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On strong ergodicity of inhomogeneous products of
finite stochastic matrices

by
E. SENETA (Canberra)

Abstract. For a sequence {Py} of n X n stochastic matrices, where Py = {pi (k)}s
sueh that: (1) Ty = Pri1Ppsa ... Pryy is regular for each » > 0, k> 1; (2) mint py (k)
%5

> 6 > 0 uniformly for all k> 1, where min+ refers to the minimum among all strictly
positive elements; and (3) the sequence {Py} is asymptotically homogeneous, it is
shown strong ergodicity obtains. This generalizes a result of Bernstein [1], who assumes
in addition that all Py are Markov matrices; and of Sarymsakov [8] and Sarymsakov
and Mustafin [9] who show (1) and (2) are sufficient for weak ergodicity. Relationship
to the results of Kozniewska [3] on necessary and sufficient conditions for strong
ergodicity is also briefly discussed.

1. Introduction. In this note, all matrices are of fixed size: nXn;
and all vectors contain n elements. Let {P,}, k> 1 be a sequence of sto-
chastic matrices (i.e. matrices with non-negative entries and unit row
sums), where P, = {p;(k)} and let T, , = {if;*} be the stochastic matrix
defined by

Tr,k = -Pr+1Pr+2 e Pr+k
for r>0, k> 1.
The sequence of matrices {P} is said to be weakly ergodic (in the
sense of Kolmogorov) if for all 4,j,s =1,...,%n and r>0
[0 — 1] > 0
as k - co. The sequence is said to be strongly ergodic if
imT,, =1D;, r=0
k~ro0
elementwise, where D, is necessarily a probability vector (i.e. D, >0,
D;1 = 1), but may depend on 7.
The sequence {P,} is said to be asymptotically homogensous (in the
sense of Bernstein) if there exists a probability vector D such that
imD'P, = D'.
F—o0
Kozniewska [3] has introduced the related concept of asymplotic station-
arity: {Py} is said to be asymptotically stationary if there exists a prob-
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ability vector I such that
imD'T,, = D,

Fe—>c0
and has shown that, just as strong ergodicity implies weak ergodicity,
agymptotic stationarity implies asymptotic homogeneity. She has, further,
shown e.g. that weak ergodicity and asymptotic stationarity are together
necessary and sufficient for strong ergodicity.

There are several necessary and sufficient conditions known for
weak ergodicity also (see Kozniewska [3] for one such and her references
to earlier work, especially Hajnal [2]), but from & practical viewpoint
a useful sufficient condition is given by the following theorem of Sarym-
sakov [8] and Sarymsakov and Mustafin [9], where @, is the class of
(n X n) regular stochastic matrices (i.e. stochastic matrices having a single
eigenvalue(!) of modulus unity; or, in Markov chain terms, transition
matrices corresponding to homogeneous Markov chains whose essential
states form a single aperiodic class).

TemoREM A. If for each r> 0, T, ,eGy for all k=1, and
min*py (k) = 6 > 0
4]

uniformly for all k> 1 (where min™ refers to the minimum non-zero entry),
then weak ergodicity obtwins (umiformly for all r).

Actually, Sarymsakov and Mustafin have, instead of the condition
T, Gy, the stronger condition that each P,e@,, where G, is a suitable
subset of G4; and their proof is rather concise. However it is not diffi-
cult to see from their work that the theorem as stated is valid; a complete
proof will be given by the present author in [107].

The strength of Theorem A may be seen from the fact that it sub-
sumes later, and quite practically useful, theorems of Wolfowitz [11] and
Paz [6], [7].

The main purpose of the present note is to prove a strong ergodicity
analogue of Theorem A, viz.

THEOREM B. Under the conditions of Theorem A on the sequence {P,},
and, the additional assumption of asymptotic homogeneity, strong ergodioity
obtains.

‘We shall need also the concept of a Markov matriz. A Markov matrix
is a stochastic matrix P = {p,} satistying A(P) = ma‘x(mmpﬂ) > 0: ie.

having & positive column. A sequence {P;} of &LOO]T‘L%I@ matmees is said
to be uniformly Markov if A(P,) > 4, > 0 for all k. The product of any sto-
chastic maitrix, m either order, with a Markov mmrlx, i Markov; and

(*) counting repeated eigenvalues as distinct.
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a Markov matrix clearly is a member of G;. Thus if M is the class of Mar-
kov matrices, M < G.

Theorems A and B for a sequence {P,} of uniformly Markov matrices
were proved by Bernstein [1]; Theorem A in essence being due to Markov
[4] himself, in this restricted situation. Sarymsakov and Mustafin [9]
have in essence shown that these classical arguments may be extended
to give Theorem A as it stands; and we shall do the same in the case of
Theorem B.

Finally the reader should note that KoZniewska [3], in her Theorem 4,
has given a necessary and sufficient condition for strong ergodicity in
terms of asymptotic homogeneity. Her arguments could be adapted and
expanded for -our purposes, but it seems simpler to proceed directly.

2. Preliminary Results.

Levma 1. Let P = {p;} be a stochastic mairiz and & = {5;} a vecior
of real elements satisfying & + 0, 81 = 0. Let A4y = X|5;] and 4, = Z|8}|
where 6* = {57} is defined by (é‘*) = &'P. Then

4, < (1—2(P)) 4,

where A(P) > 0 is as defimed in § 1.

This result is in essence due to Markov [4], although rediscovered
many times (see e.g. Mott [5]).

Lemma 2 is due to Sarymsakov and Mustafin [9], although the
reader may prefer the simpler approach in Wolfowitz [11](Lemmas 3 and 4,
where the word “scrambling” may be replaced by “Markov” without
altering the proofs).

LeMMa 2. If for each v >0, T, Gy for all k=1, then T, M for

> t+1, where t is the number of distinct types(?) of matrix in G,.

LeMMA 3. If the sequence {P;} is asymptotically homogenecous in res-

pect to probability vector D, then
HmD'T,; =D,

r~>00

for each k= 1.

Proof. This is by induction. The proposition is true for & =1 by
assumption since T,, = P,,,. Assume it is true for some k>1. Then

’ ’
D Tr,k+] =D Tr,kPr-l-k+1

and, writing D'T,, = D' -+E,, where E,; >0 as » - co (by induction
hypothesis), we have

D Ty = D,Pr+k+1 +E;',kPr+k+1

(2) i. e. with regard to location of positive elements, but not their actual values.
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so, using asymptotic homogeneity, and the fact that P,.,.,, being sto-
chastic, is uniformly elementwise bounded a8 k& — oo,

HmD' T,y = D
P=+00
which completes the proof.
LEMMA 4. For a given sequence {Py} of stochastic matrices, suppose

& (h+1) =8B Py +r'(k), k=0
where &' (k)1 = 0 =v'(k)1. Then
k1 Te1
AE+1)< 40) [] (1 —4(P) +[]r ” (L—=2(P))+-I'(k) -
i=1 =0

for k=0, where A(k)= 3 |8;(k), T'(k) = 3lr;(k)|, and 3 is to be inter-
i 4 =0 .

preted as 0.
Proof. By induction. For k = 0
& (1)~ (0) = & (0)P,

so that, by Lemma 1, together with the eleﬁbnta,ry inequality |a—b]
> lal— (0]

A(1) < 4(0)(L—A(PY) +T(0)
o0 the assertion is true for & = 0. For arbitrary & > 0, similarly

8 (l+2)—+ (k-+1) = 6 (b+1)Ppyy

so that '
Ak +2) < A(h+1){L —A(Pyya)} +T'(k+1).
Applying the induction hypothesis to 4(%k-1), the result follows.
COROLLARY. If all Py, in {P} are uniformly Markov (t.6. A(Py) = 4> 0
all &), and also r(k) - 0 clementwise as k — oo, then
A(k) - 0.
Proof. In the first place
k-1 k41 k-1
1) n (L—A(P)) < ) T'ti) (1 — o)~
im0 F=t-+2 iﬂO
To—1
~2T(m(l W T TG (L= A
Te=0 fm=j1 )
To—1
< (L= A ’21‘(@) + DT D) (=)
=0 LAY
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Now select § = j(e) such that I'(¢) < £ for 1> j; and make use of the fact
that I'(¢) < € = const. for all 4. It follows that, by judicious choice of &,
the right hand side will be arbitrarily small if % is sufficiently large.

The truth of the Corollary is now trivial.

LemMa 5. For o sequence {Py} of uniformly Markov matrices, asymp-
totic stationarity and asymptotic homogeneity ~are equivalent.

Proof. As already noted, Kozniewska has shown that asymptotic
stationarity always implies asymptotic homogeneity. We need to prove
now that in the present situation, the converse is true.

By the assumption of asymptotic homogenelty, there is a probability
vector D such that

D'P,4e (k) =D
where e(k) — 0 as & — oo, and e’ (k)1 = 0. Let us write for k> 1
D'P,=DT,,+k).
Then
DP,, =DT, ;. +&E+1).
On the other hand
D'P,,, = (D' Pyt € (k) Pryy
= (D'T,;,+ 6 (k) + € (k) Py
so that, finally, for all x>0
& (k4+1) = & (B)Pyyy + 1 (F)

where 7' (k) = e (k) Py, 50 that, by stochasticity (k)1 =0 = d'(k)1.

Moreover »(k) — 0 as k ~ oo, since r'(k) = e’ (k)Ppy,, so the Coro-
llary to Lemma 4 gives
' LimD'P, = limD'T, ;, = D'.

k00 Fr00

The same reasoning follows for D'T,,, for any fixed r
assumptions on {P,} are invariant under shift.

Hence the result follows.

> 0, since the

3. Proof of Theorem B. Consider the probability vector D with
respect to which {P;} is asymptotically homogeneous, so that
limD' P, = D'
koo
and consider for fixed 7, and ¢ having the meaning of Lemma 2, the sequence
of stochastic maitrices

{Tr+k(.l+1),t+1}? k = 0.
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. This sequence contains only Markov matrices, by Lemma 2; which are
in fact uniformly Markov, for since by assuraption min'p, (k) = 4 >0,
it follows that min* D 5 671 50 thab b
%)

MLy ) > 0%
Moreover by Lemma 3,

hmDTulccu)m =D

00
so that the sequence {T,, sy, ieipr 2= 0, i8 asymptotically homogeneous
with respect to D and so by Lemma 5 is asymptotically stationary;
in particular

. s /
WD Ty 3 Loy i -+ Trongrn,ten = D'
kesoo

Now for fixed m,l < m < (+1)

lim D —Pr+(k+l)(t+1)-|-1Pr+(k+l)(i+1)+2 tee Pr+(k+l)(l+l)+m

]
: =HmD' T, geprygsrm = D'

K—roa
by Lemma 3. Hence, easily for 0 < m < (t+1)
I}EED Tr,l-}-lTr+(t+1),t+1 -Tr+k(¢+l),t+1T(m,k} =D
where )
7 _ Tt orypsn,m  for m >0,
(mk)
I for m = 0.
Thus

’ ’
D Tr,(la+1)(t+1)+m =D

a8 k — oo for each m, 0 < m < t+1, and each fixed r > 0
Thus '
Lim D' T,, =D’

koo

80 that the sequence {P;} is msymptotloally qtatmua,ry in terms of the
matrix D.

‘We thus have asymptotlc stationarity; and weak ergodicity from
Theorem A. Strong ergodicity is thus a simple consequence e. g by the
theorem of KoZniewska mentioned ea.Iher, in fact T, 1D for all
r=0 a8 k — oo
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