References

- [1] N. Jacobson, Lectures in Abstract Algebra. Vol. III.
- [2] G. H. Meisters, A formally real ring of distributions Notices Amer. Math. Soc. 17 (1970), p. 940. Abstract No. 70T — Al84.
- [3] J. Mikusiński, Operational Calculus. 1959.
- [4] Convolution of functions of several variables, Studia Math. 20 (1961), pp. 301-312.
- [5] and C. Ryll-Nardzewski, A theorem on bounded moments. Studia Math. 13 (1953), pp. 51-55.
- [6] L. Schwartz. Theorie des distributions, Paris 1966.
- [7] M. Ahuja, Ph. D. thesis, Uni. of Colorado (1971).

Received December 6, 1971

(495)

Vector space isomorphisms of C*-algebras

by
KARI YLINEN (Helsinki)

Abstract. For a vector space isomorphism of two O^* -algebras, connections existing between the properties of being a O^* -isomorphism, isometric, bipositive, or preserving an approximate identity, are indicated.

1. Introduction. This paper is concerned with extending to the non-unit situation some results obtained by Kadison [4], [5], in the course of characterizing the linear isometries between C^* -algebras with identity or between their real linear subspaces of self-adjoint elements. Following Kadison we call a linear isomorphism between two C^* -algebras a quantum mechanical isomorphism or a C^* -isomorphism if $T(x^*) = (Tx)^*$ and $T(x^*) = (Tx)^*$ for each self-adjoint element x and natural number x. For two C^* -algebras x and x and x and x are positive for each positive x and x are positive. In this terminology some of Kadison's results may be stated in the following form (see [4], Theorem 5, its proof, Theorem 7, and [5] Corollary 5):

THEOREM 1.1. (Kadison) Let A and B be C^* -algebras with identities $e_1 \in A$ and $e_2 \in B$ and $T \colon A \to B$ a vector space isomorphism. If T is a C^* -isomorphism, T is isometric and bipositive, and $Te_1 = e_2$. Conversely, any two of the latter three properties together imply that T is a C^* -isomorphism.

In Section 3 we extend this theorem to cover the case of linear isomorphisms between general C^* -algebras by replacing the identity with an approximate identity. Kadison's results are also applied to show that the natural extension of a real linear isometric isomorphism between the subspaces of self-adjoint elements of two C^* -algebras is also isometric. Our main tool is the Sherman-Takeda-Grothendieck theory (see [3], [6] and [7]) yielding the structure of a von Neumann algebra in the bidual of a C^* -algebra. For the basic theory of C^* -algebras we refer to [1].

2. Auxiliary results. Let A be a C^* -algebra. We identify its bidual A'' with the enveloping von Neumann algebra of A (cf. [1], p. 237). In this identification the weak operator topology of A'' coincides with $\sigma(A'', A')$ and the structure of A'' extends that of A via the canonical embedding $a \mapsto \dot{a}$. We use the term 'approximate identity' in the sense of [1], p. 359.

LEMMA 2.1. If $(u_j)_{j\in J}$ is an approximate identity in the C^* -algebra A, the net $(u_j)_{j\in J}$ converges with respect to $\sigma(A'',A')$ to the identity e of A''.

Proof. By [1], 1.1.10 and 2.6.4, any $f \in A'$ is a linear combination of positive linear forms. It is therefore sufficient to show that $\lim_{f} (u_f) = \langle f, e \rangle$ for each positive linear form f on A. But if $f \in A'$ is positive, its canonical image $\tilde{f} \in A''$ is a positive linear form on A'' (cf. [1] Corollary 12.1.3). Therefore, by Proposition 2.1.9 and Proposition 2.1.5 (v) in [1], we have

$$\lim_{j} f(u_{j}) = ||f|| = ||f|| = \langle f, e \rangle.$$

COROLLARY. Let $(u_j)_{j \in J}$ be an approximate identity in the C^* -algebra A. Then $f \in A'$ is a positive linear form if and only if

$$\lim_{j} f(u_j) = ||f||.$$

Proof. The necessity of (1) is given in [1], Proposition 2.1.5 (v). Suppose, conversely, that (1) holds for some $f \in A'$. For the canonical image $\tilde{f} \in A'''$ of f the above lemma implies that $||\tilde{f}|| = ||f|| = \langle f, e \rangle = \langle e, \tilde{f} \rangle$. Therefore \tilde{f} , hence f, is a positive linear form by Proposition 2.1.9 in [1]. In the next three lemmas A and B are C^* -algebras.

LEMMA 2.2. Let \tilde{A} (resp. \tilde{B}) be the C^* -algebra obtained by adjoining the identity e_1 to A (resp. e_2 to B). If $T: A \to B$ is a C^* -isomorphism, the natural extension $\tilde{T}: \tilde{A} \to \tilde{B}$, defined by $\tilde{T}(x+\lambda e_1) = Tx + \lambda e_2$, is isometric.

Proof. Since T is obviously a O^* -isomorphism, the lemma is a consequence of Theorem 1.1.

LEMMA 2.3. Let $T: A \to B$ be a C^* -isomorphism. There is an approximate identity $(u_i)_{j \in J}$ in A such that $(Tu_j)_{j \in J}$ is an approximate identity for B.

Proof. We modify slightly the construction used in the proof of Proposition 1.7.2 in [1], p. 15. Let J be the directed set consisting of all finite sets of self-adjoint elements of A, ordered by inclusion. If $j = \{a_1, \ldots, a_n\} \in J$, set $v_j = a_1^2 + \ldots + a_n^2$. With the notation of the preceding lemma, the extension \tilde{T} of T is a C^* -isomorphism. As v_j is positive, it is self-adjoint, and so is Tv_j . Let A_j (resp. B_j) denote the commutative C^* -subalgebra of \tilde{A} generated by v_j and the identity e_1 (resp. of \tilde{B} generated by Tv_j and e_2). Since A_j (resp B_j) consists of polynomials in v_j (resp. Tv_j) and their uniform limits, it follows from the definition of a C^* -isomorphism and the fact that \tilde{T} is isometric (Lemma 2.2) that \tilde{T} defines a C^* -algebra isomorphism T_j : $A_j \to B_j$. In particular, if we define $u_j = v_j(n^{-1}e_1 + v_j)^{-1} \in A$, we have $Tu_j = Tv_j(n^{-1}e_2 + Tv_j)^{-1}$. As in the proof of Proposition 1.7.2 in [1] it is seen that $|u_j|| \leq 1$ and $|u_j| = 1$ im $au_j = a$ for any self-adjoint $a \in A$. Similarly, $||Tu_j|| \leq 1$, and as $|Tv_j| = (Ta_j)^2 + \ldots + (Ta_n)^2$

ILEMMA 2.4. Let $T: A \rightarrow B$ be a linear map which preserves self-adjointness. T is bounded if its restriction to the real Banach space of the self-adjoint elements of A is bounded.

Proof. By virtue of the principle of uniform boundedness (cf. [2], p. 66) and the fact that each $f \in B'$ is a linear combination of two Hermitian linear forms, it suffices to show that $\sup\{|f(Tx)| | x \in A, \|x\| \le 1\}$ is finite for any continuous Hermitian linear form f on B. By hypothesis, $f \circ T$ is also Hermitian and continuous on the space of the self-adjoint elements of A. Thus $f \circ T$ is continuous everywhere (see the argument in [1], 1.2.6), and the assertion follows.

3. The main theorems.

THEOREM 3.1. Let A and B be C^* -algebras and $T: A \to B$ a vector space isomorphism. Consider the following four statements:

- (i) T is a C*-isomorphism,
- (ii) T is bipositive,
- (iii) T is isometric,
- (iv) T maps some approximate identity of A onto an approximate identity of B.

Statement (i) implies each one of (ii) to (iv), and any two of the statements (ii) to (iv) together imply (i).

Proof. Suppose T is a C^* -isomorphism. Lemma 2.2 shows T to be isometric. The proof of bipositivity may be given using Kadison's original argument in [4] p. 329, since it does not depend on the existence of an identity. Statement (iv) is proved in Lemma 2.3. Suppose next that T is bipositive. Since any continuous linear functional on a C*-algebra is a linear combination of positive linear forms and each positive linear form on a C*-algebra is bounded, the uniform boundedness principle may be used in a manner analogous to the proof of Lemma 2.4 to show that any positive linear map between C*-algebras is bounded. In particular, T has a second transpose $T^{**}: A'' \to B''$. As T^* maps the positive cone of B' onto that of A', and an element of A'' (resp. B'') is positive as an operator if and only if it is non-negative on the positive linear forms on A (resp. B) (see [1] Corollary 12.1.3 (iii) and note that each vector ξ in the Hilbert space underlying A'' defines a normal positive form $x \mapsto (x\xi, \xi)$ on A''), the isomorphism T^{**} is bipositive. If T is also isometric, so is T^{**} . Then Theorem 1.1 shows that T^{**} , hence T, is a C^* -isomorphism. Suppose now that T is bounded and (iv) holds. As $T^{**}: A'' \to B''$ is

^{3 —} Studia Mathematica XLVI.1

continuous with respect to $\sigma(A'',A')$ and $\sigma(B'',B')$, Lemma 2.1 implies that T maps the identity of A'' onto that of B''. If T is bipositive (resp. isometric), so is T^{**} , as was noted above. Thus Theorem 1.1 may be applied to show that (iv) combined with either (ii) or (iii) implies (i).

Note. As Kadison observes in [5], p. 502, his generalized Schwarz inequality may be used to show independently of the corresponding result for C^* -algebras with identity that in the above theorem (ii) and (iii) together imply (i).

For any C^* -algebra A, let H_A denote the real Banach space of the self-adjoint elements of A.

THEOREM 3.2. Let A and B be C^* -algebras and $T: A \rightarrow B$ a vector space isomorphism. If T maps H_A isometrically onto H_B , then T is isometric.

Proof. By Lemma 2.4 T is bounded, so we have the bounded maps $T^*\colon B'\to A'$ and $T^{**}\colon A''\to B''$. The real Banach space $H_{A'}$ of the continuous Hermitian linear forms on A may be identified with the Banach space dual of H_A (see [1], p. 5). Similarly, $(H_{A'})'$ identifies with $H_{A''}$. This follows form Corollary 12.1.3 (iii) in [1] and the fact that for any two vectors ξ and η in the Hilbert space underlying A'' the linear form $x\mapsto (x\xi,\eta)$ belongs to the predual of A''. The argument used in [1] 1.2.6, p. 5 may be adapted to show that this identification preserves norms. Similar statements hold for B. We have $\|T'\mid H_A\| = \|T''\mid H_B\| = \|T^{**}\mid H_{A''}\mid$, and applying this result also to T^{-1} we see that T^{**} is isometric on $H_{A''}$. Theorem 2 in [5] combined with Theorem 5 in [4] then shows that T^{**} , hence T, is everywhere isometric.

References

- J. Dixmier, Les C*-algèbres et leurs représentations, (Cahiers Scientifiques 29), Paris 1964.
- [2] N. Dunford, J. Schwartz, Linear operators, Part I: General theory. New York 1958.
- [3] A. Grothendieck, Un résultat sur le dual d'une O*-algèbre. J. Math. Puros Appl. 36 (1957), pp. 97-108.
- [4] R. V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), pp. 325-338.
- A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. Math. 56 (1952), pp. 494-503.
- [6] S. Sherman, The second adjoint of a C*-algebra, Proc. Intern. Congr. Math. Cambridge 1 (1950), p. 470.
- [7] Z. Takeda, Conjugate spaces of operator algebras. Proc. Japan Acad. 30 (1954), pp. 90-95.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HELSINKI

Received December 10, 1971

(453)

Some more Banach spaces which contain l^1

by

JAMES HAGLER (Berkeley, Cal.)

Abstract. Let X^* be a conjugate Banach space containing a subspace isomorphic to $L^1(\mu)$. Sufficient conditions on the measure μ are given which insure that X contains a subspace isomorphic to l^1 .

Introduction. The purpose of this paper is the extension of the results of Pełczyński [11] concerning the embedding of $L^1(\mu)$ spaces into conjugate Banach spaces. The main result is the following:

THEOREM 1. Let X be a Banach space. Assume that either

- (I) X^* contains a (closed) subspace isomorphic to $L^1(\mu)$ where μ is a non purely atomic measure; or
- (II) X^* contains a (closed) subspace isomorphic to $l^1(\Gamma)$ and the dimension of X is less than the cardinality of Γ .

Then X contains a subspace isomorphic to l¹.

It is an immediate consequence of this theorem and results of Rosenthal [13] that if X is a separable Banach space with X^* non-separable and X is either an \mathscr{L}_{∞} space or a quotient space of C [0, 1], then X contains a subspace isomorphic to l^1 . (For the definition and properties of \mathscr{L}_p spaces, see [9] and [10].) It also follows from Theorem 1 and results in [11] that if X is separable and X^* satisfies either (I) or (II) of Theorem 1, then C [0, 1] is isomorphic to a quotient space of X.

The proof of Theorem 1 involves a modification of methods introduced by Pelczyński in [11] (except in (II) in the case where X is not separable). Pelczyński proved Theorem 1 under the added assumptions that the subspace of X^* isomorphic to $L^1(\mu)$ or $l^1(\varGamma)$ is a "seminorming" subspace of X^* , and, in case (II), that X is separable. (For the definition of seminorming, see [11], p. 232.) Delbaen [2] idependently proved Theorem 1 (I) and 1 (II) in the case where X is separable (using essentially the same idea as in Proposition 2 and the remark which follows it). Johnson and Rosenthal [6] have recently given a different proof of Theorem 1 (I) using weak-* basic sequences.

The author wishes to express his appreciation to Professor Rosenthal for suggesting this problem and for many helpful conversations concerning it.