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Smooth partitions of unity
on some non-separable Banach spaces

by
H. TORUNCZYK (Warszawa)

Abstract, 1t is shown that every Hilbert space, any spswe’of the form Loy (X, u)
and any space ¢,(4) admit 0%-partitions of unity. Moreover, all reflexive Banach |
spaces admit partitions of class O'. The above results are obtained by verifying that
a sufficient (and necessary) condition for a space to admit OF.partitions of unity is
satisfied in those cases; the condition is stated in Theorem 1.

Let X be a metric space and let § be a set of real functions on X.
We saiy that X admits S-partitions of unity if, given an open cover # of X,
there is a locally finite partition of unity (f)y. With fiy| X — U= 0 and
fueSior any Ue%. It is of interest to know whether or not a given Banach
space admits O"-partitions of unity, % =1,2,..., co. In the case of
separable spaces Bonic and Frampton ([2], Th. 1), extending the method
of Bellg (cf. [7], pp. 28-30), proved:

(BY) A separable Bamach space B admits OF-partitions of wnity iff
there ewists a non-constant function in O%(H) with bounded support.

TFrom this it follows that the separable Hilbert space and the spaces
gy by and Ly, (0,1),n =1,2,... admit *-partitions of unity (the C*-
partitions of unity on I, were first constructed by Eells, see [7]). Combining
(BF) with the result of Kadec—Restrepo ([6] and [11]) one obtaing also
that any separable Banach space with a separable dual admits C?-
partitions of unity. For further discussion of smooth partitions of unity
on separable Banach spaces we refer the reader to [2].

Howover, it is not known whether the statement (BF) remains true
for non-geparable Banach spaces, and only wvery recently Wells [13]
showed that each Ililbert space admits partitions of clags % The aim
of this paper is to prove that each of the spaces ¢,(4), Iy(A), Ly, (X, u)
(A-an arbitrary set, (X, u}) — a positive measure space, neN) admits
J-partitions of unity. We will also prove that any reflexive Banach space
admits partitions of class C'. Our approach is different from that of Wells
and depends on the construction of some o-locally finite base of open
sets in cq(A). '

The author would like to thank Oz. Bessaga and 8. Troyanski for
helpful discussions during the preparation of this note.
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1. Notation and lemmas. We denote by I the seti of real numbers,
by N the set of positive integers, and we lot ¥ == N U {0}, By R wo
denote the product P!R,,(R,l = R for each ae A), with p,: B - R,

the natural projections, ae 4. The points of B4 will be denoted by (@,),
where @, = pg((2,)). If B, F aro normed linear spaces and U is an open
subset of B, then ¢*( U, I') denotes the set of all 1'naym)ingq f+ U~ I having
continnous &th Fréchet derivative; we also let 0% (U, F) - ﬂ O¥ (U, B and

OXU) = 0% U, R). By “partition of unity” we always mes m “locally finito
partition of unity™”.
In what follows we shall consider pairs (X, 8) satisfying the following
conditions
(1) X is & metric space and S is a sct of real-valued continuous funclions
on X.
(i) If for some f: X — R there is am open cover % of X and o sel
{9v: Ue} = 8 such that gy |U = flU for all Ue, then fe 8.
(i) Given ne N, @eC*(R" and ¢y, ..., g,e8 the composition
@O(g1y ... 4 §,) belongs to 8.
For a pair (X, 8) satisfying (i) we shall denote by %y the family
{f7(0, oo): fe 8 and image (f) = [0, 1]} The following is easy to vorify:
(@) If a pair (X, 8) satisfies the conditions (1)-(iii), then the Jamaly
Ug has the properties below:
(iv) For any fe 8 and aeR the sets f~'(a, c0) and f~'(— oo, a) are
n @S
V) If ¥ < Ug is finite and W = Uy is locally finite, then (M V and

U W are in Ug. Ve
Wew”

We shall use the following lemma of Bomc—1< rampton (Th. 1 in [2],
cf. also [7] p. 29); for the sake of completeness we include the proof here.

(IX) Let (X, 8) fulfil the comditions (i), (iv) and (v). Then for every
Jamaly {U,}pey = Ug which is a cover of X there ezists a locally finite cover
{Vatney © Uy of X such that V, < U, for any .

Proof. Let f,e 8 (v =1,2,...) be such nonnegative functions that
Uy = 1710, c0). We set V,, = U, n ﬂ FiH (= oo, 1/m). Tho family {V, ).

is locally finite (for if # iy in U, Lhon the set W, == f74(f;(w)/2, mm) in an
open meighbourhood of & intersecting omly Lhe Va8 with  # = max

(2 file), i)) and we have \JV, = X (observe that V, o U,\UJ U,, for
any nme N). nelN <

Using the statement (I1) we e%ablish

Levma 1. For a pair (X, ) satisfying ( )=(iii) the following conditions
are equivalent:

(2) X admits S-pariitions of unity.
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(") Tor any closed set A = X and an open neighbourhood W of A there
is some UeUy with A« Uc W,

(b) %y contains a o-locally finite base of the topology of X ()
Proof. The equivalence (a) < (a’) and the implication (a) = (b)
can be proved in a standard way, using the paracompactness of X.
(b) = (a'). Lot A and W be as in (a’) and let ¥~ < %y be a base which
an be expressed as ¥ == ) ¥, with ¥, locally finite for all n. We set

neN
Up s VeV Ve Wy, W, ={(Ve¥y: VAA=0} U, = UV and

ﬁ’” = ) V3 because of (v) the T, % and the W ’s are in %g. Smce v is
Vewr'y,

a Dbaso of the topology of X, {U,,}mN U {V atney 18 2 cover of X and

therefore, by (II), one can tind U, < Uﬂ and W c Wn such  that -

{Unhnew Y {Watuav 18 a locally finite cover of X and U, <%, for neXN.

The set U = J U, sxum:ﬁw AcUcW and Ue%y (use (v) again).

neN

Let us recall that, for a given set 4, ¢,(4) is the linear space consisting -
of all @ = (v,)e R* with {acd: |o,|> 1/} finite for any neN; ¢y(4)
i regarded as a Banach space under the norm ||(z,)|| = sup {|z,|: ae A}.
Let 8, be the set of all functions in 0% (ao(A)) which locally depend only
on. finttely many coordinates (i. e. 8, consists of the functions f: ¢,(4) - B
such that, given any wyecy(4), there are nelN, ay,...,0,¢ 4 and
@ O°(R) with f((#,)) = @(#,,...,%,) for all (z,) in some neighbour-
hood of ). '

Our main lemma is:

LmmwmA 2. There 48 a a-locally finite base # of the topology of ¢,(A)
with W < Ug,.

) Proof. It was Bonic and Frampton ([1], p. 395) who observed
that for any »> 0 the ball B, = {yecy(4): |yl <r} belongs to %g,.
Their argument was as follows: if ¢, 0% (R [0,1]) satisfies q:, () == 1
for ¢ << v/2 and ¢, (‘t) = () LUﬁ ¢ 3 7, then letiting f, ((#,) ) = H @,(2,) one gets
Jre Sy with B, o= f,! (0, 50).

For any ne N lot us now denote by H, the set of all injections of
{1, ..., 0} into A and Ly K, the set {(a, )¢ Q" x Q: inf{|p;(a)[};cn > 7 >0};
@ stands here for the set of rational nwnbers. For he H, we define the

(*) A Enmily of subsots is said to bo g-locally finite if it is & union of a countable
numbor of loeadly Huite subfamilics. The equivalence (a) <> (b) can be viewed as
a natural extension o non-separable spaces of the result (BIY) eited in the introdue-
tion: for a separable space X, (b) is cquivalent to the condition that %g is a base of the
fopology of X, and il X i o normed linear space and Zg i invariant under the homo-
hetios and translations of X then the last condition is satisfied iff #g containg anon-
empty boundod seti,
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linear operator T: R"—c,(4) by

0 for a¢image (h),
pooTy(a) = o .

py(a)  for a = h(i).
The. desired family of sets is

W = {Bl/n}nsNu L%V {Th(“) +Br: (d, "4)5 -Kna he 1‘1”,}.
Ne. .

Only the conditions (j) and (jj) below need to be proved

(§) For any @ = (#,)¢ 6o(A) and &> 0 thers is some W e W with me W
ond diam W = sup {|ly —2ll: y,2e W} < 2s.

To establish this observe that sinece %" contains {B,},. one can
agsume (@,) # 0 and |i(»,)| > e Since the set {|2,]: aeA} U {0} is compact
and countable there is a 7 (0, &)\{|z,|: acd}. Lot {ay, ..., a,} be the (non-
empty) set {ae A: |z,| > e}, let a = (ay, ..., a,) e Q" satisfy |a; > » and
lag—m,,| <rfor 1< i< and let h: {1,...,n} — 4 be the map h(¢)= g
(we assume a; % a; it ¢ # j). Obviously (a, 7)e K, and |T)(a)—2| < 7;
hence the set W = T),(a)+ B, satisties 2« We# and diam W = 2r < 2.

(3) # is o-locally findte.

Since {Byj}ney and U X, are countable, it is enough to show that,

neN

for every n< N and (a,7)e K, the family {T(a)+B,: heH,} is locally
finite. Fix ne ¥ and (4, )¢ IC, and let @ = (#,) be a point in ¢,(4). Let
e =271 inf{|p;(a)] —1}ic, and let {og, ..., a,} = {acd: |n,]> e}. Tor
any y = (4,) in. #+ B, we have |ys| < 26 if f¢{ay,..., a,} While for any
2 = (2,) e Ty,(0) + B, the inequality |2,| > 2¢ holds true for all ye image (h).
Thus the ball 4+ B, intersects only the sets 7% (a) + B, with image (h) <
< {a, ..., a,}. The number. of such sets is finite.

2. Smooth partitions of unity. Now we prove

TerorEM 1. The following conditions are equivalent for a pair (X, 8)
satisfying (i), (ii), and (iii):

(a) X admits S-partitions of unity.

{b) %g contains & o-locally finite base of the topology of X.

(c) There is a set A and o homeomorphic embedding u: X — ¢,(A)
with p,oue 8 for any a < A.

’I-’roof. The equivalence (a) < (b) is asserted in Lemma 1, whereas
the implication (¢} = (b) follows from Lemma 2: if % is as in the Leminy,
then ¥ = w4~ (%) is a o-locally finite base of the topology of X and
V' < Ug (since {fou: fe S} = 8, use (i) and (iii)). )

(b) = (c). Let ¥ < %y be a base of open sets in X guch that

Vv = LJJV"V n Where the ¥7,’s are locally finite and pair-wise digjoint.
ne.

For each Ve let fp: X —[0,1] be a function in § with

e ©
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V = f7'(0, c0). We define wu: X-» eo(7) by ppou(s) =—1—f7(m) if
7

Ve¥',. Then w is continuous, because for any neN and. we X the
inequality [lu(y) —u (@) < 207" is valid for all ¥ in W n M {z: fr.(2)
?:<l k2 i

€ (fr, (@) =07, fr () +fn‘1)}'; W is here an open set for which
VeV L Voo W% VAW 8} =(V,,..., V}} is finite. Moreover, we
hawve. [l (@) —u(y) 20~ f (#) when ve Ve ¥, and y¢V, and therefore
w: X —u(X)is a homeomorphism.

JOROLLARY 1. Let I, I be normed linear spaces with B admitting C*-
partitions of unity (ke N). If there exists some we OF (B, I') which is a home-
omorphic embedding, then B admits C*-partitions of unity. In particular,
every (mol mecessarily closed) linear subspace of F admits C*-partitions of
umity.

Proof. Apply the equivalence (a) < (c) to (&, C*(H)) and (F, ¢*(F)).

COROLLARY 2. If the normed linear spaces B, and B, admit C*-parti-
tions of unity (ke N), then so does B,DE,.

Proof. Let wuy: B, — cy(4y) and wy: By — co(4,) be homeomorphic
embeddings such that 4, N4, =@ and p,0 uze C°(H,) for all aed,,
b= 1, 2. I8 Lt eg(A;) X 65(ds) > 65(A; U 4,) is the natural isomorphism
then w: H@H,—>0(4, VA4, defined by wu(ey, e,) = I(uy(6,), us(6s))
satisfies (c) for (B,@H,, O*(B,@E5,)).

Using Theorem 1 with X = ¢,(4) and % = the identity, we obtain

TunoreM 2. The Banach space c,(A) admits O®-partitions of umity
(A — an arbitrary set).

From Theorem 1 we also have

Tuwormm 3. Hvery Hilbert space H admits C™-partitions of wunity.

Proof. We may assume that H == I,(4) where 1 ¢ A. It is well known
(see [B], p. 14) that the map w: I,(4)—> ¢ (LU 4) defined by

L e [ MelE for p=1
(%) ppou((a,) = . tor 5o

ig a homeomorphic embedding. Thus the result follows from Theorem 1.
Ruvavk 1. In fact, oy(A) admits Sy-partitions of unity (8, is as in
Lemma 2) and 1,(A) admits S-partitions of unity, where § is the set of all
Jumetions on ly(A) which locally are of the form () = @(Il(%) |y @y -y B);
BelN, oy, ..., a,ed, peC° ™M) :
Proof. Apply the equivalence (a) < () t0 (6,(4), 8g) and {Iz(4), 8)
respectively (w is the identity or is defined by (*)).
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Now we shall study smooth partitions of unity on reflexive Banach
spaces; our arguments will use some advanced theorems due to Linden-
gtrauss and Troyanski. Firvst let us observe the following:

(IIT) Let E be a reflovive Banach space whose morm ||| ||| 45 locally
uniformly convex () and let L: B — ¢,(A) be a continuous linear operator
with ker(L) = {0} and A mN =@. If g,eC°R) (11; =1,2,...) are
nondecreasing functions with ¢, (t) = 1 for t > 1n and @, (t) = 0 for ¢ < 1/2n,
then the map w: I — ¢, (N U A) dcfmed by

ea(lll2l])/8
ppo Li(@)

for fle N,
Dyou(w)
for fled,
is a homeomorphic embedding.

Proof. It is easy to see that the set {p,0L: aecd} is linearly dense
in B. Otherwise there would exist 0+ ze B** = B such that (w, p,oL> = 0
for any ae A; this is impossible because ker(L) = {0}.

Now let (w,) be a sequence of points of B such that lim |]|u(s, )

N0
—u(z,)|l} = 0. We then have 111n||[mn||1 = |||o,]]] and 11m (p0L)(w
= (p,oL)(x,) for all ae 4, whenee ( n) is weakly oonvergomt to @,. Since
the norm ||| ||} is locally uniformly convex we get(2) lim [||@, -—@,|| ==
R0

Therefore the map u: B —u (M) is closed; the continuity of u is
obvious.

Recall that a norm || || on a linear space X is said to be of class o,
it the function « — |jzll,  # 0, is. in O*(B\{0}). By Lindenstrauss [6] fol
every reflexive Banach space E there exists a continuous linear operator
L: B—cy(A) with ker (L) = {0}. Thus from (III) and Theorem 1 we obtain

TemoREM 4. Let B be a reflewive Banach space. If there ewists on 1 am
(equivalent) locally umiformly comvem morm of - class COF, then B admils
Cr-partitions of uwity (ke N).

The following corollary generalizes Theorem §:

COROLLARY 3. Let (X, u) be a ywm’tim’ measure space. Thew for amy
we N the Banach space Ly, (X, u) admits C®-partitions of unity, and for
any pell and ke N with k < p the space L?,(J\,,u) admits (C-partitions of
unity.

(®) i. o. for any sequence (y,) of points of B with Hyalll =
vergeu(,u hm |I|Jn+J1]|| = 2 unplms ]uu yn =

+ 1, me N, tho con-
Yl = 0 ([97], p. 226), 14 is known aud

cagy to vemfy that if the norm ||| ]|| on Ia ig loeally uniformly convex, then for any
sequence (x,) in B with hm Wag 1l = [llz1lll we have lin ety =@ 1] e O B ()
N-»00

is weakly convergent to “’1 (cf the proof of Theorem 2.2 in - [9]).

icm®
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Proof. For any p > 1 the space L, (X, u) is reflexive and its standard
norm ig locally uniformly convex (Clarkson [37]). Moreover it can easily be
shown (cf. [2], p. 887) that the (standard) norm on L, (X, u) is of class OF
for all ke N with % < p and is of class * when p is an even positive integer.
Thus the assertion follows from Theorem 4. (%)

By Troyanski ([12], proof of Corollary 6) every reflexive space admits
an equivalent locally uniformly convex morm of class O Combining
thig with Theorem 4 we get

TnuorEM 5. Every roflevive Banach space admits C*-partitions of unity.

Let us recall that if a normed linear space B admity (P-partitions
of unity then every paracompact C*-manifold M modelled on # also admits
such partitions (this can be established e. g. by checking that if the topology
of I has a o-locally finite base ¥~ & gy then the topology of M has
gome o-locally finite base %" < %guyy). Consequently any paracompact
Hilbertian manifold of class ¢* admits (*partitions of unity and any
(paracompact) diferentiable manifold modelled on a reflexive space admibs
C*-partitions of unity.

3. Approximation of continuous functions. Let (B, ||| |[|) be a normed
linear space. For any linear operator L: E > ¢,(4) and any normed linear
gpace I we define S (H, F) as the set of functions #: E— F which
are locally of the form

@ = @(l|oll}; p,0 L(®), -, Po,0 L(@)),

9
where neN, o, ..., aped, and g0 (B™, F) satisties E:L (@, +vvy Ty) = O
‘ . -

for all (@g, ..., #,)e B™" with sufficiently small ,.

ProrosrrioN 1. Let B be o reflexive Banach space whose norm ||| ||| is
locally uniformly convex and let L: B¢y (d) be a linear operator with ker (L)
= {0}. Then for every normed linear space (F, || ) and for any continuous
mappings w: B~ F and e: B —(0,1) there is a ve 8y (H, F) with |ju(z)—
— (@) < &(x) for all zel.

Proof. From (IXI) and Theorem 1 we infer that ¥ admits 8 (E, R)-
partitions of unity. Thus it remaing to apply the following general fact,
which results from the method of ¢. Kuratowski (see [0, pp. 366-367):

(K) If the space X admits S-partitions of unity, then for any mormed
ch(w space (11, || 1) and any continuous maps uw: X —F, e: X —(0,1)

() If T (X, p) 18 intinite-dimensional, then it contains a subspace isomorphic
tio &y . Therefore, by a result of Kuraweil (Studia Math. 14, p. 227), the space Ly (X, y)
admits (F-partitions of unity for some % » p only if it is finite-dimensional or p is an
oven integer. Lot us note also that Proposition 5 of [2], Theorem 1 and (ITI) combine
to show that Iy (X, ) admits partitions of class 42 in the terminology of [2].

4 — Studia Mathematica XILVI.1
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there is a 8-partition of unity (f;)wr and a family (w,)er of points of B such
that

[KICEPNRACRD
iel

<e&(®w) for all we X.
In the special case B = l,(4), p > 1, taking for ||| ||| the standard

norm and for L the formal identity operator, we conclude that each
continuous u: ,(4)->F can be arbitrarily close approximated by fun-
ctions which locally are of the form (w,)—> @ (|[](& )], Bays ey @)
(neNyay,..., ape d,pe O®(B™1).

Similarly it follows from Remark 2 that any continuous u: ¢y(4) - I
can be approximated by such functions ge 0®{6y(4), F) which locally
depend only on finitely many coordinates.

By this method one can also prove the following fact

ProrosITION 2. Lét X = }I’VX,“ where X, are meiric spaces, amd

ne,

Jor any metric space X denote by 8 (X, Y) the set of those continuous Sfunctions
v: X -> X which locally depend only on finitely many coordinates. If (¥, o)
is a meiric ANR, then for any two continuous maps w: X —>Y and &: X -
—>(0,1) there is a ve 8(X, ¥) with o(u(a), o(5)) < &(x) for all e X.
Proof. Let us begin with the case where ¥ = F is a normed linear
space. By (K) it is then enough to show that X admits § (X, R)-partitions
of unity. To this aim observe that each of the spaces X; may be embed-
ded into the unit ball of some ¢,(4,) (use Theorem 1 and the paracom-
Pactness of metric spaces). Let h;: X;— ¢4(4,) be the embeddings, 7¢ WV,
A; 0 A;= @ for i+ j,and let L: _1;00 (44) = ¢o(U 4;) be the map such that
3 N

e,
PooL((@)) = n7"p,(,) for any (n, a) with ac 4,,. It is easy 1o see that L is
ahomeomorphic embedding and that w: X - ¢4l A,) defined by w () =
ieN

= L((wi(xi))) satisfies ‘the condition (c) for the pair (X, 8(X, R)).

Therefore the assertion follows from the equivalence (a) < (e).
The general case can now be proved in the standard way, using a

closed isometric embedding of ¥ into a normed linear wpace I (cf. [107])

and & retraction onto ¥ of some open set U < I
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