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Semi-spectral integrals and related mappings
by
J. JANAS (Krakéw)

Abstract. The present paper deals with mappings X(-) - deF X stands here
for a bounded operator function on a Hilbert space and F for a semi-spectral measure.
‘We prove some L2 type estimates for f XdF. Next we show that the above mapping
is completely contractive provided F is normalized. Similar properties hold true for
integrals [X@du with operator density G. One always assumes that X ( ) intertwines
measures or densities respectlvely The last part of the paper deals with dilation
properties of the mapping X () — [XdF.

The present paper deals with operators which intertwine semi-spec-
tral measures. There are also considered some completely contractive
mappings related to semi-spectral integrals of operator valued functions.
Among others we prove a generalization of the inequality obtained by S.
Parrott in [9]. We also present some general properties of operator inter-
twining completely positive maps and derive therefore several properties
of mappings induced by semi-spectral integrals. As to dilation theory we

refer here to [1], [3].

1. Throughout the present paper H stands for a complex Hilbert
space. L(H) denotes the algebra of all bounded linear operators in H.
I is the identity operator in H. Let A be a C*-algebra and M, the C*-al-
gebra of all complex n xn matrices. The tensor product A®M,, of all
n X n matrices over 4 is a *-algebra. It is also (™-algebra because there
i a wnique C*-norm on this *-algebra (see [1] for details). For symmetrie
subspace § < A we deline SQM, = {V|V = (v;)c AQM,, v eS8} Sup-
pose we are given the linear map ¢: B — L(H) of the symmetric subspace
B of A. We define a linear map

@yt BQM, -~ LH)QM, (nz1)

by applying p element by element, to each matrix over B. The following
definition. appears-in [1]: We say that ¢ is completely contractive (posi-
tive) if for every m = 1, ¢, is contractive (positive). Suppose we are given
a o-tield # of subsets of the space 2 and a positive, finite measure u on
this field. In what follows we are interested merely in mtegmtlng of bounded
operator valued functions.
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DEFINITION 1.The bounded operator valued function X: £ - L(H)

is called simple it X (w) = 3 Xy, (w) where X;e L(H) and oy, ..., 0y, ...
i=1

is a partition of Qie. o; No; =B (1 #j) and 2 = J a;.
i

DEFINITION 2. We say that the bounded function X: @ — L(H)
is #-measurable, if there exists a sequence X, (-) of simple functions such
that sup |.X (w) — X, ()} =, 0, where u(y)=0.

wedN\y

Since u is finite every #-measurable function is integrable in the

sense of Bochner (see [3] — for definition). More precisely, if X (-) is simple
and X (w) = S’Xm:,, (1) then [ (w)du = S’Xm (o) by definition. Now
if X, is a sequenee of simple funcmons such that sup I]X,,( w) — X (w)l| ~ 0,
% — oo(u(£2,) = 0) then fX Ydu = lim JX d/u — gee [3] for details.

N-00

Note that a product of 92 measurable functions is also integrable, since
it is #-measurable.

Let X(-) and G(-) be #-measurable operator valued functions and
0<G(w)<I for weQ. It follows that the function X (w)@(w) is in-
tegrable. Let ¥;: 2 - L(H,;) i=1,...,% be a set of functions. Then the
vectorial function ¥ (w) = (¥y(w), ..., X(w))eL(Hy) % ... x L(Hy) i
#-measurable if and only if every Y, is #-measurable. This shows that
the following proposition holds true.

ProPOSITION 1.1. Suppose we are given the set of integrals [ Xy () G (w) dpe
Q@

(t, k =1,...,m). Then for every &> 0 there exists a partition {o;} of @
such that ‘

“Z‘B"m o5) — f; ik(w)G(w)dy“ <e ford,k=1,..,m,
where BY =. 1,,(fwj (wy) and w;eo;.

Let us consider two operator valued #-measurable functions G;(w)
(We.Q such that 0 < &;(w) < I. Denote by I the set of all #-measurable
functions which intertwine @ (w) i.e.

) Ga(w) X (w) = X (1) G (10)

‘w-almost everywhere. ' becomes the Banach space with the following
norm |LX(-)|| = sup X (w)|l. The spectral theorem 7yields that X (-)e7
w
intertwines G}/*(-) that is G (w) X (w) =

‘We ean prove now the following
TEEoREM 1.1. Let u(R) =1 and let I > X(

X ()G (w) p-almost everywhere,

-> fG’ (w) X (w)d,
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f w)Ge(w)dueL(H) be the linear map of I into L(H). For every

Q
n=1,2,

I, f Galw

' . n
Proof. Let (fi,...,f,) =fe (—BH- (Gry +=-
Hy= H. By the Proposition 1. 1 We can take a,pprommatmg summs for
ng X‘Ud( )d,u of the form: EGB(wi)th(wj ﬂ(O’j

‘We have now

P) (Z’G‘e 10) 10 () o )

ol Faxl

. the following inequality holds true:

w) Xy (w d#)“ LEe...0m) \SUP“ a(w ))”L(H@...@H)
ik =1,2,...,m

) Pn) = !;5 @ H;, where
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))”L(@m)( kZl G (amy) ™ () f,c”z)"z,

j-m

( 2 16 () 1 () )

Fon
< sup|| (Xa ) [u@ma( S D, 164 (a0 ¥ (o full) .

=1 o=

1
(X 3 163 (a0) 2 (05) gal2) ™ < sup | (Xaw(0) iy 11911

Jral greal

A

-

Sinee f and ¢ are arbitrary the proof is complete.

M G4 = @, = G in the above theorem, then J  becomes a c* algebra
with involution X*(w) = X (w)*. From Theorem 1.1. we derive

GOROLLARY 1.L. If @ =Gy =& then the linear map 7 > X ()
> f X (w)Gw)dw is completely ocantractive.

Now lot us define a class of #-measurable operator valued funetions.

DrriNrIoN 3. The bounded operator valued function X: £ — L(H)
is called. 4- mou.ﬂumblo, if there is ‘1, sequence of simple funetions X, (w)
such. that HupHX (w) = Xp (W) (= 0.

Tet X: £ - IL(H) be #-measurable and let F;: Q - L H) (t =1,2)
be semi-spectral measures. Suppose that X (w) intertwines ¥, and F, i.e,

(2) Fy(0) X (w) --X( w) P (o) for all weQ and oe.
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such that (2) holds true. For X (-)e% one
dr, (: [dF, X (w)) (see [6], [7] ~ for
Q

references). We have the following
TuporEM 1.2. If F,(Q)=1 for i= 1,2, then the linecar map ¢>X
— [X (w)dF, for every n =1,2,... satisfies the inequality:
2

Denote. by % the set; of all X ()
can define the integral [X(w)
2

H ( ani/a(w)dl”l)“uﬂ@m@m < sup ”(Xflc(w))I!L(I[@...cgfz) (fy o= 1y ciiym).

The proof of Theorem 1.2 is just the same as that of Theorem 1.1.
In particular, if F, = F, = F, then ¥ becomes (*-algebra and so we have

COoROLLARY 1.2. If Py = F, = F then linear map €>X (-) -» f X(w)dl
I#

18 completely contractive provided (2) holds true i.e. the values of X (+) and
F(-) commute.

Note by the way, that from the above corollary one can deduce,
that every eontractive representation I': 4 — L(H) (such that T'(1) = I)
of the Dirichlet algebra 4 = €(Q) (£2-compact Hausdortt space) is cornple-
tely contractive. Indeed, it is known (see [2]), that then T(u) J wd

where F is a unique, regular, normalized semi-spectral measure on Borel
subsets of Q. Taking in the Corollary 1.2 € = C(£2) we get the claim,.
We emphasize that our proof is direct and avoxds the Naimark dilation
theorem for semi-gpectral measure F.

Let X: Q — L(H) be #-meagurable and let F be a normalized semi-
spectral measure. Assume that the values of X(-) and F(-) commute.
We will prove the following theorem

TmeoreM 1.3. Let X: 2 — L(H) and F be as above. Then for every
feH we have the inequality ‘

() |( fxenaz)s]}

Proof. If f,geH are arbitrary and {e;} is a partition of €, then
we have for w;eo;

< [IX(w)2d (F1,f).
Q2

| D (Zw) Fa)f,g)| < ST(X () B (a)f, BV (a)g)|
fanl Frml
< 271X 1 P (o) (2 B (o) g1) "

Tl

= g 12 () ™ (e 1) - g
=

icm°

Semi-spectral integrals and related mappings 303
Thus
o8 o0
N7
| S xworar < Sixwors e < 3 ixwiwias, .
el i=1

Sinee the partition {o;} is arbitrary the theorem-is proved. Now let
X: Q ~ L{H) be #-measurable and let 0 <G (w)<I (wef2) be also
#-meagurable. Assume that the values of X(-) and G(-) commute p-al-
most everywhere. Then we have an analogous to Theorem 1.3

TuRorEM 1.4. Let X: Q — L(H) and & be as above. For every feH we
hawe the imeguality:
®) H( [ X ()@ ) auf| < JiEx)@s, fax.

The proot is just the sanie as that of Theorem 1.3.

Remark 1.1. Note that inequality (a) implies the results obtained
by Mlak and Ryll-Nardzewski in [7]. The estimation (a) is better than
the inequality

H [ X (w)ar
Q2

< sup [|X (w)]- |7 ()]

Remark 1.2, Let T'eL(H), |T| < 1 and let F denote semi-spectral
measure of I’ (see [B]). Consider a matrix (py) 1 <4,j <, of polynomi-
als py(2) == py(2, Ay, ..., Agy) (l2] = 1) with operator coeficients A

commuting with T' and T For each fixed 2, the matrix (p;(z)) is consid-

ered as an operator on @H{ = M, H; = H. Since T is a contraction,
1

wo have the equality:

k k
)= D AyT* = [ Y #4,aF

gmal) |g]==1 8=0

Poy(Ty Apggy ooy Apy

f Dy {2y Agggy o vvy Apy) AF .

LIRS

Corollary 2.1 proves that

”(T)‘U(Tv Agjy oovs Apy)) HL(M) £ S i}g}”(l’w(z: Bgigs voes -Alcij))HL(M)'

This inequality generalizes the inequality obtained by Parrott [9] in
a different way. ) .
Assume now that Tel(H) has a unitary g-dilation (¢ > 0) i.e.

_rlmmpre.[]’" (n=1,2,...)
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where U is unitary (see [5] Ch. I for details). Let & be the spectral measure
of U and F = prB. Let Byy<L(H) &k =0, ..., 0, 4,j =1, ..., m commute
with T and T*. Then By F (o) = F(0) By for ce#. Next we have

n 23
. Y BT = ¢ X By [ #aF+(1—0)By [ #'4F
k=0 k=<0 |2}==1 (2]l
n
= f (Qszuzk-l-(l*Q)Boﬂ)dF-
(el Km0

Applying Oorollary 2.1 once more we conclude that

S B, .0y 3 B *

k=0 k=0
n n
B T, .0y Bk.mmT’“
2 B0 QB [
n Cn
e Z-Bkuzk7 ey @Z Biamd* By -y Boim
fo=i =0
<suwp|| ' ! + (L~ o)
[el=1 %
4 Z-Bkmlzk1 ey 92 Bium? Bty ++ 3 Bomm LU
=0 =0 LAty

where M = H® ... H.
\—-——’;:-————'

2. Let B be a (*-algebra with the unit element ¢ and ¢;: B — L(H),)
i =1,2 a completely positive linear map. Stinespring proved (see [1])
that every such ¢; has the form (%) = V], (u) V; where y; is a repre-
sentation of B on some Hilbert space K, and V; is a bounded. linear ope-
rator from H; to K,. Setting L, = [v,(B) V,H,;], then the restriction
of y; to L; also satisfies the equality ¢;(w) = Vi, (u)Vy, so there is no
logs of generality, if we require that [v,(B)V,H,] = K,.

The pair (y;, V;) is called minimal if [y, (B) V, H,] == K.

We will prove later, that the map (considered before) 7 ».X (4
->ﬁf X (w)@ (w) du is completely positive. Also the map ¢».X (+) — [!'X (w) dJ"
is completely positive, since it is completely contractive and I'(Q2)== I.

Let X: H, — H,be a bounded operator which intertwines ', (4 == 1, 2)
— the normalized semi-spectral measures. By the theorem due to Lebow

[4], see also Mlak [8], X extends uniquely to an operator X eL(K,, Ky)
such that

2) X-B(0) = By(o)-X,
“b) XN = X
E,; stands here for the minimal spectral dilation of 7.
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A more general theorem holds true for X eL(H,, H,) which inter-
twine completely positive linear maps @, and g, of a general C*-algebra.
It’s proof reduces to the use of suitably modified argumehts given by
Arveson in the proof of Theorem 1. 3. 1 of [1].

TuroreM 2.1. Let B be a (*-algebra with the unit e. Assume that N
and @y are complelely positive linear maps of B. If X: H 1 — Hy is o bounded

operator such that
Xopy () = po(u) X for ueB

then thore 18 o unique bounded operator X : K, — K, which satisfies the
Jollowing equalitics

(1) | Tyy(u) = yy(u) X,
(2) XV, =7,X,
(3) Vik =XV wmd XV,V:=V,VX.

Proof. Letefy, ..., fueH and wy, ..., u,eB. We claim that

Héwmwmkwwﬁmmmw
7 , &

If n == 1, then for feH and ueB we have

(%) llpa ) Vo XFI® = (Vawa(u'u) VXS, Xf)
s (g (w*n) Xf, Xf) = (X" X, (w*u)f, f)
= ((X*X)(VIpa(s*) VS, f)

Vi (W) () Vy is positive operator which commutes with X*X. Indeed

X' Xy (w'u) = X*pg(u*u) X = g (w*n) X*X and so does the positive
square root of ¢, (u ). Denoting this square root by S we obtain from (*)

llpg () Va XFIS = (X XS3, f) = | X112 < XIS = 1X]2 s (w) VS
The caxe n ::?;l is reduced to the preceeding (n = 1) in the following way.
Lot H) = é HY(HY = Hy for | =1,2 K| mé K (K} = K;) for
U, 2 Lot X'eL{H], H}) be the operator given by the matrix
X 0
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VieL(H!, K}) given by the matrix

v, 0

Vi.

0 v,
and AleL(K}) given by the matrix
iUy ey Palthy)
0 0

0 0

Then V¥APXAlV, = BleL(H) has the matrix (bf), where bj

= Vip(uf)w,(u) V. The equality Xbj =bpX, for j,k=1,...,n
implies that

X'B = BLX.

Now for (fu, .-« fa) =‘feH1 we have

I 2 vals) VT = V*%w Yol Vo Xy, )
= (V';A';A’z VLX'F, Xf) < 1214l Ve
— pxie) 12 () Vo
and that proves the claim. We infer that the operator determined by the

equality X(Z () Vofy) = 2«,)2 u;) Vo Xf; is well defined and extends

umquely to an operator x eL(Kl, ) on [w;(B Vi H,] = K,. It is obvious

that ]}X!] | X). Tt is easy to check that Xy;l(u,) = g (% )X To see this
write

Xy, (u 2 pilu) Vify = X Z'/’l wly) Vlf:l Z*/u ) Vo X fy
= va(w) ) va(w)) Vo Xf; = pa(u)X Dy (uy) V.
J [

‘We obtained quality on a dense subset of K,, so it holds true on all of K.
The equality XV, = V,X is obvious because ¢¢B. The uniqueness of
the operator X satisfying (1) and (2) is a consequence of the equality
[y(B)V H;] = K,
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The proof of (3) is also immediate. Indeed
ViX N o) Vofy = Vi Y walu) XVof; = Vi ) alug) Vo X5
7 ' 7 7 '

= X galw) Xf; = Y pulw)f; = XVT s (uy) Vo
] 7 )

The conclusion follows since [vy,(B)V,H,] = K,. The proof is com-
plete.

Now we will show that the mapping X — X preserves certain prop-
erties of X. Note that if X¢,(u) = ¢,(u)X for weB, then g, (u)X* =
= X*py(u) and so by the symmetry of the role of p, a,nd @, it makes a sense

~ ¥
an extension X* of the X*. First we observe that = xX.
To prove this write

PRACLEA E Yt Vg = (X S Vi, 3 vl V)
= 2 () Vo X, 2 2 (u) Va4)
= ; @a(uf ) Xfj, 1)
= ;(% (i up)fy, X* )
= 2 ¥ () V1 i );wua Vv, Xg))
= Dnw) T pRAC V.9)

and since [w;(B)V,H,] = K,, the proof is complete.

Moreover, we have the following corollary:

OOROLLARY 2.1. Let B be a C*-algebra and let ¢;, ¢z, X and X be as
in the Theorem 2.1.

The following zmpl@mtzom holds true:

~=1
a) If X* = X' then ¥
b) If X*X = Iy, then X FE = TIg,
) If R(X) = H, then R(X) = K. _
~ ~l
d) If X is striotly invertible so is X and X = X~V

3. Az we mentioned before when using Theorems 1.2 and 2.1 one
can give an easy proof of the following fact due to Lebow [4] (see also
Miak [8]).

8 — Studla Mathematica XLVIL3
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(TY T P, (i =1,2) denotes a normalized semi-spectral meagure
on 2, then every operator XeL(H,, H,) such that F,(o)X =X (a)
for all ced extends uniquely to an operator X ¢L(K,, K,) such that

i) Xy (0) = B,(0)X,

i) X = X ' :
where B; — is the minimal spectral dilation of T;.

To see this note that the condition XF,(¢) = F,(¢)X for all ved
implies the equality X - [¥ (w)dF, = i! Y (w)dF,- X for every scalar valued

Q

Z-measurable, bounded function ¥: 2 — C. By Theorem 1.2 the mappings
Y - [Y(w)dF,; (i =1,2) are completely contractive and so they are

4 ;
‘completely positive (see [1]). Theorem 2.1 asserts that there exists an
operator XeL(K,, K,) such that

i) X-[Y(w)dE, = [ Y(w)dB, X,

2 . 2

i) |X| = 1K1,

iii) Xf = Xf for all feH. -

Note that by Corollary 2.1 this extension X shares the series of prop-
erties of X, mentioned in Corollary 2.1. One can also prove a similar

theorem concerning X intertwining densities @, and &, congidered in
Theorem 1.1. '

The fact that each X, which commutes with semi-spectral measure
(F(2) =1I) exténds uniquely to X, which commutes with its minimal
spectral dilation B, implies completely contractivity of the map®> X (-)
- [X (w)dF. Indeed, to every X(-)¢% there corresponds an operator

2 4 '

valued~ function X (), which is also .@-measurable, because the mapping
X - X is isometric. We denote the -isomorphizm X X by =. Let
us denote by % the C*-algebra (%) < L(K). Let the sequence X,

=i):‘X(w;‘)11’(aI”) tend to [X (w)dF, as n ~> oco.
=1 @ !
3 o0 . !
Write 12’:X (W) F(o}) = I}Z‘X (wi) E(of), P: K ~> H-projection. Pas-
v w ]
sing to the limit in the above equality we have
[X(w)dF =P [X(w)am
2 Q

or equivalently T (X)=P(<(X)), where I(r(X)) = bfi’(w)d]ﬂ. We
will show tha,tbfl-’ is mulfiplicative on %. Tt suffices to prove the multi-
plicativity of T' for simple functions. Without loosing generality, wev can
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s

take simple functions. p, p,¢% of the following form: v, () = il(wi) X
Ko (), (W) m{z; X (w)) Yo, (10)-

Therefore

]

i=1

Py Tlps) = Y Xa(o) Blo > X o) B(o)
daml

=1

= Zil(w})-ﬁg(wi)lﬂ(w) = i’("ﬂl'%)-
() .

We conclude from the above that T is a projection of the representation
Toz of €. Tt is known that every linear map of a general (*-algébra into
L(H), which is a projection of a representation of this (*-algebra is com-
pletely contractive. Consequently T' is completely contractive.

Tt follows from Corollary 2.1 that if X(-)e% and for~every we2 X (w)
i isometrie, unitary, normal ete. then for every we, X (w) is jsometric,
unitary, normal ete. Conclusion: if X (w) are isometric, normal, unitary

ete. then rSr XdF is isometric, normal, unitary ete. Let us reeonsiqér the
gituation as in Corollary 1.1, Above all observe that the map
@t X () »fX(w)-G(w)d,‘,‘ for X(-)e7
2

is a completely positive linear map of 7 into .L(H). Indeed, it (X5()
is a positive n X n matrix ovér J and fi, ..., foeH, then one can choose
Zy(-) such that (Xy() = (Zy()"(Zu0)) ‘
By Proposition 1.1 we can take approximating summs fora_f Xi(w) X
X @ (w)dp of the from: 3 Xy (w)-G(w) (o). '
fmal
Now observe that

1h L

UZ“Z (g: é? Ty (000) Zy () G (20) o (01) 2 f,)

mfjj%w%wwwmmwwﬁ
Imsl J=l 4fsl

- g—c’w a HZ\ Zm(’wz)m/z(‘wl) i“llz(dl)fii 2 >0
f.:{ kel 4wl

and 80 our assertion is true. As we know by Stinespring theorem (gee Ll]
p. 145) (X) = V*II(X)V where II is @ representation of 7 on K,
VeL(H, K) and K = [II(7)VH] . ‘ o
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We will find out some models of the space K assuming that H iy
separable. Let us define the space M of all measurable functions f: Q — H
(i.e. the scalar function (f(w), h) is measurable for every heH) for which

f(G flw), flw))dp < + oco.
M is a preunitary s];ia,ce with respect to 1';he gemi-inner product
(f:.9) = [ (G w)f (), ) du
Let N = {fe M: (f,f) = 0}. Then the quotient space M /N after comple-

tion becomes a Hilbert space. Denoting this Hilbert space by £2(u@, H),
we claim that K = £*(u@, H).

To prove it we take X; = Y Diyp o, (i=1, ...
k=1
functions and f,, ...

[ =3 3 mom v
= | XX monalf = 3| 5 mopyvf

33\ joroman, s

;;f( G (w) DPf;, DPS,) dp

’;J(;(wmf,, xf)au = | L]

Letius define the map T by the equality

T (Z (XY VE) = 3 X

The above equality implies that T is isometric map from K to
Z*(uG, H). Since simple functions 3 X,f; ave dense in .#%(uG, H) so T
i

extends to a unitary operator from K on 22(u@, H).

, m), the set of simple

y fmeH. Then we have

| Zm (X Vf;
i=1

It

If

(G H) "
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