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Inverse differentiability contractors and equations
in Banach spaces

by
M. ALTMAN (Baton Rouge, La.)

Abstract. Introducing the notions of inverse differentiability and contractors
wo -obtain a unified approach to various different in character iteration procedures
including the Banach fixed point principle and the Newton-Kantorovich method.
An application to evolution equations and a generalization of Krasnoselskii’s fixed
point theorem are also given.
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Introduction. Recently Nashed [11] gave a systematic and very
comprehensive exposition of ‘abstract differential calculus in normed
and topological linear spaces showing the important role of differentials
in nonlinear functional analysis. In this paper we are concerned with
one aspect of this concept as a tool to investigate iteration procedures
for solving equations in Banach spaces. It is the nature of many applied
problems leading to operator equations that the inverse operator is re-
quired to exist and to be even continuous. Thus, the regularity conditions
are in the space of images. For this reason for instance the iteration pro-
cedure in the well known implicit function theorem wuses the inverse of
the Fréchet (Giteaux) derivative. The same fact is seen in the Newton—
Kantorovich procedure (see [5], [6], [12]). This observation leads us
to an independent definition Wm derivative such that can be
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used in place of the inverse of the derivative. Moreover, it turns out that
for the same purposes much less can be required and what is the concept
of a contractor. As a matter of fact if the mapping is a contraction itself
then the contractor exists and is simply the identity mapping. The concept
of a contractor generalizes the notion of an inverse derivative. The iteration
procedure based on this concept is actually a perturbation method of the
independent vector of the domain of the operator.

L. Inverse derivatives. Let P : X — ¥ be a nonlinear operator from
a Banach space X to a Banach space Y. Consider the difference P (- h)—
— Pz = @ (2)h and suppose that I'(z) is a linear bounded operator associated
with #eX acting from ¥ to X, i. e. ['(2): ¥ - X.

If I'(x) has the property: for ye ¥

1.1 II?/II"IIIQ(W)F(w)?/—yH ~0as y—0,

then I'(z) is called the inverse derivative at « of P. Condition (1.1) can be
written in the form

(1.2) I~ 1P (@ + I'(@)y) — Pz —y|| ~ 0 as y— 0.

Properties of inverse derivatives. ‘
(i) T I'(w) exists, then d/dtP (w +¢1'(w)y) ),a,, = ¥, i e. Phas a directional
derivative in the direction I'(x)y. ‘
Property (i) shows that
(i) I'(w)y = 0 implies y =0, i. e. I'w) is a one-to-one mapping.
(iii) If the Fréchet derivative P'(x) exist, then P'(s) is an extension
of [I'(z)]-.
(iv) If [P'(®)]-* exists, then’ F(w) i3 uniquely defined and I'(x)
= [P’ (2)] ™
(v) If I'(%) is onto, then P'(x) exists and has the inverse [P’ ()]
= I'(z).

. PROPOSITION. If P’ (x) and I'(z) exist, then P'(x) maps X onto ¥ and
there i8 a projection of X onto the kernel of P'(w), i. 6. X = N@X v (direct
sum), where N = [h: P'(@)h = 0, he X] and Xy is the range of I'(m).

Proof. Since P'(2)I(v)y =y for arbitrary ye ¥, by (iil), P’ (w) is
onto It is easily seen that Xy is closed. In fact, I’(w)y, — &, implies

n =P (@) (@)Y, P (@)@, =y,, by (ii). Hence, I'(w)y, > I'(@)y, = .

For an arbitrary h of X let y = P’ (x)h and hy, = I'(@)y. Then, by

iii), P’ (%) hy, = [I'(®)]~1h, = y. Hence, P’ (x)(h—h, ) =0,1. o h—hyel,
Where hype Xy = I'(w)(X). Clearly, N N X, = {0}.

Note that this coneept of an inverse derivative is considered in the

strong (Fréchet) sense. However, it is also possible to introduce the notion
of an inverse derivative in a weaker sense of Géteaux.
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Remark 1.1. Calling I'(x) a right inverse derivative we could also
introduce in a similar way a left inverse derivative I'(w) using the following

formula in place of (1.1):
B~ ()@ (@) h — Bl —~ 0 as h—0, he X.

2. Tteration procedures with inverse derivatives. Our problem is to
find a solution to the operator equation

(2.1) Py =0,

where P: X — ¥, X and Y are Banach spaces. We assume the existence
of inverse derivatives I'(z) of P in a neighborhood S(m,,r) = [@: o — &)}
< 1, we X], where , is a given approximate solution to (2.1). For solving
(2.1) we use the following iteration procedure:

(2.2) D1 = By — L (0,) Py, m = 0,1,2,...

The following theorem gives sufficient conditions for the convergence
of the iteration procedure (2.2) to a solution of equation (2.1).

TemorREM 2.1. Suppose that there ewist positive numbers 0 < g <1,
7, 0 and B such that the inverse derivative satisfies the umiformity condition.

3) I 1Pz +I'(z)y)
4) I ()]l <

e. for we 8(2o,7) and Iy <7y
(2.

(2. 5)

(2.

B for eS8 (xq, 7).
P (2ol < 7,
Bp(l—g)* <.

(2.7) P is closed on 8 (x,, 7).
Then there ewists a solution x™e 8(w,,7) and the sequence of w, defined
by (2.2) converges toward x*, i. e.

Pr* = 0,

—Po—yl<q

2, — x*, x*e 8 (24, 7)

and
(2.8)
Proof. Putting y =

llon —»*|| < Bg™(r — q) =%
—Pu, in (2.3) we obtain

(2.9) 1P, o]l n=0,1,2,...
Hence, it follows from (2.2) and (2.4)

(2.10) 1 — 2]l < B 1Pz, || < Brg™

By induction it is easy to see that z,e 8(z,, ) for n =0,1,2, ...
Thus the sequence of ,, converges toward some * ¢ §(x,, r). Since Pz, — 0,
by (2.9), and Pz is closed in 8(x, r), it follows that Pz* = 0. The error
estimate (2.8) results from (2.10) in the usual way.

< ¢11Px,,
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Remark 21. If I'(») is onto, then the iteration procedure (2.2)
becomes the well known Newton-Kantorovich method (see [5], [6], [12])

(2.11) Bppy = Tp— [P (0,)]7 Py

In this case under the hypotheses of Theorem 2.1 the solution z* is
unique in 8 (2, r) if, in addition, condition (2.3) is satistied for all ye ¥
guch that |[I'(x)y] < 2r, where se §(w, 7). This results from the following
inequality :

(212) (1 — ) Iyl < |IP (2 + (@)y) — Pal

obtained from (2.3). For if #¥, #** ¢ §(#,, r) are two solutions, then #* can
be written as ™ = o*+I'(2*)y and we have

1@yl = o™

and we can apply the inequality (2.12).

Consider now the equation ¥ (x) = 0, where F': X — R (reals) is
a nonlinear functional on X. If the gradient F'(s) exists and F' (¢)h 0,
where heX, then we have t!|F(z-+t[F (#)h]'h)—F(z)—1t|— 0 as
t— 0, where e R, i. e. according to (1.2), I'(z)t = t[F'(m YVh]'h: R—>X
is an inverse derivative of I at %, if h is fixed and F (@)h %~ 0. :

Consider now the following generalization of Newton’s method for
nonlinear functionals ‘which is given in [1].
(2.13) B 17 B () oy 3

Remark 2.2. The generalized Newton method (2.13) for. nonlinear
functionals in also a special case of an iteration procedure (2.2) with
inverge derivatives.

Although the methods (2.11) and (2.13) are entirely different, both
can be considered as particular cases of the procedure (2.2).

We say that I'(w,) is a uniform inverse derivative of P at x, if the
following condition is satistied (provided I'(sz,) is an inverse derivative)

Iyl 1P (4 (o) y) — P —yl < ¢

for (|| < # and for.z in some neighborhood of x,. Using this notion we
consider the following modification of procedure (2.2)

(2.14) I'w)Px,, n=0,1,2,..

- <2r

L1 = &p— [-F, (mn) Ly h'n€ X.

Tpyg = Ty

THROREM 2.2. Suppose that there ewists positive numbers 0 < ¢ <1,
7, 17 and B such that the uniform inverse derivative I'(x,) satisfies the con-
dition
[(2.18) I~ P (@ -+ I"(20) y)~P00—-2/H <q

L@l < B and [Pl <

© for me S(wg, 1)
and |yl <

icm®
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Then there exists a solutwn o e 8 (@, ) and the segumwe of x,, determined
by (2.14) converges toward o*, 4. e x, o, P =0, " e 8(mg, ) and the
error estimate (2.8) holds. If I'(m,) is onto and (2.15) is satisfied for all ye ¥
such that |T'(@o)y|l < 2r, then the solution &* is umique in S(2,, 7).

The proof of this theorem is exactly the same as that of Theorem 2.1.

3. Contractors. Analyzing the proof of Theorem 2.1 we can see that
condition (2.3) plays the basic role in our argument. This observation
leads to the concept of a contractor. Let P: X — ¥ be a nonlinar mapping
and let I'(z): ¥ — X be a bounded linear operator associated with .

DEFINITION. We say P has a contractor I'(z) if there is a positive
number g <1 such that

alyl,

where z< X and ye ¥ arve to be adjusted to the problem.
" For instance, if P has a Fréchet derivative P'(z) satisfying

(3.1%) [P (@) @)y — ]| < ¢ Iyl

then I'(») is a contractor and condition (3.1) is satisfied with ¢ = (1+ q)/2
and [yl < 8 |I["(#)|~", where § is chosen so as to satisfy [|P (% + h) — Po—
—P'(2)h]| < (1—¢)272|R]| for ||| < 8. Then for h = I'(®)y we have

0<¢ <1,

[P (w+I(2)y) — Po—yl
< |IP (w-+T(@)y) —P'(a) T(@)y]| + 1P () ['(2)y —yll <

and |yl < 8IiI'(»)[" implies A] = |I(@)yl < 8
Obviously, an inverse derivative is a contractor. We say that P: X - ¥
has a bounded contractor I'(w) if | I'(z)|| < B for all & of a certain region.
Suppose now that P has a contractor I'(») satisfying condition (3.1)
for all ¥ of Y. Then it is easily seen that the following inequality can be
derived from (3.1)

(3.2) (1—q)llyll < IIP (@ +T'(z)y) — Pl

It follows from (3.1) that the contractor I'(z) is a one-to-one mapping
and if P is continuous, then (3.2) yields the continuity of the inverse
[[(z)]7Y, i. e. then I'(z) is a homeomorphism of ¥ onto a closed subspace
of X. A contractor I'(z) is called regular, if (3.1) is satisfied for all ye ¥
and D(P) = I'(z)(Y), where D(P) is the domain of P. We say that #
is a regular point of P, it P~ (Pa) = {»} and Px, — Pz implies @, — .
LevMMA 3.2. If a contractor I'(z) ewists for we D(P) and is reg'ulcw,
then % is o regular point of P. If I'(@) is regular- and onto, ¢. e. I'(%)(¥) =
then X is a regular point of P and P is continuous at x. If I'(x) is regula'r
for every me D(P), then P has a continuous inverse mapping P~ If I'(x)

[(L—g)2 " +q Ty,

for ye Y.
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is regular and onto for every xe D(P), then P is a homeomorphism of X
onto P(X).

Proof. The proof follows from inequality (3.2), since %, D(P) implies
@,—a = I'(¢)y, for some y,e ¥. If I'(x) is onto, then the continuity of
P results from the continuity of the invers operator [I'(z)]~! and from
(3.1).

THEOREM 3.1. Theorem 2.1 remains true if we replace there the inverse
derivative by a bounded contractor I'(x).

The proof is the same as that of Theorem 2.1. We say that the linear
bounded operator I'(wg): ¥ — X is a uniform contractor of P at @, if
?here exist positive numbers ¢ < ¢ < 1, # and 5 such that condition (2.15)
is satistied for e 8(zy,7) and |yl < #. If the Fréchet derivative P'(v)

existy and is Lipschitz continuous with constant K in some neighborhood '

of z, and P’ (x,) is invertible, then I'(w,) =
derivative, since

[P (@ +I'@o)y) —Po—yl| = IIP (w+I'(w5)y) —Po—P' () [(@y)y]|
<P {2+ T'(@o)y) —Pw— P (@) I'(@o) yll + 1P’ (@) I'(0) y — P’ (wo) I' (o)
2R (@) P 1P 4 K o — @4l 1T (@) 91

' Evidently, I'(,) is a uniform contractor.

THEOREM 3.2. Theorem 2.2 remains true if we replace there the uniform
inverse derivative by the uniform contractor I'(a,).

The proof of this theorem ig exactly the same as that of Theorem 2.2.

[P’ (@)]™" is & uniform inverse

4. Implicit function theorems using contractors. On the basis of

Theorems 3.1 and 3.2 we can generalize the well known implieit function.
theorem. Let X, Z and Y be Banach spaces. Consider the operator
Pz, 2): XxZ—> Y. Put § = [(®,2): llw—a| <7y le—2 < @] and sup-
pose that for every » such that (x, 2)¢ 8, P has a contractor I'w,2): Y>X
which iy strongly continuous in (2, 2).

THEOREM 4.1. Suppose that there ewist positive numbers 0 < <1,
1, 0, 1 and B such that

(1) |P {2+ (2, 2)y, 2) —P(2, &)~y < qllyll Jor (z,2)e 8 and Jy| < g

(4.2) o wmI<B  for (m,2)e8
43) WP (@0, )| < 7.
(4.4) Byp(l—g)

(£.8) P(w, 2) s closed in 8 for every fived o restricted to 8, 4. . (2, 2)¢8,
Bp—>o and P(x,,2)—>y imply y = P(w, 2)

iom®
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(4.6) P(z, 2) is continuous in 8 with respect to z for every fived & restricted
to 8.

(£.7) P(my, 2) = 0.

Then there emists a continuous function & = g(2) such that P (g(2), 2 =0,
(9(2),2) € 8.

Proof. The proof is based on Theorem 3.1. Consider the iteration
procedure @, ,(2) = @,(2) —I'(®,, 2) P (@,, #) for n = 0,1, 2,... and every
fixed 2 restricted to S. In virtue of Theorem 3.1, the sequence of x,(z)
converges to an element @ = g(2) such that (#,2)eS and P(x,2) = 0.
The funetions x,(2) are continuous and it is easily seen that the conver-
gence of »,(2) is uniform in 2. Thus, #(2) is continuous.

Remark 4.1. If P(z, 2) is jointly continuous in (%, ), then conditions
(4.1), (4.2) and (4.7) are sufficient for the theorem and numbers 7, o can
be chosen s0 as to satify (4.3) and (4.4). If I'(#, 2) is onto, then the function
g(2) is nnique in S provided that condition (4.1) is satistied for all ye ¥
such |[I'(z, )yl < 2r.

THEOREM 4.2. Theorem 4.1 remains true if we replace there the contractor
I'(z, 8) by a uniform contractor I'(zy, 2), i. e. if we replace condition (4.1)
by

[P(@+ (@0, )y, 2) —P (@, &) — 9| < ¢ lyll.
Remark 4.1 remains also true.

The proof is exactly the same as that of Theorem 4.1, but we use

here the following iteration procedure

Dy (2) = 2, (2) — '@y, 2) P (@, ?)

5. A generalization of the Banach contraction principle. Consider

the operator equation Pz = & where P: D(P)c X— Y is a closed
nonlinear operator.

TEEOREM 5.1. Suppose that the closed operator P has a bounded contractor
I'(z) such that

(6.1) [P (@-+I()y)—Pe—y|<glyl for allye¥,

where 0 < ¢ < 1 and |\I'(#)|| < B for all z¢ D(P). Then the equation Pr =y
has a solution for arbitrary ye X. If I'(x) is regular (and onto) for every
we D(P), then the inverse P ewists and is Lipschite continuous with the
constant B(1—q)™' (and P is continuous).

Proof. For arbitrary fixed &e Y consider the operator determined
by Pz — & This operator has the same contractor I'(z) and we apply the
iteration procedure

for n =0,1,2,...

(8.2) Ty =0 — L' (@) (P2, — &),
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where z,e D(P) is arbitrarily chosen. The sequence of =, converges to an
element » = Ré and P, > & as n - co. Since P is closed, P(R¢) = £

Suppose now that I'(») is regular. Let P(Ré&,) = & and P(RE,) = &,.
Then we can write Ré, = R& +I'(RE)y. Hence, using inequality (3.2)
we obtain .

1BE, —Ré | < IN(RENYI < B(L—g) 7" 1, — &4

From Lemma 3.1 follows that if I'(x) is onto, then P iy continuous.

The global constant B can be replaced. by a local one B(z,, &) such
that |I'(@)Il < B(wo, &) for |w—a,| < r and B(a,, &) |Pay— &) (L— Qi<
Then we can prove only the continuity of P,

Consider now equations of the second kind Py = g —Fg = &, where
F: X — X. Condition (5.1) yields here

(5.3) [#e~F [0+ I(@)y) — (I-I(@) 9] <qlyl for all ye X,

where I iy the identity mapping.

THEOREM 5.2. Theorem 5.1 remains true for the equation - Ty = &,
%, £ X, if we replace there condition (8.1) by (5.3).

The proof follows from Theorem 5.1.

Remark 5.1. If F: X - X is a contraction with the constant ¢ < 1,
then, obviously, a contractor I'(w), satisfying all conditions of Theorem 8,
exists and it is the identity mapping, i. e. I'(®) = I. Thus, Theorem 5.2
generalizes the well known Banach contraction principle.

The following remark will be used in the next section.

Remark 5.2. Consider the equation

(5.4)
E¥

Then Theorem 5.2 remains true if condition (5.8) is replaced by the
following inequality :

Pz :Q—F(w) =§, @ £cX.

(5.5) ”ﬁ{m—}-y +I’(w)y)—lﬂw—f(w)y“ < glyll, forallye X and 0 < ¢ <« 1,
where ||I'(z)]| < B.

For we réplaee in (5.2) the operator I—TI'() by ﬁ(m). 6 (14 ]:(w))(nX)
= D(F} for all e D(F) then the inverse of o~ I (z) exists and is defined
on the whole of X and ig Lipschitz continuous with the constant (L-++B)x
X(1L—¢)~". The iteration Procedure in this case is determined ag follows
(5.6) k

Tniy =By — I+ F(®,)) (@, — Fa— £), n = 0,1,2,...

The initial approximate solution %, can be chosen arbitrarily and the
Procedure converges toward a solution. For equations of second kind

it is convinient to have the contractor in the form I +]’~(w), we D(F).

icm®
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6. Nonlinear evolution equations, a generalization of the Piccard
theorem in Banach spaces. Consider the initial value problem
dm

— =F(t, »),

(6.1) =

0<i<T, 2(0) = ¢,

where the unknown = = 2(¢) is a function defined on the real interval
[0, T] with values in the Banach space X, and F: [0, T]x X - X is
a continuous mapping. Instead of (6.1) we consider the integral equation

i
(6.2) m(t)-fp(s,w(g))ds =&
o

Denote by Xy the space of all ¢ontinuous functions # = ®(f) defined on
[0, T] with values in X and with the norm 2l = max[llz(@)]: 0t
< T1. Considering equation (6.2) as an operator equation in Xp we can
apply our generalization of the Banach contraction principle discussed
in Section 5, especially Remark 5.2.

For arbitrary fixed 4« X and te [0, T]let I'(¢, 2): X — X be a bounded
linear operator, strongly continuous with respect to (i, #) in the sense
of the operator norm. Suppose that there exist positive numbers K, B
such that the inequality

t
(6.8)  max [P(t, a(9)+y () + [ L{s, a(a))y (9)d5)— Bt 0(0) Tt 0 (0] t0)
< Klylle

is satistied for arbitrary continuous functions o = x(t),y = y(¥)e Xy,
where |[I'(3, 2)| < B for all #¢ X and < [0, T]. Then we say that F(, )
i

hasg a bounded integral contractor {I+ [I'}. A bounded integral contractor
[

is said to be reguiar if the infegral equation

i .
y(t)—l—ff(s, z(&)y(s)ds =2(8), 0<Kt<T

[

(6.4)

has a continuous solution y () for arbitrary fixed and continuous functions
#(t) and #(t) € X;r. Obviously, if 7'(f, ») satisfies Lipschitz condition uniform-
i

ly int, than {I+ [ I'}, where I" = 0, is a regular bounded integral contractor.
0

THEOREM 6.1. Suppose that F (1, 2) has a bounded integral contractor
and T is such that TK = q <1. Then for arbitrary £e X equation (6.2)
has' a continuous solution n(f). If the bounded imtegral contractor is regular
then the solution ze Xy is unique and Lipschite comtinuous with respect
to £.
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Proof. Consider in X, the iteration procedure
¢ v
(68) @y = u—[Yn+ [ (s, 9,)y,d5] for  =0,1,2,...,
. 0

i
where &, = @, (), Y = Y (t) = @,(t) — [ F (3, 2, (s)) ds — &.
0
‘We have, by (6.5)
i 8
Yorr = [ [F(s,0) =P (s, 04—y~ [ T'(%, 0,)9,d7) — I(s, @,)9,] ds.
0 0

Hence, replacing y by —y in (6.3), we obtain that ly,.lle < ¢l¥,le. Thus,
the sequence of y, is convergent in X, toward zero. Since |[I'(t, #)|| < B,

it follows from (6.5) that 3 0,1 —@ulo < (1--TB) [W,llg(L —g)* and
n=0

that v, = #,(f) is continuous for » =0,1,2,..., where @, = @,(t)e X .

can be arbitrarily chosen. Therefore, the sequence of @, has a limit we X
which is a solution to (6.2). In the same way as in the proof of Theorem
5.2, we derive from (6.4) that the solution  is unique and Lipschitz contin-
uous with respect to £.

It is interesting to observe that the contractor for (6.2) at each fixed
(t, @) is naturally defined as a linear integral operator of the same kind
as the operator in the equation (6.2). ‘

Theorem 6.1 generalizes the well known Piccard theorem for evolution
equations in Banach spaces (see [7]). For as we mentioned above, if (1, »)
is_t-uniformly Lipschitz continuous, then with I' = 0 it satisfies the
assumptions of Theorem 6.1.

7. A coincidence theorem and a generalization of Krasnoselskii’s
fixed point theorem. The purpose of this section is to show how to combine
the contractor method and the Schauder [13] fixed point principle.

Let W be a closed bounded convex set of & Banach space X. Given
two operators acting in X:P: D(P)~X and Q: W X.

TamorEM 7.1. Suppose that P is a closed operator having a bounded
regular contractor {I'(m)} satisfying the inequality
(11) [P lo+I(x)y) —Po—yg|| <qlly]l with 0<g<1

Jor all e D(P), ye X,

where D(P) = I'#)(Y) and |I'(«)] < B. Suppose that @ 4s completely
continuous and .

(7.2) Qr—PyeW and o+I'(@)yeW for arbitrary T, Ye w.

Then P and @ havé a coincidence point a*< W, i. ¢. Po* = Q.

icm®
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Proof. On virtue of Theorem 5.1, for arbitrary ze W the equation
Py = @ has a unique solution y which is a limit of the iteration procedure
Bppy = Gy —I'(0,) [P, —Qx]. Tt follows from (7.2) that x,e W for
n=0,1,2,... Hence, ye W and y = P~'Qu is completely continuous,
since the inverse P~' exists and is continuous, by Theorem 5.1. The
Schauder fixed point theorem yields the existence of a point 2*e¢ W such
that #* = P~1Qa", i. e. Ps* = Qo*.

Consider now the case where Py = ¢ — Fa.

TuEOREBM 7.2. Suppose that F: D(F)—> X, is a dlosed operator hav-
ing & bounded regular comtractor {I+I'(w)} such that the inequality
|7 (& +I'(@)y) — F (%) — T'(@)y|| < qlyll, 0 < g < 1 is satisfied for all z< D(F)
and yeX, where |I'(x)|<B and D(F) = I'(z)(X). Suppose that Q is
completely continuous and

(13)  Fy+QueW and o+I@)[y—ale W for arbitrary o, ye W.

Then there exists a fized point «*« W such that o* = Fu* +Qu*.

Proof. On virtue of Theorem 5.2 and Remark 5.2, for arbitrary
¢ W the equation y —Fy = Qu has a unique solution y which is a limit
of the iteration procedure ®,,, = »,—[I+I'(»,)][%,—Fz,—@Qxz]. Con-
ditions (7.2) imply that ,e Wfor n = 0,1, 2, ... and, consequently, y< W.
It follows from the existence and continuity of the inverse P~! that
P~1Qz is completely continuous, where Py = s — Fa. Applying Schauder’s
fixed point theorem we obtain the existence of 4*e W such that a* — Fz*
= Qu*.

Both Theorems 7.1 and 7.2 can be considered as a' generalization
of the following theorem of Karsnoselskii [10]: :

If F i a contraction (i. e. Lipschitz continuous with a constant ¢ < 1)
and @ is completely continuous and Fy-+Qze W for arbitrary a, ye W,
then there exists a fixed point #*e¢ W such that #* = Fa*+Qu*. If the
assumptions of Krasnoselskii’s theorem are satisfied, then by putting
in Theorem 7.2 I'(x) = 0 the identity mapping I will be a bounded regular
contractor satisfying conditions (7.2).

8. Stationary points of nonlinear functionals. Let F: X->R be
a nonlinear functional differentiable in some gphere S(zy,7) of X and
denote by I (#) the Fréchet derivative (gradient) of F at #. The problem
of unconstraint optimization of ¥z reduces practically to finding stationary
points & of F, i. e. satisfying the equation

(8.1) Faog=0, scX.

Considering F': X -+ X' as a nonlinear (gradient) operator from the
Banach space X into its dual Banach space X', we can apply the contractor
method to solve equation (8.1).
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THEOREM 8.1. Suppose that the gradient F has a contractor I'(w): X' - X
for every we 8(2,,r) such that )

8.2)|[F [0+ Ia)y) ~F o~y < glyll  for weS(@o,7); ye X'y Iyl <,

where \['(z)| < B, [F (wll<nand By (L—g) v for some constants
0 <g<1, Bandn If I is closed on 8(my,r), then it has o stationary point
@ e (g, 1)y 0. 6. F'a" =0, which is a Uimit of the sequence {w,} defined
as follows @,y = @~ (@) F @y, n = 0,1,2,... and the error estimate
is given by the formula |w, —o"| < Bg"(1—q)~%

Proof. The proof iy exactly the same as that of Theorem 2.1

Remark 8.1. If the contractor iz additionally onto and satisfies
(8.2) for all ye X’ such that |[I'(x)y] < 2r for we S(x,, 7), then I hag in
8 (%, 7) a unique stationary point a*.

This assertion follows from the argument in Remark 2.1.

Remark 8.2: It is sufficient to assume that I’ is defined on a subset
D(F') = 8(%y, 7) N.I'(w)(X'), where the intersection is the same for all
e D(F') and @ye D(F'). In this case the uniqueness for z* follows if
condition (8.2) holds for all ye X' such that [I'(@)y] < 2r, we D(F").

) 9. Various iteration procedures as special cases of the conmtractor
method. )

9.1. It is shown in Seection 2. that the Newton-Kantorovich method
(2.11) is a special cagse of the contractor method and the same is true for
the generalization of Newton’s method (2.13) for nonlinear functionals.
The following modification of the Newton-Kantorovich method is given
by Bartle [4]. o

(9.1) Tpyy = Tp— [P, (zn)]—lem

provided that the initial guess @, and the arbitrarily selected points 2,
are sufficiently close to the solution desired. It is easy to see that the
contractor for the method (9.1)is I'(w) = [P’ (®)]~%. Under the agsumptions
made in [4] the contractor satisties the following inequality:

1P o+ [P (17 y) —Pa—3]| < (1/20) [P ()11l < (L/22) Ay,

where A and § are chosen so as to satisfy ILP ()17 < & if o]l < B,
lo—woll < B and llo [P (2)]7 'y — 2]l < B (see Lemma 2 [4]).

9.2. Tt is shown in [3] that the method of steepest descent developed
by Kantorovich [6], the minimum residual method, investigated by Krasno-
selskii and Krein [9] and other gradient methods (see [2], [8], [10]) are
special cases of Newton’s method (2.13) for nonlinear functionals. Thus,
these methods can'also be considered as special cases of the contractor
method. This is the case from variational point of view, i. e. when we
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reduce the operator equation to the minimum problem of a non-negative
nonlinear functional ¥, where for instance, F(») = |Po|? = 0 is required.
However, we can see that these and other methods can also be considered
ag contractor: methods in the direct sense of (2.2).

9.3. Let A: H— H be a linear self-adjoint and positive definite
operator in the real Hilbert space H such that m(w, 2) < (4, 2) < M (=, @),
where 0 < m < M < oco. Consider the equation

(9.2) Aw =D, @ beH.

The operator Px = Ax—b iy differentiable in the sense of Fréchet and
P'(x) = A. It is easy to verify that (a4 —I|| <1 if 0 < a« < 2/M. Thus,
putting in (3.1*) I'(#) = oI we obfain a contractor and the corresponding
contractor method will be the method of successive approximation with
parameter a:

(9.3) Bppy = Ty—a(Az,—b), n=0,1,2,...

Replacing in (9.3) a by a(z) =(r, Ar)/(4r, Ar), where r = r(z) = Adx—b
we obtain the minimum residual method investigated by Krasnoselskii
and Krein [9]:

(9.4) Tppy = Bp— Py, % =0,1,2, ..., wWhere a, = a(z,) and
7y =1 (®,).

The contractor here is a(2)I and the contractor inequality (3.1) yields
in this case

14 {2+ a(2)y) — Ao —g]| < (M —m)(H +m)~ [yl

This inequality is satisfied for ¥ = # (), in virtue of the following inequality
(see [10] p. 109)

(9.5) 14 (0 — a(@)r (@) — B < (B +m) (A —m)~* [ (@)

To prove last inequality let us observe that

|4 (2 — a(@)r (@) —b

| = min |4 (o —tr (@) —-b|} = miin llr () — 2o (@) "
ot

2
- ~1 -~ All= (M —m) (M +m)™*
But for ¢ = 2(M+m)™! we have ||I Trm [|= (M —m) (M +m)

and, consequently, we obtain (9.5). ]
9.4. The method of steepest descent developed by Kantorovich [6]
for soloving (9.2) is defined as follows:

(9.6) Tpoy = Gp—Putuy  Where B, = (1, 7,) (A7, 1)
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Congider the Hilbert space H, obtained from H by introducing a new

sealar product [, v] = (47w, v), u, v< H. Then it ig clear that the sbeepest

descent method (9.6) is the minimum residual method (9.4) considered
in the Hilbert space H . Thus, the steepest descent method (9.6) is a con-
tractor method in the Hilbert space FH . It is easily seen that 4 is self
adjoint and positive definit in H .

9.4. Oonsider the nonlinear operator equation

(9.7) Py =0, where P: S(w,,7)-H,

P being continuously differentiable in the sense of Fréchet in tho sphere
8(%y, r) = H and P'(») satisfies the inequality

(9.8) [P (@] = B~ Iyl
The following iteration procedure [2] is also a contractor method:
(99) wn+1 = &y — ”-Pwn“z ”Q (mn)”_22_1Q (mn)?

where @ (z) = [P'()]* Pz (* = adjoint). Sinee P iy differentiable, we can
expect that I'(z) = ||Pxl|*Q(x)|7*27 [P (#)]* will be a contractor, in
virtue of (3.1%). Condition (9.8) implies that 1'(®)]| is bounded for
#e 8(mg, r). The existence of a solution of (9.7) as well as the convergence
of (9.9) to this solution can be obtained from Theorem 3.1. It follows
from the assumptions made in [2] that Theorem 3.1 can be applied. It
is not difficult to see that the hypotheses made by Kivistik (see [10]
p. 156) are also sufficient in order to apply the contractor method to his
procedure ‘

for all ze S(my, 7), ye H.

n=20,1,..,

mn+1 = Tp— (Pl (‘wn)-Pmn! 'Pwn) ”—P, (wn)'PmnH—ngnﬂ n = 07 1? 27 tee

Note that other procedures similar to (9.9) can also be put in the unified
scheme of the contractor method.

Remark 9.1. In all theorems which are global in nature, the re-
quirement that the contractor I'(w) is bounded, i. e. (@)l < B for we D(P),

can be replaced by the assumption that I'(z) is Lipschitz continuous
with constant XK.

Proof. We have, by (2.2),
17 @l < WP @I+ KNP, ]) < |T(@,)| (L + g [ Poell) < [T, (L + )

for large n. Hence '
|7 @)l 1PBn sl < (L +2) g IT (@)1 1Py,  wWhere 7 < g=*—1.

Then P~ will be continuous but not Lepschitzian.,
An application of the contractor idea to Banach algebrag will be
given in a separate paper.
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