|| D a0y, 1)
A<y .
= B[Pz, D> ‘g—at-maﬂﬂ---tﬂ)6~<1—a)z,;.,,1(w_ﬁw 1)
A<y
=17 2 \ = (1= 17
< —0) (L=20)7 B[Pyl N ¢ Dprg,  —q)

Agfi<y

1
<(L—q) A —2q)"' B|Pa,| 2 [ ot-oigy
Agp<y tﬁ
by
= (1 —0) (1=20)"'B||Pay|| [ o~ (-0igy,

ta
Hence,

(6:3) I2, —a0ll < (1—) (1~20) BI[Puy]| [ o=~y — B(1—2¢)"1|Pay|.
0

C[?hus, ’@11 elements z, belong to U,. Also in (8.7) 4, should satisty addi-
tionally o, < (I—@)In(l—g) (1 —2¢)~%. The further regsoning is exactly
the same ag in the proof of Theorem 3.1, Ag a particular eage of Theorom
6.1 we obtain

. THEOREM 6.2. Ifll-’ 1s dlosed on U amd has an inverse Gdloans deriv-
a‘me f(w), we Uy, satisfying condiiions 3) and 4), then Pw = 0 has ¢ solu-
iion in U. »
ia dehe f.roof1 follotws from the fact that an inverse Gétoaux devivative

rectlonal eontractor and there always exish 0 atistying
condition (6.0), y 8 0 < g <1/2 satistying
This $heorem has been proved by Gévurin [3], where I(w) = [P'(®)],

we Uy, P' (1) being the linear Gateaux derivative defined on Xy and such

that its inverse exists and i i i
18 continuous on Y. In this cage I'(p) ig an inver,
Géteaux derivative. @ ‘ *
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7. Using Theorem 6.1 as a basis, an implicit function theorem can
be proved. Let X, Z and Y be Banach spaces and pub

8 =[@,2): lo—al <7, lk—2l<e, veX, 2¢Z]

for given wyeX, 2pe Z r and o. Let P: § — ¥ be a continuous nonlinear
operator and suppose that for every # such that (z, 2)« §'P has a directio-
nal contractor I'(w, z): ¥ —X which is z-uniform, i.e. there exists a posi-
tive ¢ < 1 such that

(7.1) 1P @+, 9)y, 6] — P (o, 2) — ]| < atlyl

for 0<t< o(w,y) and y is an arbitrary element of ¥. We assume, in
addition, that the directional contractor I'(z,z) is bounded, i.e. there
exists a const. B such that

(7.2) Iz, 2)I<B for (z,2)eS.
Finally, we suppose that the directional contractor I'(x,z) is strongly
continuous in (#, 2), i.e. in the sense of the operator norm.

TeEEOREM 7.1. Suppose that P: 8 — Y s a continuous operator satis-
Sfying the following conditions:

1) P(wy, 2} = 0.

2) P has a bounded directional z-umiform contractor satisfying condsi-
tions (7.1) and (7.2) and being stromgly continuous with respect to (x, 2).
Then there exists a continuous funciion g(z) defined in some neighborhood
of 2y, with values in X, and such that P(g(z), 2) = 0.

Proof. Tirst of all we choose n and p, such that

(1.3) B —29)7'n<r and ||P(m, 2| <7 for [¢—z) < ¢

Now, in the same way as in the proof of Theorem 6.1 we construct se-
quences of numbers 2, (f, = 0) and continuous functions =, (2) (replacing x,),
where (2,,2)e8;, 81 = [(#,2): lp—woll <, lo—2] < ¢;] = XXZ. The
values of #,(2) are in X and @4(2) = x,. These sequences are to satisfy
conditions (3.1,), (8.2,,,)~(3.4,.,) and (6.2,,,) provided that D1y Ty
Pw,y1, Pu, and Pay ave replaced by @,,:(2), 3,(2), P(2,11(2), 2), Pz, (), 2)
and P (@, ), respectively. Thus, we obtain in place of (3.5) and (3.6),

by (7.3), \

(4) o, (2) — @ ()| < By | 6~6=9ds.
ta

[2

(7.5) 1P (,(2), ) =P (21(2), 2)f| < (A4 q)n [ e~C—as.
!
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Ineciualities (7.4) and (7.5) show the z-uniform convergence in the analo-
gous relations (3.4,) yielding the continuity of the limit functions. An
equivalent of (6.3) will be,

e, (2) — moll < B(L~2¢)" < v,
in virtue of (7.3). Hence,
(@,(2), 2) e 8.

Thus, all constructed functions x,(z) are continuous and well-defined.
The further reasoning is exactly the same ag in the proof of Theorem 6.1,

Since the assumption of Theorem 7.1 are rather weak, we cannot
prove the uniqueness of the function g(2).
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L’analogue dans % des theorems de convexité
de M. Riesz et G.0. Thorin

par
PHAM THE LAI (Orleans, France)

Sommaire. Les théorémes de convexité de M. Riesz et G. 0. Thorin dans les
espaces de fonctions I? ont leurs analogues dans les espaces d’opérateurs 0F d’espaces
hilbertiens (Espaces de R. Schatten).

La méthode utilisée dans cet article est celle de l'interpolation holomorphe,

§ 1. Les espaces vectoriels considérés sont complexes, sauf mention
du contraire. Nous notons | | les différentes normes rencontrées.

Soit H un espace de Hilbert; €°*'(H) (rvesp. #°(H); resp. F(H))
désignera ’espace vectoriel des opérateurs linéaires et continus de H
dans H (resp. I'iddal des opérateurs compacts; resp. I'idéal des opérateurs
de rang fini) ¥“*!(H) et ¥“(H) seront munis de la norme des opérateurs;
ce sont des espaces de Banach. §(H) est dense dans ¢ (H).

Soit p une valeur numérique réelle (finie), p > 1. Nous désignons
par €7 (H) ’ensemble des T' ¥°(H) tels que la suite {4,(T)},, décroissante,
tendant vers zéro (avec répétition éventuelle gsuivant la multiplicité)
des valeurs propres de (T*T)'?, la racine carrée de T*T, soit dans 7,
espace des suites de puissance p-iéme sommable.

Si T e %7 (H), notons |T], = {i (T,

On sait que (cf [2] par exemple), pour tout p = 1, ¥ (H) est un espace
vectoriel et | |, est une norme sur %?(H); muni de cette norme ¢%(H)
est un espace de Banach et {F(H) est dense dans %?(H). De plus, pour
Vo, q tels que 1<p<yg

% (H) < ¢YH) < ¢ (H)
avec injections continues.

Nous allons prouver dans ce travail que les analogues des théorémes
de convexité bien connues des espaces de fonctions L? sont vrais pour
les espaces d’opérateurs @7 (H).

§ 2. Soit H un espace de Hilbert.
8i Te €' (H), 1a suite {u;(T)};, des valeurs propres de T étant rangée
par ordre de module décroissant (avec répétition éventuelle suivant la
multiplicité), la série } u;(T) est absolument convergente (cf [2]).
7
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