

Semi-spectral integrals and related mappings

bv

J. JANAS (Kraków)

Abstract. The present paper deals with mappings $X(\cdot) \to \int XdF$. X stands here for a bounded operator function on a Hilbert space and F for a semi-spectral measure. We prove some L^2 type estimates for $\int XdF$. Next we show that the above mapping is completely contractive provided F is normalized. Similar properties hold true for integrals $\int XGd\mu$ with operator density G. One always assumes that $X(\cdot)$ intertwines measures or densities respectively. The last part of the paper deals with dilation properties of the mapping $X(\cdot) \to \int XdF$.

The present paper deals with operators which intertwine semi-spectral measures. There are also considered some completely contractive mappings related to semi-spectral integrals of operator valued functions. Among others we prove a generalization of the inequality obtained by S. Parrott in [9]. We also present some general properties of operator intertwining completely positive maps and derive therefore several properties of mappings induced by semi-spectral integrals. As to dilation theory we refer here to [1], [5].

1. Throughout the present paper H stands for a complex Hilbert space. L(H) denotes the algebra of all bounded linear operators in H. I is the identity operator in H. Let A be a C^* -algebra and M_n the C^* -algebra of all complex $n\times n$ matrices. The tensor product $A\otimes M_n$ of all $n\times n$ matrices over A is a *-algebra. It is also C^* -algebra because there is a unique C^* -norm on this *-algebra (see [1] for details). For symmetric subspace $S\subset A$ we define $S\otimes M_n=\{V\,|\,V=(v_{ij})\,\epsilon A\otimes M_n,\ v_{ij}\,\epsilon S\}$. Suppose we are given the linear map $\varphi\colon B\to L(H)$ of the symmetric subspace B of A. We define a linear map

$$\varphi_n \colon B \otimes M_n \to L(H) \otimes M_n \quad (n \geqslant 1)$$

by applying φ element by element, to each matrix over B. The following definition appears in [1]: We say that φ is completely contractive (positive) if for every $n \ge 1$, φ_n is contractive (positive). Suppose we are given a σ -field $\mathscr B$ of subsets of the space Ω and a positive, finite measure μ on this field. In what follows we are interested merely in integrating of bounded operator—valued—functions.

DEFINITION 1.The bounded operator valued function $X \colon \Omega \to L(H)$ is called simple if $X(w) = \sum_{i=1}^{\infty} X_i \psi_{\sigma_i}(w)$ where $X_i \in L(H)$ and $\sigma_1, \ldots, \sigma_n, \ldots$ is a partition of Ω i.e. $\sigma_i \cap \sigma_j = \emptyset$ $(i \neq j)$ and $\Omega = \bigcup \sigma_i$.

DEFINITION 2. We say that the bounded function $X \colon \Omega \to L(H)$ is $\mathscr{B}\text{-measurable}$, if there exists a sequence $X_n(\cdot)$ of simple functions such that $\sup \|X(w) - X_n(w)\| \underset{n \to \infty}{\longrightarrow} 0$, where $\mu(\gamma) = 0$.

Since μ is finite every \mathscr{B} -measurable function is integrable in the sense of Bochner (see [3] — for definition). More precisely, if $X(\cdot)$ is simple and $X(w) = \sum_{i=1}^{\infty} X_i \psi_{\sigma_i}(w)$ then $\int_{\Omega} X(w) d\mu = \sum_{i=1}^{\infty} X_i \mu(\sigma_i)$ by definition. Now if X_n is a sequence of simple functions such that $\sup_{\Omega \setminus \Omega_0} \|X_n(w) - X(w)\| \to 0$, $n \to \infty (\mu(\Omega_0) = 0)$ then $\int_{\Omega} X(w) d\mu = \lim_{n \to \infty} \int_{\Omega} X_n(w) d\mu$ — see [3] for details. Note that a product of \mathscr{B} -measurable functions is also integrable, since it is \mathscr{B} -measurable.

Let $X(\cdot)$ and $G(\cdot)$ be \mathscr{B} -measurable operator valued functions and $0\leqslant G(w)\leqslant I$ for $w\in\Omega$. It follows that the function X(w)G(w) is integrable. Let $Y_i\colon \Omega\to L(H_i)\ i=1,\ldots,k$ be a set of functions. Then the vectorial function $\overset{\rightharpoonup}{Y}(w)=\bigl(Y_1(w),\ldots,Y_k(w)\bigr)\epsilon L(H_1)\times\ldots\times L(H_k)$ is \mathscr{B} -measurable if and only if every Y_i is \mathscr{B} -measurable. This shows that the following proposition holds true.

Proposition 1.1. Suppose we are given the set of integrals $\int_{\Omega} X_{ik}(w)G(w) d\mu$ (i, $k=1,\ldots,m$). Then for every $\varepsilon>0$ there exists a partition $\{\sigma_i\}$ of Ω such that

$$\Big\| \sum_{j=1}^{\infty} B_{j}^{ik} \mu(\sigma_{j}) - \int_{\Omega} X_{ik}(w) G(w) d\mu \Big\| < \varepsilon, \quad \text{ for } i, k = 1, \ldots, m,$$

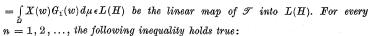
where $B_j^{ik} = X_{ik}(w_j)G(w_j)$ and $w_j \in \sigma_j$.

Let us consider two operator valued \mathscr{B} -measurable functions $G_i(w)$ $(w \in \Omega)$ such that $0 \leq G_i(w) \leq I$. Denote by \mathscr{F} the set of all \mathscr{B} -measurable functions which intertwine $G_i(w)$ i.e.

$$G_2(w)X(w) = X(w)G_1(w)$$

 μ -almost everywhere. $\mathscr T$ becomes the Banach space with the following norm $\|X(\cdot)\|=\sup_{w}\|X(w)\|$. The spectral theorem yields that $X(\cdot)\epsilon\mathscr T$ intertwines $G_{i}^{1/2}(\cdot)$ that is $G_{i}^{1/2}(w)X(w)=X(w)G_{i}^{1/2}(w)$ μ -almost everywhere. We can prove now the following

Theorem 1.1. Let
$$\mu(\Omega)=1$$
 and let $\mathscr{F} * X(\cdot) \to \int\limits_{\Omega} G_2(w) X(w) d\mu$



$$\left\| \left(\int\limits_{\varOmega} G_2(w) X_{ik}(w) d\mu \right) \right\|_{L(H \oplus \ldots \oplus H)} \leqslant \sup\limits_{w} \left\| \left(X_{ik}(w) \right) \right\|_{L(H \oplus \ldots \oplus H)}$$

$$i, k = 1, 2, \ldots, n.$$

Proof. Let $(f_1, \ldots, f_n) = \hat{f} \epsilon \bigoplus_{i=1}^n H_i$ $(g_1, \ldots, g_n) = \hat{g} \epsilon \bigoplus_{i=1}^n H_i$, where $H_i = H$. By the Proposition 1.1 we can take approximating summs for $\int_0^n G_2(w) X_{ik}(w) d\mu$ of the form: $\sum_{i=1}^n G_2(w_i) X_{ik}(w_i) \mu(\sigma_i)$.

We have now

$$\begin{split} \Big| \sum_{ik=1}^n \Big(\sum_{j=1}^n G_2(w_j) X_{ik}(w_j) \, \mu(\sigma_j) f_k, \, g_i \Big) \Big| \\ &= \Big| \sum_{j=1}^n \sum_{ik=1}^n \left(G_2(w_j) X_{ik}(w_j) \, \mu(\sigma_j) f_k, \, g_i \right) \Big| \\ &= \Big| \sum_{j=1}^n \sum_{ik=1}^n \left(X_{ik}(w_j) G_1^{1/2}(w_j) \, \mu(\sigma_j) f_k, \, G_2^{1/2}(w_j) \, g_i \right) \Big| \\ &\leq \sum_{j=1}^n \sup_{w} \| \big(X_{ik}(w) \big) \|_{L(\oplus H_i)} \Big(\sum_{k=1}^n \| G_1^{1/2}(w_j) \, \mu^{1/2}(\sigma_j) f_k \|^2 \Big)^{1/2}. \\ &\Big(\sum_{i=1}^n \| G_2^{1/2}(w_j) \, \mu^{1/2}(\sigma_j) \, g_i \|^2 \Big)^{1/2} \\ &\leq \sup_{w} \| \big(X_{ik}(w) \big) \|_{L(\oplus H_i)} \Big(\sum_{j=1}^n \sum_{k=1}^n \| G_1^{1/2}(w_j) \, \mu^{1/2}(\sigma_j) f_k \|^2 \Big)^{1/2}. \\ &\Big(\sum_{k=1}^n \sum_{j=1}^n \| G_2^{1/2}(w_j) \, \mu^{1/2}(\sigma_j) \, g_i \|^2 \Big)^{1/2} \leqslant \sup_{w} \| \big(X_{ik}(w) \big) \, \|_{L(\oplus H_i)} \| \hat{f} \| \cdot \| \hat{g} \|. \end{split}$$

Since f and g are arbitrary the proof is complete.

If $G_1 = G_2 = G$ in the above theorem, then \mathcal{F} becomes a C^* -algebra with involution $X^*(w) = X(w)^*$. From Theorem 1.1. we derive

COROLLARY 1.1. If $G_1 = G_2 = G$ then the linear map $\mathscr{F} \ni X(\cdot) \to \int X(w) G(w) d\mu$ is completely contractive.

Now let us define a class of $\hat{\mathscr{B}}$ -measurable operator valued functions. Definition 3. The bounded operator valued function $X \colon \Omega \to L(H)$ is called $\hat{\mathscr{B}}$ -measurable, if there is a sequence of simple functions $X_n(w)$ such that $\sup \|X(w) - X_n(w)\|_{\stackrel{n}{\longrightarrow} 0} 0$.

Let $X \colon \varOmega \to L(H)$ be \mathscr{B} -measurable and let $F_i \colon \varOmega \to L(H)$ (i=1,2) be semi-spectral measures. Suppose that X(w) intertwines F_2 and F_1 i.e.

(2)
$$F_2(\sigma)X(w) = X(w)F_1(\sigma)$$
 for all $w \in \Omega$ and $\sigma \in \mathcal{B}$.

Denote by $\mathscr C$ the set of all $X(\cdot)$ such that (2) holds true. For $X(\cdot)$ $\epsilon\mathscr C$ one can define the integral $\int\limits_{\Omega}X(w)\,dF_1$ (= $\int\limits_{\Omega}dF_2X(w)$) (see [6], [7] — for references). We have the following

THEOREM 1.2. If $F_i(\Omega) = I$ for i = 1, 2, then the linear map $\mathscr{C} \ni X \to \int_{\Omega} X(w) dF_1$ for every $n = 1, 2, \ldots$ satisfies the inequality:

$$\left\|\left(\int\limits_{\Omega}X_{ik}(w)dF_1\right)\right\|_{L(H\oplus\ldots\oplus H)}\leqslant \sup\left\|\left(X_{ik}(w)\right)\right\|_{L(H\oplus\ldots\oplus H)}\quad (i,\,k=1,\ldots,n).$$

The proof of Theorem 1.2 is just the same as that of Theorem 1.1. In particular, if $F_1 = F_2 = F$, then $\mathscr C$ becomes C^* -algebra and so we have

COROLLARY 1.2. If $F_1 = F_2 = F$ then linear map $\mathscr{C} * X(\cdot) \to \int_{\Omega} X(w) dF$ is completely contractive provided (2) holds true i.e. the values of $X(\cdot)$ and $F(\cdot)$ commute.

Note by the way, that from the above corollary one can deduce, that every contractive representation $T\colon A\to L(H)$ (such that T(1)=I) of the Dirichlet algebra $A\subset C(\Omega)$ (Ω -compact Hausdorff space) is completely contractive. Indeed, it is known (see [2]), that then $T(u)=\int\limits_{\Omega}udF$, where F is a unique, regular, normalized semi-spectral measure on Borel subsets of Ω . Taking in the Corollary 1.2 $\mathscr{C}=C(\Omega)$ we get the claim. We emphasize that our proof is direct and avoids the Naimark dilation theorem for semi-spectral measure F.

Let $X \colon \Omega \to L(H)$ be $\widehat{\mathscr{B}}$ -measurable and let F be a normalized semi-spectral measure. Assume that the values of $X(\cdot)$ and $F(\cdot)$ commute. We will prove the following theorem

THEOREM 1.3. Let $X\colon \Omega \to L(H)$ and F be as above. Then for every $f \in H$ we have the inequality

$$\left\|\left(\int_{\Omega}X(w)dF\right)f\right\|^{2} \leqslant \int_{\Omega}\|X(w)\|^{2}d\left(Ff,f\right).$$

Proof. If $f, g \in H$ are arbitrary and $\{\sigma_i\}$ is a partition of Ω , then we have for $w_i \in \sigma_i$

$$\begin{split} \Big| \sum_{i=1}^{\infty} \big(X(w_i) F(\sigma_i) f, g \big) \Big| &\leqslant \sum_{i=1}^{\infty} \Big| \big(X(w_i) F^{1/2}(\sigma_i) f, F^{1/2}(\sigma_i) g \big) \Big| \\ &\leqslant \Big(\sum_{i=1}^{\infty} \| X(w_i) F^{1/2}(\sigma_i) f \|^2 \Big)^{1/2} \cdot \Big(\sum_{i=1}^{\infty} \| F^{1/2}(\sigma_i) g \|^2 \Big)^{1/2} \\ &= \Big(\sum_{i=1}^{\infty} \| X(w_i) F^{1/2}(\sigma_i) f \|^2 \Big)^{1/2} \cdot \| g \|. \end{split}$$

Thus

$$\Big\| \sum_{i=1}^\infty X(w_i) F(\sigma_i) f \Big\|^2 \leqslant \sum_{i=1}^\infty \|X(w_i) F^{1/2}(\sigma_i) f\|^2 \leqslant \sum_{i=1}^\infty \|X(w_i)\|^2 \big(F(\sigma_i) f, f \big).$$

Since the partition $\{\sigma_i\}$ is arbitrary the theorem-is proved. Now let $X\colon \Omega \to L(H)$ be \mathscr{B} -measurable and let $0\leqslant G(w)\leqslant I$ $(w\in\Omega)$ be also \mathscr{B} -measurable. Assume that the values of $X(\cdot)$ and $G(\cdot)$ commute μ -almost everywhere. Then we have an analogous to Theorem 1.3

THEOREM 1.4. Let $X \colon \Omega \to L(H)$ and G be as above. For every $f \in H$ we have the inequality:

$$\left\|\left(\int\limits_{\Omega}X(w)G(w)\,d\mu\right)\!f\right\|^2\leqslant\int\limits_{\Omega}\|X(w)\|^2\!\!\left(\!G(w)f,f\right)d\mu.$$

The proof is just the same as that of Theorem 1.3.

Remark 1.1. Note that inequality (a) implies the results obtained by Mlak and Ryll-Nardzewski in [7]. The estimation (a) is better than the inequality

$$\Big\| \int_{\Omega} X(w) dF \Big\| \leqslant \sup_{w} \|X(w)\| \cdot \|F(\Omega)\|.$$

Remark 1.2. Let $T \in L(H)$, $||T|| \leq 1$ and let F denote semi-spectral measure of T (see [5]). Consider a matrix (p_{ij}) $1 \leq i,j \leq n$, of polynomials $p_{ij}(z) = p_{ij}(z,A_{0ij},\ldots,A_{kij})$ (|z|=1) with operator coefficients A_{sij} commuting with T and T^* . For each fixed z, the matrix $(p_{ij}(z))$ is considered as an operator on $\bigoplus_{i=1}^n H_i = M$, $H_i = H$. Since T is a contraction, we have the equality:

$$egin{aligned} p_{ij}(T,A_{0ij},\ldots,A_{kij}) &= \sum_{s=0}^k A_{sij} T^s = \int\limits_{|z|=1}^k \sum_{s=0}^k z^s A_{sij} dF \ &= \int\limits_{|z|=1} p_{ij}(z,A_{0ij},\ldots,A_{kij}) dF. \end{aligned}$$

Corollary 2.1 proves that

$$\big\|\big(p_{ij}(T,A_{0ij},\ldots,A_{kij})\big)\big\|_{L(M)}\leqslant \sup_{|z|=1}\big\|\big(p_{ij}(z,A_{0ij},\ldots,A_{kij})\big)\big\|_{L(M)}.$$

This inequality generalizes the inequality obtained by Parrott [9] in a different way.

Assume now that $T \in L(H)$ has a unitary ϱ -dilation ($\varrho > 0$) i.e.

$$T^n = \operatorname{pr} \varrho \cdot U^n \quad (n = 1, 2, \ldots)$$

where U is unitary (see [5] Ch. I for details). Let E be the spectral measure of U and $F=\operatorname{pr} E$. Let $B_{kij} \epsilon L(H) \ k=0,\ldots,n,\ i,j=i,\ldots,m$ commute with T and T^* . Then $B_{kij} F(\sigma)=F(\sigma)B_{kij}$ for $\sigma \epsilon \mathscr{B}$. Next we have

$$\begin{split} \sum_{k=0}^n B_{kij} T^k &= \varrho \cdot \sum_{k=0}^n B_{kij} \int\limits_{|z|=1} z^k dF + (1-\varrho) B_{0ij} \int\limits_{|z|=1} z^0 dF \\ &= \int\limits_{|z|=1} \left(\varrho \sum_{k=0}^n B_{kij} z^k + (1-\varrho) B_{0ij} \right) dF \,. \end{split}$$

Applying Corollary 2.1 once more we conclude that

$$\begin{split} & \left\| \left[\sum_{k=0}^{n} B_{k11} T^{k}, \ldots, \sum_{k=0}^{n} B_{k1m} T^{k} \right] \right\|_{L(M)} \\ & \leq \sup_{|z|=1} \left\| \left[\varrho \sum_{k=0}^{n} B_{k11} z^{k}, \ldots, \varrho \sum_{k=0}^{n} B_{k1m} z^{k} \right] \right\|_{L(M)} \\ & \leq \sup_{|z|=1} \left\| \left[\varrho \sum_{k=0}^{n} B_{k11} z^{k}, \ldots, \varrho \sum_{k=0}^{n} B_{k1m} z^{k} \right] + (1-\varrho) \left[B_{011}, \ldots, B_{01m} \right] \right\|_{L(M)} \\ & \text{where } M = H \oplus \ldots \oplus H. \end{split}$$

2. Let B be a C^* -algebra with the unit element e and $\varphi_i \colon B \to L(H_i)$ i=1,2 a completely positive linear map. Stinespring proved (see [1]) that every such φ_i has the form $\varphi_i(u) = V_i^* \psi_i(u) \, V_i$ where ψ_i is a representation of B on some Hilbert space K_i and V_i is a bounded linear operator from H_i to K_i . Setting $L_i = [\psi_i(B) V_i H_i]$, then the restriction $\bar{\psi}_i$ of ψ_i to L_i also satisfies the equality $\varphi_i(u) = V_i^* \bar{\psi}_i(u) \, V_i$, so there is no loss of generality, if we require that $[\psi_i(B) V_i H_i] = K_i$.

The pair (ψ_i, V_i) is called *minimal* if $[\psi_i(B) V_i H_i] = K_i$.

We will prove later, that the map (considered before) $\mathscr{F} * X(\cdot) \to \int_{\Omega} X(w) G(w) d\mu$ is completely positive. Also the map $\varphi * X(\cdot) \to \int_{\Omega} X(w) dF$ is completely positive, since it is completely contractive and $F(\Omega) = I$.

Let $X: H_1 \to H_2$ be a bounded operator which intertwines F_i (i=1,2)—the normalized semi-spectral measures. By the theorem due to Lebow [4], see also Mlak [8], X extends uniquely to an operator $\tilde{X} \in L(K_1, K_2)$ such that

a)
$$\tilde{X} \cdot E_1(\sigma) = E_2(\sigma) \cdot \tilde{X}$$
,

'b) $\|\tilde{X}\| = \|X\|$

 E_i stands here for the minimal spectral dilation of F_i .

A more general theorem holds true for $X \in L(H_1, H_2)$ which intertwine completely positive linear maps φ_1 and φ_2 of a general C^* -algebra. It's proof reduces to the use of suitably modified arguments given by Arveson in the proof of Theorem 1. 3. 1 of [1].

THEOREM 2.1. Let B be a C*-algebra with the unit e. Assume that φ_1 and φ_2 are completely positive linear maps of B. If $X\colon H_1\to H_2$ is a bounded operator such that

$$X\varphi_1(u) = \varphi_2(u)X$$
 for $u \in B$

then there is a unique bounded operator $\tilde{X}\colon K_1\to K_2$ which satisfies the following equalities

(1)
$$\tilde{X}\psi_1(u) = \psi_2(u)\tilde{X},$$

$$\tilde{X}V_1 = V_2X,$$

(3)
$$V_2^* \tilde{X} = X V_1^* \quad and \quad \tilde{X} V_1 V_1^* = V_2 V_2^* \tilde{X}.$$

Proof. Let $f_1, \ldots, f_n \in H$ and $u_1, \ldots, u_n \in B$. We claim that

$$\left\| \sum_{j=1}^{n} \psi_{2}(u_{j}) V_{2} X f_{j} \right\|^{2} \leqslant \|X\|^{2} \left\| \sum_{j=1}^{n} \psi_{1}(u_{j}) V_{1} f_{j} \right\|^{2}.$$

If n = 1, then for $f \in H$ and $u \in B$ we have

(*)
$$\|\psi_{2}(u) V_{2}Xf\|^{2} = (V_{2}^{*}\psi_{2}(u^{*}u) V_{2}Xf, Xf)$$

$$= (\varphi_{2}(u^{*}u) Xf, Xf) = (X^{*}X\varphi_{1}(u^{*}u)f, f)$$

$$= ((X^{*}X)(V_{1}^{*}\psi_{1}(u^{*}) V_{1})f, f)$$

 $V_1^*\psi_1(u^*)\psi_1(u)$ V_1 is positive operator which commutes with X^*X . Indeed $X^*X\varphi_1(u^*u) = X^*\varphi_1(u^*u)X = \varphi_1(u^*u)X^*X$ and so does the positive square root of $\varphi_1(u^*u)$. Denoting this square root by S we obtain from (*)

$$\|\psi_2(u) V_2 X f\|^2 = (X^* X S^2 f, f) = \|X S f\|^2 \leqslant \|X\|^2 \|S f\|^2 = \|X\|^2 \|\psi_1(u) V f\|^2.$$

The case n > 1 is reduced to the preceding (n = 1) in the following way. Let $H_l^l = \bigoplus_{i=1}^n H_l^l \ (H_i^l = H_l)$ for l = 1, 2 $K_l^l = \bigoplus_{i=1}^n K_i^l \ (K_i^l = K_l)$ for

l=1,2. Let $X^{l} \in L(H_{1}^{l},H_{2}^{l})$ be the operator given by the matrix

$$\begin{bmatrix} X & 0 \\ X & \\ 0 & X \end{bmatrix},$$

 $V_i^{l} \in L(H_i^{l}, K_i^{l})$ given by the matrix

$$\begin{bmatrix} V_i & 0 \\ V_i & \\ 0 & V_i \end{bmatrix}$$

and $A_i^! \in L(K_i^!)$ given by the matrix

$$\begin{bmatrix} \psi_i(u_1), \dots, \psi_i(u_n) \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}.$$

Then $V_i^{!*}A_i^{!*}A_i^{!}V_i^{!}=B_i^{!}\epsilon L(H_i^!)$ has the matrix (b_{jk}^i) , where $b_{jk}^i=V_i^*\psi_i(u_j^*)\psi_i(u_k)V_i$. The equality $Xb_{jk}^1=b_{jk}^2X$, for $j,k=1,\ldots,n$ implies that

$$X^{\scriptscriptstyle |}B_1^{\scriptscriptstyle |}=B_2^{\scriptscriptstyle |}X^{\scriptscriptstyle |}$$

Now for $(f_1, \ldots, f_n) = \hat{f} \in H_1^1$ we have

$$\begin{split} \Big\| \sum_{j=1}^{n} \psi_{2}(u_{j}) \, V_{2} X f_{j} \Big\|^{2} &= \sum_{ij=1}^{n} \left(V_{2}^{*} \psi_{2}(u_{i}^{*}) \, \psi_{1}(u_{j}) V_{2} X f_{j}, f_{i} \right) \\ &= \left(V_{2}^{!*} A_{2}^{!*} A_{2}^{!} \, V_{2}^{!} X^{!} \hat{f}, \, X^{!} \hat{f} \right) \leqslant \| X^{!} \|^{2} \| A_{1}^{!} \, V_{1}^{!} \hat{f} \|^{2} \\ &= \| X \|^{2} \, \Big\| \sum_{j=1}^{n} \, \psi_{1}(u_{j}) \, V_{1} f_{j} \Big\|^{2} \end{split}$$

and that proves the claim. We infer that the operator determined by the equality $\hat{X}(\sum_j \psi_1(u_j) \, V_1 f_j) = \sum_j \psi_2(u_j) \, V_2 X f_j$ is well defined and extends uniquely to an operator $\tilde{X} \in L(K_1, K_2)$ on $[\psi_1(B) \, V_1 H_1] = K_1$. It is obvious that $\|\tilde{X}\| \leqslant \|X\|$. It is easy to check that $\tilde{X} \psi_1(u) = \psi_2(u) \, \tilde{X}$. To see this write

$$\begin{split} \tilde{X} \psi_1(u) \sum_j \psi_1(u_j) \, V_1 f_j \, &= \, \tilde{X} \, \sum_j \psi_1(u u_j) \, V_1 f_j \, = \, \sum_j \psi_2(u u_j) \, V_2 X f_j \\ &= \, \psi_2(u) \sum_j \psi_2(u_j) \, V_2 X f_j \, = \, \psi_2(u) \tilde{X} \, \sum_j \psi_1(u_j) \, V_1 f_j \, . \end{split}$$

We obtained equality on a dense subset of K_1 , so it holds true on all of K_1 . The equality $\tilde{X}V_1 = V_2X$ is obvious because $e \in B$. The uniqueness of the operator X satisfying (1) and (2) is a consequence of the equality $\lceil \psi_1(B) V_1 H_1 \rceil = K_1$.

The proof of (3) is also immediate. Indeed

$$\begin{split} V_2^* \tilde{X} \sum_j \psi_1(u_j) \, V_1 f_j &= \, V_2^* \sum_j \psi_2(u_j) \, \tilde{X} \, V_1 f_j \, = \, V_2^* \sum_j \psi_2(u_j) \, V_2 X f_j \\ &= \, \sum_i \, \varphi_2(u_j) \, X f_j \, = \, \sum_i \, \varphi_1(u_j) f_j \, = \, X \, V_1^* \, \sum_j \psi_1(u_j) \, V_1 f_j. \end{split}$$

The conclusion follows since $[\psi_1(B) \, V_1 H_1] = K_1$. The proof is complete.

Now we will show that the mapping $X \to \tilde{X}$ preserves certain properties of X. Note that if $X\varphi_1(u) = \varphi_2(u)X$ for $u \in B$, then $\varphi_1(u)X^* = X^*\varphi_2(u)$ and so by the symmetry of the role of φ_1 and φ_2 it makes a sense an extension \widetilde{X}^* of the X^* . First we observe that $\widetilde{X}^* = \widetilde{X}^*$.

To prove this write

$$\begin{split} \left(\sum_{j} \psi_{1}(u_{j}) \, V_{1} f_{j}, \, \widetilde{\boldsymbol{X}}^{*} \, \sum_{i} \psi_{2}(u_{i}) \, V_{2} g_{i} \right) &= \left(\widetilde{\boldsymbol{X}} \, \sum_{j} \psi_{1}(u_{j}) \, V_{1} f_{j} \, , \, \sum_{i} \psi_{2}(u_{i}) \, V_{2} g_{i} \right) \\ &= \left(\sum_{j} \psi_{2}(u_{j}) \, V_{2} \boldsymbol{X} f_{j}, \, \sum_{i} \psi_{2}(u_{i}) \, V_{2} g_{i} \right) \\ &= \sum_{ij} \left(\varphi_{2}(u_{i}^{*} \, u_{j}) \, \boldsymbol{X} f_{j}, \, g_{i} \right) \\ &= \sum_{ij} \left(\varphi_{1}(u_{i}^{*} \, u_{j}) f_{j}, \, \boldsymbol{X}^{*} g_{i} \right) \\ &= \left(\sum_{j} \psi_{1}(u_{j}) \, V_{1} f_{j}, \, \sum_{i} \psi_{1}(u_{i}) \, V_{1} \boldsymbol{X}^{*} g_{i} \right) \\ &= \left(\sum_{j} \psi_{1}(u_{j}) \, V_{1} f_{j}, \, \widetilde{\boldsymbol{X}}^{*} \sum_{i} \psi_{2}(u_{i}) \, V_{2} g_{i} \right) \end{split}$$

and since $[\psi_i(B) V_i H_i] = K_i$, the proof is complete. Moreover, we have the following corollary:

COROLLARY 2.1. Let B be a C*-algebra and let φ_1, φ_2, X and \tilde{X} be as in the Theorem 2.1.

The following implications holds true:

a) If
$$X^* = X^{-1}$$
 then $\tilde{X}^* = \tilde{X}^{-1}$.

b) If
$$X^*X = I_{H_1}$$
 then $\tilde{X}^*\tilde{X} = I_{K_1}$.

e) If
$$\overline{R(X)} = H_2$$
 then $R(\tilde{X}) = K_2$.

d) If X is strictly invertible so is
$$\tilde{X}$$
 and $\tilde{X}^{-1} = \tilde{X}^{-1}$.

3. As we mentioned before when using Theorems 1.2 and 2.1 one can give an easy proof of the following fact due to Lebow [4] (see also Mlak [8]).

^{8 -} Studia Mathematica XLVI.3

(T) If F_i (i=1,2) denotes a normalized semi-spectral measure on Ω , then every operator $X \in L(H_1, H_2)$ such that $F_2(\sigma)X = XF_1(\sigma)$ for all $\sigma \in \mathcal{B}$ extends uniquely to an operator $\tilde{X} \in L(K_1, K_2)$ such that

- i) $\tilde{X}E_1(\sigma) = E_2(\sigma)\tilde{X}$,
- ii) $\|\tilde{X}\| = \|X\|$

where E_i — is the minimal spectral dilation of F_i .

To see this note that the condition $XF_1(\sigma) = F_2(\sigma)X$ for all $\sigma \in \mathscr{B}$ implies the equality $X \cdot \int Y(w) dF_1 = \int Y(w) dF_2 \cdot X$ for every scalar valued \mathscr{B} -measurable, bounded function $Y \colon \Omega \to C$. By Theorem 1.2 the mappings $Y \to \int_{\Omega} Y(w) dF_i$ (i=1,2) are completely contractive and so they are completely positive (see [1]). Theorem 2.1 asserts that there exists an operator $\tilde{X} \in L(K_1, K_2)$ such that

i)
$$\tilde{X} \cdot \int_{\Omega} Y(w) dE_1 = \int_{\Omega} Y(w) dE_2 \cdot \tilde{X}$$
,

- ii) $\|\tilde{X}\| = \|\tilde{X}\|,$
- iii) $\tilde{X}f = Xf$ for all $f \in H$.

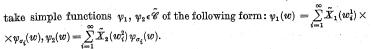
Note that by Corollary 2.1 this extension \tilde{X} shares the series of properties of X, mentioned in Corollary 2.1. One can also prove a similar theorem concerning X intertwining densities G_1 and G_2 considered in Theorem 1.1.

The fact that each X, which commutes with semi-spectral measure F $(F(\Omega)=I)$ extends uniquely to \tilde{X} , which commutes with its minimal spectral dilation E, implies completely contractivity of the map $\mathscr{C} \to \int_{\Omega} X(w) dF$. Indeed, to every $X(\cdot) \in \mathscr{C}$ there corresponds an operator valued function $\tilde{X}(\cdot)$, which is also \mathscr{B} -measurable, because the mapping $X \to \tilde{X}$ is isometric. We denote the *-isomorphizm $X \to \tilde{X}$ by τ . Let us denote by \mathscr{C} the C^* -algebra $\tau(\mathscr{C}) \subset L(K)$. Let the sequence $X_n = \sum_{i=1}^{\infty} X(w_i^n) F(\sigma_i^n)$ tend to $\int_{\Omega} X(w) dF$, as $n \to \infty$.

Write $\sum_{i=1}^{\infty} X(w_i^n) F(\sigma_i^n) = P \sum_{i=1}^{\infty} X(w_i^n) E(\sigma_i^n)$, $P \colon K \to H$ -projection. Passing to the limit in the above equality we have

$$\int_{\Omega} X(w) dF = P \int_{\Omega} \tilde{X}(w) dE$$

or equivalently $T(X) = P\tilde{T}(\tau(X))$, where $\tilde{T}(\tau(X)) = \int_{\tilde{L}} \tilde{X}(w) dE$. We will show that \tilde{T} is multiplicative on $\tilde{\mathscr{C}}$. It suffices to prove the multiplicativity of \tilde{T} for simple functions. Without loosing generality, we can



Therefore

$$\begin{split} \tilde{T}(\psi_1) \cdot T(\psi_2) &= \sum_{i=1}^{\infty} X_1(w_i^1) E(\sigma_i) \cdot \sum_{i=1}^{\infty} \tilde{X}_2(w_i^2) E(\sigma_i) \\ &= \sum_{i=1}^{\infty} \tilde{X}_1(w_i^1) \cdot \tilde{X}_2(w_i^2) E(\sigma_i) = \tilde{T}(\psi_1 \cdot \psi_2). \end{split}$$

We conclude from the above that T is a projection of the representation $T \circ \tau$ of \mathscr{C} . It is known that every linear map of a general C^* -algebra into L(H), which is a projection of a representation of this C^* -algebra is completely contractive. Consequently T is completely contractive.

It follows from Corollary 2.1 that if $X(\cdot) \in \mathscr{C}$ and for every $w \in \Omega X(w)$ is isometric, unitary, normal etc. then for every $w \in \Omega$, $\tilde{X}(w)$ is isometric, unitary, normal etc. Conclusion: if X(w) are isometric, normal, unitary etc. then $\int_{\Omega} \tilde{X} dE$ is isometric, normal, unitary etc. Let us reconsider the situation as in Corollary 1.1. Above all observe that the map

$$\varphi \colon X(\cdot) \to \int X(w) \cdot G(w) d\mu$$
, for $X(\cdot) \in \mathcal{F}$

is a completely positive linear map of \mathcal{F} into L(H). Indeed, if $(X_{ij}(\cdot))$ is a positive $n \times n$ matrix over \mathcal{F} and $f_1, \ldots, f_n \in H$, then one can choose $Z_{ij}(\cdot)$ such that $(X_{ij}(\cdot)) = (Z_{ij}(\cdot))^*(Z_{ij}(\cdot))$.

By Proposition 1.1 we can take approximating summs for $\int_{\Omega} \mathbf{X}_{ij}(w) \times \mathbf{G}(w) d\mu$ of the from: $\sum_{i=1}^{\infty} X_{ij}(w_i) \cdot G(w_i) \mu(\sigma_i)$.

Now observe that

$$\begin{split} \sum_{ij=1}^{n} \Big(\sum_{k=1}^{n} \sum_{l=1}^{\infty} Z_{ki}^{*}(w_{l}) Z_{lij}(w_{l}) G(w_{l}) \mu(\sigma_{l}) f_{j}, f_{i} \Big) \\ &= \sum_{l=1}^{\infty} \sum_{k=1}^{n} \sum_{ij=1}^{n} \Big(Z_{ki}^{*}(w_{l}) Z_{kj}(w_{l}) G^{1/2}(w_{l}) \mu(\sigma_{l}) f_{j}, G^{1/2}(w_{l}) f_{i} \Big) \\ &= \sum_{l=1}^{\infty} \sum_{k=1}^{n} \left\| \sum_{i=1}^{n} Z_{ki}(w_{l}) G^{1/2}(w_{l}) \mu^{1/2}(\sigma_{l}) f_{i} \right\|^{2} \geqslant 0 \end{split}$$

and so our assertion is true. As we know by Stinespring theorem (see [1] p. 145) $\varphi(X) = V^*\Pi(X) V$ where Π is a representation of \mathcal{F} on K, $V \in L(H, K)$ and $K = [\Pi(\mathcal{F}) VH]$.

We will find out some models of the space K assuming that H is separable. Let us define the space M of all measurable functions $f \colon \Omega \to H$ (i.e. the scalar function (f(w), h) is measurable for every $h \in H$) for which

$$\int\limits_{\Omega} \big(G(w) f(w), f(w) \big) d\mu < +\infty.$$

M is a preunitary space with respect to the semi-inner product

$$(f, g) = \int\limits_{\Omega} \left(G(w) f(w), f(w) \right) d\mu.$$

Let $N = \{f \in M : (f, f) = 0\}$. Then the quotient space M/N after completion becomes a Hilbert space. Denoting this Hilbert space by $\mathcal{L}^2(\mu G, H)$, we claim that $K = \mathcal{L}^2(\mu G, H)$.

To prove it we take $X_i = \sum_{k=1}^{\infty} D_k^i \psi \ \sigma_k \ (i=1,\ldots,m)$, the set of simple functions and $f_1,\ldots,f_m\epsilon H$. Then we have

$$\begin{split} \left\| \sum_{i=1}^{m} \Pi(X_{i}) \, V f_{i} \right\|^{2} &= \left\| \sum_{i} \sum_{k} \Pi(D_{k}^{(i)}) \, V f_{i} \right\|^{2} \\ &= \left\| \sum_{k} \sum_{i} \Pi(D_{k}^{(i)}) \, V f_{i} \right\|^{2} = \sum_{k} \left\| \sum_{i} \Pi(D_{k}^{(j)}) \, V f_{i} \right\|^{2} \\ &= \sum_{k} \sum_{ij} \left(\int_{\sigma_{k}} G(w) \, D_{k}^{(i)} \, d\mu f_{i}, \, D_{k}^{(j)} f_{j} \right) \\ &= \sum_{k} \sum_{ij} \int_{\sigma_{k}} \left(G(w) \, D_{k}^{(i)} f_{i}, \, D_{k}^{(j)} f_{j} \right) d\mu \\ &= \sum_{ij} \int_{\Omega} \left(G(w) \, X_{i} f_{i}, \, X_{j} f_{j} \right) d\mu = \left\| \sum_{i} X_{i} f_{i} \right\|_{\mathcal{L}^{2}(G\mu, H)}^{2}. \end{split}$$

Let us define the map T by the equality:

$$T\left(\sum_{i}\Pi(X_{i})Vf_{i}\right)=\sum_{i}X_{i}f_{i}.$$

The above equality implies that T is isometric map from K to $\mathscr{L}^2(\mu G, H)$. Since simple functions $\sum_i X_i f_i$ are dense in $\mathscr{L}^2(\mu G, H)$ so T extends to a unitary operator from K on $\mathscr{L}^2(\mu G, H)$.

References

- [1] W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), pp. 142-221.
- [2] C. Foias, Some applications of spectral sets, Stud. Cerc. Mat. 10 (1959), pp. 365-401.
- [3] E. Hille, Functional analysis and semi-groups, 1948.
- [4] A. Lebow, On von Neuman theory of spectral sets, J. Math. Anal. Appl. 7 (1963), pp. 64-89.

 [5] B. Sz. - Nagy, C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Budapest-Paris 1967.

[6] W. Mlak, Note on the von Neuman inequality, Bull. Acad. Polon. Sci. 19 (1971), No. 9, pp. 843-848.

[7] -, C. Ryll-Nardzewski, Inequalities for semi-spectral integrals, Bull. Acad. Polon. Sci. 20, No. 1, (1972), pp. 11-16.

[8] -, Intertwining operators, Studia Math. 43 (1972), pp. 43-57.

[9] S. Parrott, A new look at a theorem of von Neuman, Preprint Nov. 21 (1969), pp. 1-14. Univ. of Mass, at Boston.

INSTYTUT MATEMATYCZNY UNIWERSYTET JAGIELLOŃSKI KRAKÓW, POLAND

Received May 24, 1972 (53)