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Vector space isomorphisms of (*-algebras

by
KARY YLINEN (Heolsinki)

Abstract. Tor a veclor space isomorphism of two O*.algebras, connections
existing betweon the properties of being a O*-isomorphism, isometric, bipositive,
or preserving an approximate identity, are indicated.

1. Introduetion. This paper is concerned with exftending to the
non-unit situation some results obtained by Kadison [4], [6], in the
course of characterizing the linear isometries between (*-algebras with
identity or betiween their real linear subspaces of self-adjoint elements.
Following Kadison we call a linear isomorphism between two (*-algebras
a quantum mechanical isomorphism or.a O*-isomorphism if T (%) = (To)*
and T'(a") = (Ta)" for each self-adjoint element ¢ and natural number #.
For two (“-algebras 4 and B, a linear map T: 4 — B ig positive, it Ta
is positive for each positive ae 4, If T is a vector space isomorphism and
both 7' and. I are positive, we call ' bipositive. In this terminology some
of Kadison’s resulty may be stated in the following form (see [4], Theorem
B, ity proof, Theorem 7, and [3] Corollary 5):

Tomornm 1.1. (Kadison) Let 4 and B be O*-algebras with identities
61 A and oy B and I': A — B 4 veclor space isomorphism. If T is a C*-
~isomorphism, T is isometric amd bipositive, and Te, = e,. Conversely, any
two of the latter three properties together imply that T is a C*-isomorphism.

In Section 3 we extend this theorem to cover the case of linear
isomorphisms between general (*-algebras by replacing the identity with
an approximate identity. Kadison’s results are also applied to show that
the natural extension of a real linear isometric isomorphism between
the subspacoes of self-adjoint elements of two C*-algebras is also isometric.
Our main tool is the Sherman-Takeda—Grothendieck theory (see [3],
[6] and [7]) yielding the structure of & von Neumann, algebra in the bidual
of a ("-algebra. For the bagic theory of (*-algebras we refer to [1].

2. Auxilisxy results, Lot A he a O*-algebra. We identify its bidual
A" with the enveloping von Newmann algebra of A (ef. [L],p. 237). In
this identification the weak operator topology of A’ coincides with
o(d”, A) and the structure of A" extends that of 4 via the canonical
embedding ® > &. Wo use the term ‘approximate identity’ in the sense
of [1], p. 3b9.
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Levuma 2.1, If (). 18 an approwimate identity in the G*aalgablf:a A,
the met () converges with respoct to o (A", A') to the identity ¢ of A",

Proof. By [1], 1.1.10 and 2.6.4, any fe A’ i3 a linear combination
of positive linear forms. It is therefore sufficient to show that liinj(uj)

= (f, 6> for each positive linear form f on 4. But if fe A’ is positive,
its canonical image fe A" is a positive linear form on A" (ef. [1] Corollary
12.1.3). Therefore, by Proposition. 2.1.9 and Proposition 2.1.5 (v) in [L],
we have

Ii;fnf(%y) = [Ifl = IfI = <f, &>

COROLLARY. Let (u));; b6 an appromimate identity in the O*-algebra A.
Then fe A’ is a positive linear form if and only if

) 1ijm Hug) = |71

Proof. The necessity of (1) is given in [1], Proposition 2.1.5 (v).
Suppose, conversely, that (1) holds for some f;« A'. For the ca,noniegyl
image fe 4" of f the above lemma implies that [|f]| = [Ifll = <f, &> = (e, 5.
Therefore f, hence f, is a positive linear form by Proposition 2.1.9 in [1].

In the next three lemmas A and B are 0*-algebras.

Levya 2.2. Let A (resp. ]§) be the O*-algebra obtained by adjoining the
identity ¢, to A (resp. 65 to B). If T: A — B is a 0*-isomorphism, the natural
extension T fi—>1§, defined by f(w+lel) = Tu+ ey, 18 isometrio.

Proof. Since T is obviously a O*-isomorphism, the lemma is a con-
sequence of Theorem 1.1.

Levma 2.3. Let T: A — B be a O*-isomorphism. There is an approwi-
mate identity (us)sy in A such that (Tuy). is an approvimate identity for B.

Proof. We modify slightly the construction used in the proof of
Proposition 1.7.2 in [1], p. 15. Let J be the directed. set consisting of all
finite sets of self-adjoint elements of 4, ordered by inclusion. If j = {a,, ...,
ey Opyed, set v; =al- ... +ai. With the notation of the preceding
lemma, the extension ' of T is a O*-isomorphism. As v is positive, it iy
self-adjoint, and so is Twv;. Let A, (resp. B;) denote the commutative
C*-subalgebra of A generated by v; and the identity ¢, (vesp. of B gonorated.
by Tv; and e;).8ince .4; (resp B;) consists of polynomials in v, (vesp. T'y)
and their uniform limits, it follows from the definition of u ("-igomorphism
and the fact that T is isometric (Lemma 2.2) that T defines o M-algebra
isomorphism T;: 4;— B;. In particular, if we define iy == 00 6y

+v;)7 e A, we have Tu; = Tv,(n"e, -+ Twy)™". Ag in the proof of Propo-
sition. 1.7.2 in [1] it is seen that |ju,|| < 1 and lim Uy O = libn auy = g for any

self-adjoint ae A. Similary, |Tu) <1, and as Iv; = (Tay)? 4 ... - (Ta,)?

icm
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and T defines a bijection between the sets of self-adjoint elements -
of A and B, lim(Twu;)b = lm bTw; = b for any self-adjoint be B. Since

E

every element of 4 and B is a linear combination of self-adjoint elements,
it follows that (uy)., is an approximate identity for A4 and (') for B.

Lmwa 2.4, Let T A+ B be a lincar map which preserves self-ad-
Jointness. 1'is bounded if its restriction to the real Banach space of the self-
-adjoint elements of A dis bounded,

Proof. By virtue of the principle of uniform boundedness (cf. [2],
P. 66) and the faet that each fe B i a linear combination of two Hermitian
linear formp, it sulfices to show that sup {|f(Tz)]| |wsA, l#]l < 1} is finite
for any continuous Ilormitian linear form f on B. By hypothesis, foT is
also Iermitian and continuous on the space of the self-adjoint elements
of A. Thus fol' is continuous everywhere (see the argument in [1], 1.2.6)
and the assertion follows.

3. The main theorems.

Tunorem 3.1. Let A and B be C*-algobras and T: A —~B & vector
space isomorphism. Consider the following four statements:

(1) T is a O"-isomorphism,
(ii) 1 48 bipositive,
)
)

3

(iii) 7' 48 isometrio,

(iv) I maps some approvimate identity of A onito an approzimate identity
of B.

Statement (i) implios each one of (i) to (iv), and any two of the statements
(ii) to (iv) togother imply (i).

Proof. Suppose T is a C*-isomorphism. Lemma 2.2 shows T to be
isometric. The proof of bipositivity may be given using Kadison’s original
argument in [4] p. 329, since it does not depend on the existence of an
identity. Stutement (iv) is proved in Lemma 2.3. Suppose next that T
is bipositive. Bince any continuous linear functional on a (*-algebra is
a linear combination of positive linear forms and each positive linear
form on a (Mealgobra i bounded, the uniform boundedness principle
may be used in o manner analogous to the proof of Lemma 2.4 to show
that any positive linear mup between (*-algebras is bounded. In partic-
ulary 7' has o second transpose T A = B, As T" maps the positive
cone of 1" onto that of A’, and an element of 4’ (vesp. B') is positive
as an operator if and only il it is non-negative on the positive linear forms
on A (resp. B) (soo [1] Gorollary 12.1.3 (iii) and note that each vector £ in the
Hilbert, wpaco underlying A" Qefines & normal positive form & > (@&, &)
on A"), tho isomorphism 2™ iy Dipositive. 1 7' is also isometric, so is
2", Then Theorem 1.1 shows that T, hence 7, is a (*-isomorphism.
Buppose now that 7' is boundod and (iv) holds. As T™: A" - B" is

3 - Studla Mathematica XLVLL
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i s with respect to o(4”, A') and o(B”, B'), Lemma 2.1 implies
E}gzzlg‘ufrll;pzvthe idell}ltity of A" onto that of B”. If T is bipositive (resp.
isometric), so is T™, as was noted abow?. Thuﬁ The(?.r.en{l 11. may be
applied to.show that (iv) combined with either (ii) or (iil) implies (i).

Note. As Kadison observes in [5], p. 502, his generalized Schwz.wz
inequality may be used to show independently of the eorresp'qn(hng
result for C*-algebras with identity that in the above theorem (ii) and
(iil) together imply (i). ‘

For any C*-algebra 4, let H, denote the real Banach space of the
self-adjoint elements of A.

TaworeM 3.2. Let A and B be O*-algebras and T': A - 15" a vector
space isomorphism. If T maps H 4 isometrically onto Hy, then T' is isomelric.

Proof. By Lemma 2.4 T is bounded, so we have the bounded maps
T*: B — A’ and T*: 4" — B”'. The real Banach space H, of the con-
tinuous Hermitian linear forms on 4 may be identified with thg Ba.mwh
space dual of H, (see [1], p. B). Similarly, (H ) identifies with I7 ..
This follows form Corollary 12.1.3 (iii) in 1] and the fact that for any
two vectors & and # in the Hilbert space underlying A" the .li,neam fOI‘IT).
@ — (@&, n) belongs to the predual of 4". The argument used. in [1] 1.2.6,
p. 5 may be adapted to show that this identification preserveﬁwnornm.
Similar statements hold for B. Wehave |1 | H,| = |T* | Hpl = [ARY: TN
and applying this result also to T~' we see that ™ ig isometric on H%.
Theorem 2 in [5] combined with Theorem 5 in [4] then shows that 7™,
hence T, is everywhere isometric.
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Some more Banach spaces which contain I*
by
JAMES MAGLER (Berkeley, Cal.)

Abstract. Lot X* ho a conjugate Banach space containing a subspace isomorphic
to Lt (), Sutlicient conditions on the measure # are given which insure that X contains
a subspace isomorphie to It

Introduction. The purpose of this paper is the extension of the results
of Petezyniski [11] concerning the embedding of L* (1) spaces into conjugate
Banach spaces. The main result is the following :

. TuHEOREM 1. Let X be a Banach space. Assume that either

(I) X* contains a (closed) subspace isomorphic to L*(p) where u is
@ non purely atomic measure; or
(IT) X* contoing a (closed) subspace isomorphic to 1M(I") and the dimension
of X s less than the cardinality of I
Then X containg a subspace isomorphic fo I

It is an immediate consequence of this theorem and resulis of Rosenthal
[13] that if X is a separable Banach space with X* non-separable and X.
is either an %, space or a quotient space of C[0,1], then X containg
a subspace isomorphic to I (For the definition and properties of .,
spaces, see [9] and [10].) It also follows from Theorem 1 and results in
[11] that if X is separable and X* satisfies either (I) or (IT) of Theorem 1,
then [0, 1] is isomorphic to a quotient space of X.

The proof of Theorem 1 involves a modification of methods introduced
by Pelezyniski in [11] (excopt in (II) in the case where X is not separable).
Pelezyfiski proved. Theorem 1 under the added agsumptions that the
subspace of X* isomorphic to L) or (I is & “seminorming” subspace
of X*, and, in cano (11), that X ig separable. (Ior the definition of seminorm-
ing, see [1L], p. 232.) Delbaen [2] idependently proved Theorem 1 (I)
and & (II) in the ease where X is separable (using essentially the same
idea as in Proposition 2 and the remark ‘which follows it). Johnson and
Rosenthal [6] have recently given a different proof of Theorem 1 (I)
using weak-* basic soquences.

The author wishes to express his appreciation to Professor Rosenthal

for suggesting this problem and for many helpful conversations concerning
it,
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