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On linear functionals in Hardy-Orlicz spaces, I
by
R. LESNIEWICZ (Pozax)

Abstract. The papor can be regarded as a continuation of the paper “On Hardy-
Orliez spaces. 17, Comm, Math. 15 (1971), pp. 3-56. The paper contains the study
of spaces of linear functionals continuous in norm, continuous in modular and very
weakly continuous on the Hardy-Orliez space H*? and on the space of finite elements
H°?, Mutual relations hetwoeen these spaces and the question of the extension of linear
functionals from H°? on H*? are considered. ‘

The main results of this paper were earlier announced in [4]. This
paper can be regarded as a second part of the paper [6] which contains
the study of Hardy—Orlicz spaces. Some vesults of the paper [6] and
other papers will be needed here. We collect them in the first section.

I. ORLICZ AND HARDY-ORLICZ SPACES

LY. 4 p-funciion we call a real, nondecreasing and continuous for
% > 0 funetion, equal 0 only at u = 0 and tending to oo when % — oo.

1.2. On p-functions we impose sometimes the following conditions:

(Ay) P(2u) < dp(u),
(Vy) 20(u) < p(du),
(Va) 20 (u) < d g (dw)

for u 2 u, with some congtants d > 1 and u, 3 0.

1.3, Among g-functions we distinguish log-conver g-functions which:
satisty the inequality

@) < ap(u) -+ fop(v)  for w,v>0 and @, f2 0, a+f =1,
and. convex p-function which satisfy the inequality

@loaw =4 pv) < ap(u) + fp(w)  for u,v>0 and a, =0, a-+f = 1.
Clearly, a g-function ¢ is log-convex if and only if it can be represented
in the form
(%) p(u) == ®(logu) for u>0,
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where @ is a convex function on the whole real axis. From this it follows
that a log-convex g-function ¢ is strictly increasing for « > 0 and so, it
has an inverse function ¢_,. Convex gp-functions and more generally fune-
tions of the form ¢(u)= (u°) for w > ¢, where v is & convex p-function
and s > 0, are a particular case of log-convex p-functions.

1.4. On convex g-function y we impose frequently the following
conditions:

(0,) Hm u g {u) = 0
Ur 0

and

(00y) Hm w™'y(u) = oo.

U-+00
Under these conditions for a convex ¢-function y we define a function
v’ complementary to y by the formula

' (v) =sup{uw —yp(u): w=0}, (v=0).

The function %' is also convex g-function, satisties the conditions (0,)
(o0q) and moreover, (y') = .

In the sequel only log-convex g¢-functions ¢ for which a convex
function @ from their representation (*) satisfies the condition (oo,) will
have applications and therefore the letter ¢ will be used only for these
functions.

2.1. Let f be a complex-valued function, defined and meagurable

on the interval [0, 2n). We define

: o

So(f) = [ o(If(0)])ds.

]

In the space of all complex-valued functions, defined and measurable
on [0, 2r) the functional #, is a modular in the sense of Musielak and
Orlicz.

2.2. By L? we denote the class of all complex-valued functions f,
measurable on [0, 2x) for which 4, (f) < oo, by L*® the class of all fune-
tions f such that afe L? for a certain a > 0 (in general dependent on. f)
and by L the class of all functions f such that afe L? for overy a > 0.

In the space of measurable on [0, 2%) complex-valued functions
the class L” is an absolutely convex set and the clagses L' and I°? aro
linear subspaces. The class L7 is called Orlicz class, L' Orlice spaces and
L% the space of finite elements of L*?, ([7], [8]).

2.3. Genperally, in the space L*? the functional
Iflp = int{e > 0: #,(fle) <&}, (fe I'7),

is a complete F-norm and L* is identical with the clogure of the space
of all continuous funetion on [0, 2x] in the space [L*?, ||-[].
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If p(u) = w(v’) for u = 0, where y is a convex p-function and 0 < s
<1, then an s-homogeneous norm can be defined in L** by the formula
Iflsy = inf{e > 0: £, (f/e) <1},  (fe I*).

The norm |- [[; and |- [, are equivalent on L*® ([7], [9]).

If 9 is a convex g-function satisfying the conditions (0,) and (o),
then besides the homogeneous norm J|']}’1“,,, in I* y another homogeneous
norm can be introduced by the formula

om

Il = sup {[ 1F0g @@t Sp@)<1),  (feT).

The norims |[-va, and |- !I?;,) are equivalent; namely they satisfy the ine-
quality :

1, < UFIy < 2071, -
The norm [|-[[f,, may be written in the form

for every fe L*.

If1fyy = int {—16— (147 ef): e > 0} for every fe L*”,

([2], Chap. IX).

2.4. In general case in Orlicz space L*” we have two concepts of
convergence for sequences; one is a norm convergence and other is a mod-
ular convergence. We say that a sequence {f,} = L** is convergent
i norm to fe I*?, it ||f,, —fl5—0 as n—> co; this holds if and only if
Fola(fu—Ff)) =0 88 % -> oo for any a > 0. Besides of this, we say that a
sequence {f,} = L** i3 convergent in modular to fe L*®, it S, (a(f,—1)) =0
a8 % —-co for some a > ¢ (in general dependent on {f,} and f). In the case
when ¢ satisfies the condition (A,), I*® = L°® and the norm and modular
convergences are equivalent. Otherwise, we have only L°° = I* and
only the norm convergence implies the modular convergence.

2.5. With respect to these two convergences in Orlicz space L™ we
have norm continuous and modular continuous linear functionals on
I* and on L°?. In the case, when lim infu~'p(u) = 0, there does not

U—co
oxist o nontrivial modular continuous linear functional on L*®(c.e. g.
[127). In the case, when y is a convex p-function satisfying conditions
(0,) and (oo,), the formula

am
E) = [ fg@) @, (feI™),
0

where ge I, yields the general form of a modular continuous linear func-
tional on L' ([12]). In the case this same formula yields also the general
form of a norm continuous linear functional on L ([2]). It is known
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([2]) that Orlicz space [L**, {-Ii},] where p is a convex @-function, is
reflexive if and only if v satisfies the conditions (A,) and (V,).

2.6. Let f be a 2r-periodic function integrable on [0, 2x). It is known
([14]) that the integral

TS TR

exists almost everywhere; the function f: defined Dy this integral, is
called the comjugate function to f. ‘

R. Ryan has shown in the paper [13] that the mapping f-» f is
a continuous linear operator from Orlicz space [L*, ||-|lf1“,,,] into same
Orlicz space, where v is a convex g-function, (it holds iff this mapping
sends L* into L', see [5]), if and only if v satisfies the conditions (A,)
and (V,).

3.1. Let F be an analytic function in the disc D = {e: |2 < 1}.
‘We define

an

= [ p(IPre) @ for 0<r<1

0

po(r; F)

and
thp(F) = sup {p, (r; I): r<i}.

0<
x

Ko(r; F) 18 a nondecreasing function for 0 <r < 1. For any function F
analytic in D the following inequality

,Mq:(-p)

[7(2)] < ¢ (n(l )

) for zeD

holds ([67).

3.2. By H” we denote the class of all functions ' analytic in D such
that u,(F) < oo and by H*” the class of all functions ' such that ol ¢ H”
for a certain a> 0 (in general dependent on I). Moreover, by H* we
denote the class of all functions F such that aF'e H? for every a>- 0.

The clags H” is a convex set in the space of all analytic functions
in D and the classes H'” and H°" are linear subspaces. The class J” wo
call Hardy-Orlicz dlass, H*® Hardy-Orlice space and H°® the spaoca of finite
elements in H*?,

3.3. The class H is a subset of the class ¥’ of all functiony 7 analytic
in D for which the integrals

flog““}F(re“)]dt for 0<r<1, 0o 2
0
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where log™ u = log sup {1, u}, are uniformly absolutely continuous func-
tions of . It is known ([14]) that functions Fe ¥ have the nontangential
limits

lim F(z) = F(e")

2>l
a]mo% everywhere on the circumference {2: || = 1} and that for Fe N’
F(6%) = 0 for almost all ¢ [0, 2m) implies F(z) = 0 for all ze D.

Fov FeN', in particular for Fe H?, we have here
2

po(F) = [ (17 (6"}t

0

= S, (F ().

Tdentytying functions Fe ¥ with its boundary functions F (") we can
write
"= L7 NN,

H*" =L* NN and H” =I° NN

3.4. Generally, in the space H' we introduce an F-norm by the
formula

B, == [ (6" )y = int{e > 0: p,(Ffe) < &}, (Fe H™).

The gpace H™? is complete with respect to this norm and H°® is identical
with the closure of the space of all functions analytic in D and continuous
in D = {2: |2| < 1} in the space [, |-[,]. The space [H®, |-|l,] is sepa-
rable; polynomials with rational coefficients form a dense set in this space.

For a fixed I'e H*7, o {|aF|, is & nonincreasing function for a > 0.
From. this it follows that for Fe H*® such that 0 < [#]l, < B we have

} BT
121,
By Fatou Lemma it follows that u,(F/|F|,) < |F|, for F 0.

If p(u) = p(u’)for w = 0, where y is a convex p-function and 0 < ¢ < 1,
then an s-homogenous norm can be defined in H*? by the formula

[Pllp == (67l = int{e > 01 pp(F]e) < 1}, (Fe H™).

The norms |||, and [|- ], are equivalent on 0.

It o is & convex g-function satisfying the conditions (0,) and (ooy),
then besides the homogeneous norm |- [, in H*" we can introduce another
homogeneons norm by the formula .

L]

oan
Pl = 1F (&)l = sup [ IF(*)g(0)ldt,
0

where the supremum i taken over all functions ge L¥ such that £, (g) < L.
: K
The norms |-, and -, are equivalent on. H™¥; namely

1y, < 1Ty <21y, for every FeH™  ([6]).
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3.5. For Fe H* we define
[Fl, =inf{e> 0: u,(F[s) < oo}.

Functional [-], is a homogeneous pseudonorm on H*” such that
1° [F], = 0 if and only if Fe H",
2° [Fl, < |17l
3° [F], = lim o™ Yo, ([6]).

a-rc0

3.6. For functions ¥ amalytic in D following two linear operators

T,01(2) = P(rz), where 0<r<<1,
and

8, F (2) = F(d"), where I is a real number,

are interesting. Namely, for these operators we have:

1° pp(T,F) = pp(r; F) and u,(8,F) = u,(F),

2% po(F) < co implies w, (}(T,F—TF)} >0 a5 r->1—,

8° py(F) < oo implies u,(}(8,F—F) -0 as h—0.

From this it follows that

1° T, Fll, < |1 F|l, for 0 <7 < 1 and 111}1 1T, 2N, = (1€,
ol

2° 8471, = |11,

8° | I, —F|l,—~ 0 as r > 1— for Fe H,

4° |8, F —F||,~ 0 as h—>0 for Fe H".

Analogical statements hold for norms IIlls and Il when these

norms can. be introduced in H*® by the before given formulas ([61).
Moreover, for Fe H* we have here

[F], < inf{|F—@G],: GeH*} < lim sup T B —Fll, < 2 [F],.
r=>rl—

3.7. A set X = H" is called a bounded set in the space [H*?, ||- llp] if
a,~ 0 and {F,} < X implies always ot Fyllp = 05 this holds i and only
if for every &> 0 there exists o> 0 such that lof'll, < & for all Fe X,

A ball {FeH*: ¥, < R}, B> 0, is a bounded set in, [, |-
if and only if ¢ satisfies the condition (V) ([6]).

3.8. In Hardy-Orlicz space H*, similarly as in Orliez space T*, wo
have two convergences for sequences, one is a norm convergence and
other a modular convergence. So we say that a sequence {I,} < H** iy
convergent in norm to Fe H, if | I, — 7 llp = 0 a8 2 —-o0; this holds if and
only if M,,(a(l?’n—]?)) -0 as % — oo for any a> 0. Moreover, wo say that
a sequence {F,} = H*?is convergent in modular to Fe JI " it g (B, — 1))
=0 a8 @~ co for some a>0 (in general dependent on {1, — I'})

n I
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In the case when ¢ satisfies the condition (A,), H* = H®® and the
norm and modular convergences are equivalent. Otherwise, we have
only H°? = H** and only the norm convergence implies the modular
convergence,

4.1. Besides above mentioned two convergences in Hardy-Orlicz
spaco H*? we distinguish a third convergence. Namely, we say that
a sequence {I,} = H*" is convergent very weally to Fe H*?, if

sup ([, — L, < oo and  sup {|F,(2)—F(2)]: ze B} >0 a5 n— oo
n

for any closed set ¥ = D. This definition of very weak corvergence does
not change when the norm |||, is replaced by the norm |-[, or I gy -
4.2. Modular convergence implies very weak convergence.
Proof. Let be u,(a(l,~F))—»0 as n— oo for a> 0. Then there

1 .
exists n, such that p,(a(F,—F)) < - for # = n,. From this get

1
sup |Fy,— I, < sup {;, 1y —Flpy ooy IIFno—FI!.,} < oo.
o

From this and from the inequality given in 3.1 the theorem follows.
4.3. If a sequence {F,} < H*? converges very weakly to Fe H*®, then

() < lim. ind e, (F,)
N—>00
and

7, < lim. inf |7,

N0

Jlp -

Proof. Because for 0 <7< 1 a sequence {F,(ré¥)} tends to F(re")
uniformly on i, we have :

Trom this wo get the inequalities of the theorem.

4.4, A sequence {1} < H'" is convergent very weally ifwamd ow,by. if
sap [ll, << oo and a sequence {F,(2)} 18 convergent on a set B < D which

" i

has a clustor point in 1.

Proof. If o sequence {F,} < H' is convergent very weakly to
Fe H*, thon

sup ”“Iﬂn,”m < sup HFn ’“Fllw + “FHW <
K2 n
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and a sequence {I, (¢)} is convergent (to F'(2)) for all ze.D. Now, let {F,}
< H"" be a sequence such that sup [|F,|l, < B < oo and a sequence {#, (=)}
n

is convergent on a set which bas a cluster point in J. Then by 3.1 we
have

R

P ()| <gp_y|—————|R for all 2¢D
(@) < g ](n(l——[zl)) €
and by the Vitali Theorem we obtain that a sequence {1, (2)} is convergent
uniformly on every closed set I = D. Let F be a limit function for this
sequence. Since for 0 < » < 1 a sequence {r, (w,“)} tends to 11’(1*0“) uniformly
on ¢, we have

po(r; F|R) =lim u,(r; F,/R)< R

N0

for 0<5r <1

and
Uy (FIR) < B < oo.

This proofs that ¥e H*. Now, we have
SL'LI) ”—Fn _F”:p < SUP ”Fﬂ”(p "l”‘ ”IF“.'p < o
w n

and ¥,(2) > F(2) as #— oo uniformly on any closed set B = D.
4.5. Hoery ball {Fe H*7: |F|, <R}, R> 0 is sequentially very wealkly
compact set.
Proof. Let {F,} =« H* be a sequence such that sup |F,]l, < B. Then
n

by 3.1 we have

R
iFn(z)|<¢_1( M))R for all z¢ D.

n(l—
From this it follows by the Montel Theorem that there exists a subse-
quence {F, } of a sequence {F,}, which is convergent uniformly on any
closed set B = D. Now, from 4.4 we get the theorem.

With respect to these three convergences in Hardy-Orlicz space
H* in the sequel we shall deal with norm contiouous, modular continuous
and very weakly continuous linear functionals on H™?.

II. LINEARS FUNCTIONALS IN HARDY-ORLICZ SPACES

1.1. Let 2 be a fixed point of a circle .. Tor any function B analytic
in D we define

1
Yo,(F) = F(z) and Vo F) = mlp(n)(z), (n=1,2,..).

For z = 0 we shall write y,, insted of Pn,0-

@ ©
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It is clear that y,, and ¥n,» aTe linear functionals on the space of

analytic functions in D, and therefore, they are linear functionals on any

Hardy-Orlicz space H*?. 'We note hero that these functionals are very

wealkly continunous on F*?,

‘We see from this that on any Hardy-Orlicz space there exist very
weakly continuous linear functionals, and so, also modular continuous
and norm continwous ones. Moveover, from the above it follows that
there exist fundamental systems of very weakly continuous (modular
continuous, norm continuous) linear functionals on H*?, i. e. there exist .
sequences {£,} of vory weakly continuous (modular continuous, norm
continuous) linear functionals on H*? such that &,(F) = 0 for 5 = L2,...
and. Fe ' imply I = 0.

1.2. In a general case, we have for the functionals mentioned at 1.1
the following estimation with respect to the norm |- flp:

" 0,
(70,6 (F)| < 9y (m) 1#l,

and
, 11l r
[70,2(I)| < it {W“l(nuw)) (

for amy Fell™ and zeD.

When @(u) == p(u'), where v is a comver g-funciion and 0 < s <1,
we have the following estimavion for these functionals with respect to the
norm - ||+ [lyp:

v~|z[)”+1: ] <r<1} ey n=1,2,...

1

) a(L/s
o)

) <
and
h’n‘ﬁ(lﬂ)’ < inf {qu(

for amy B e .
Proof. Bstimations for the functional y,, follow immediately from
the inequality

(11 7)) r rz,)nﬂ Rl<r< 1} IFI:E n =12, ...
™ o -

) o (1) )
I'(2)] < ¢y (=t for zeD
and from definitions of corvesponding norms |||, and [ [,,. Bstimations
for the functionals y, , woe got now by Cauchy’s Integral Formula. Indeed,

for any », |2| <7< L wo have

1
['yn,,,y(lﬂ)lr":: 5 -
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where C, designates the circumference {{: |{] == r}. Thus

)
an,z(F)Kinf{%( ﬁ(”“’( ))(,, Er— Iz[<7'<1}.

From this and definitions of norms ||- ||, and |- [, follow now postulates
estimations.

1.3. In the sequel, we shall denote by (H**)* a class of all norm contin-
uous linear functionals on H*?, by (H37)* & class of all modular continuous
linear functionals on H*?, and by (Hi2)* a class of all very weakly contin-
uous linear functionals on H*?.

14. A sequence {F,} = H™ very wealkly converges to Fe H™ if and
only if

sup [|[F,—Fll, < oo and  E(F,)— E(F) when n—> oo
for every Ee (HAZYV*.
Proof. If a sequence {F,} = H* is very weakly convergent to Fe H*?,

then obviously sup |F,—F|, < co and &(F,)— £(F ) when n -+ co for
n

every £ (Hy2)¥.

COonversely, for {¥,} = H* and FeH" let sup |F,—F||, < co and ,

n
§(I,) - E(F) when n— oo for every fe (Hi7)*. Since the functionals
Yo,.» Where ze D, belong to (H;5)* so we have F,(z) — F(z) when n — oo
for every z¢ D. Now, by 4.4 of Section I we obtain that {¥,} converges
very weakly to F.

L5. 4 sequence {F,} = H™ is very weally comvergent to Fe H™ if
and only if

sup |\[F,—Fll, < oo and y,(F,) > v (F)  when n— oo

for m =0,1,2,...
Proof. If {7,} very weakly converges to F' then, supHI’n — I, < oo

and  y,(F,) = v (F) when s oo for m =0, 12,

Conversely,
let uws suppose that {7} < H',

Fe ', sup 18y~ 2, == B <2 o0

and v, (F,) =y, (F) when n— oo for m = 0,1, 2,... Let » be a number

such that 0 < r < 1. Since sequence {( 2

m
13 r) }converges, to 0, then for

every ¢ > 0 there is a m, such that

2R
"’"I(nuw))R

_1+'r 2r \™0 ¢
1—r\1 <“§

-|_ 7
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R 2R
(Fren bty e

B (1+17)/2
ey, )) (@ njzp &

zR 2 m
=Py (“WZ]M,})) ('r;n) B for m =L2...

From this we get for |2| < »

IZ 'ymﬁlﬂn wlﬂ)zm’ < Z !ym ('Fn - F) l "

M=ty M=y

2R [ or \" 2R 1+7r[ 20 \™ o
< -~ _R PR o . —_—
#- 1( (J.—-v)) 2(1—]—7‘) "’“‘(n(;L—r))R 1—7(1“) <2'

M=t

By 1.2 we have for every
7o (B~ F)| < @
and

[V (B~ B)| < gy ( (

Now, $inee y, (I, —F) -0 when # - co for m = 0,1,2,.

., it follows
that for already fixed e > 0 there iy a n, such that

; . &
[V (B =~ B | < (2 «~-7")~2— for m>my and m = 1,2, ..., m,—1.

Thus, for Jo| < » and # > n, we get

‘11" ‘Z 7’1)& ﬁ ,

Mm=)

My—~1 Mmy~1

&
<D (T BYlom Zym(rn PE|<-r)5. Y "+ <
Mea M=y m==0 B

From this we conclude that {¥,(2)} converges to F'(z) uniformly in the
cirele |¢| < r. This yields that {F,()} converges to F(z) on every closed
subset I of 1. Thug {F,} is very weukly convergent to F.

1.6. A soquence {F,} = H is very weakly convergent if and only if
sup [, < oo and for m==0,1,2,... the sequences {y,, (F,)} are conver-
1

gent.
Proof. If {F,} « K" very weakly converges to F'e H** then

sup [Fyllp < sup [y — Fl, + [, < oo
n n

and by 1.5 wo see that the sequences {y,, (F,)} converge for m = 0, 1,...

B
Conversely, lot {7} = H*" be such a sequence that sup [T/, = 5 <
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and for m = 0,1, 2, ... the sequences {y,,(F,)} are convergent. Then we
have sup |[F,—Il,< B and
nk

Y (B — Ty —~0  when ¢, k— oo for m ==0,1,...

Replacing now in the proof of 1.0 a funection F by functions I, we
immediatelly obtain that F,(2)—F(2)~>0 when =, % - oo uniformly
on every cirvele |2| <7 < 1. This combined with 4.4 of Section I implies
that {F,} is very weakly convergent.

2.1. Let & be a lincar functional on H*". We define

v,(&; R) = sup{|£(T)|: |Fl, < B; Fel' for B> 0,

For every lincar fumctional & on H** and for every R >0 the following

ineguality
|&(F) < B0, (& R) |7,

holds for every e H* such that 0 < |F|l, < R.

Proof. If v,(&; R) = oo the inequality in question is obvious. Let
us exclude this and suppose that v,(£; B) < co. Then
|E(F) <v,(&; R) for every FeH* such that [F,< R.

Since, in view of 3.4 of Section I, for F< H*® such that 0 < [, < B also

IRE[|F ], < R, we get '
[E(REIF,)] < v, (&5 B).

llp

This implies the desired inequality.

2.2. A linear functional & on H™® belongs to (E**)* if and only if
v(&;5 R) < oo for some R > 0.

Proof. If e (H*")* then for every &> 0 there is a 6> 0 such that
|£(F)| < e for all Fe H* such that |[F]l, < 8 i. o. »,(£; 0) < o Fixing ¢
and taking B = ¢ we prove the required implication.

Conversely, if v,(&; B) < oo for some B> 0 then, by the inequality
proved in 2.1, & is norm continuous on H*® and so £e (H*?)H,

2.3. For a fived £ (H'™Y¥, R, (&; R) is nondecreasing for B > 0.
More precisely

B, (&5 R) = sup{|E(F)]: u,(F) < B, Fe "H*“”}.

Proof. Observe that

sup {|E(F)|: u,(F) < R, Fe H'} = sup {|E(B'G)[: |6, < R, G H*}
= R7Y,(&; R).
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24. A functional &< (H*")* belongs to (HX2Y* if and only if
lim Ry, (£; R) = 0.
R0+

a

Proof. I &e(H,M)* then obviously .
]}ifiR_l%(ﬂ R) mlgim Sup {|£(F)|: pp(F) < R, FH*} = 0.’
>0+ ) o

Conversely, let I%ir;a B, (£; R) = Ofor £e (H*?)¥, Further, let {F,} = H**
e

be a sequence such that u,(al,) — 0 when # — co for a > 0. Then £(al,)
0 when #-» co and this implies that £(F,)— 0 when % — co. This
means that &e (Hi7)*.

2.5. If &e(HuD)* then »,(¢; R) < oo for every B> 0.

Proof. By 4.6 of Section I every ball {(FeH™: |P|, <R} is se-
quentially very weakly compact. Thus for every B > 0 there is Fpe H*?
such that [[Fzl, < B and »,(£; B) = |£(Fyg)|. This yields the theorem.

2.6. For R > 0 'we denote by (E**)# a class of all functionals &« (H*ey#
for which »,(£; B) < oo and by (Hi9)# a class of all functionals Ee(HP™
for which v,(&; R) < oco. Further (H*?*)¥ will denote a class of all functionals
e (H')* for which #,(&; R)< oo for every B> 0. The class (Hin)¥
is defined similarly.

According to 2.2 we have

-~} N 00
(BYoy = Ul (H*)f,  and (HF = ﬂl(E*"’)f .
T n=

Analogous relations hold for (Hy#)y* and (H)F.

COlearly (H™")f, B> 0 and (H*)¥ are linear subspaces of (H**)¥
and similarly (H;P)E, R > 0 and (H}P)§ are linear subspaces of (H*?)*.
It ig also evident that the functional »,(-; B) is a homogeneous norm in
(H**)E, R > 0. We shall show that:

2.0, (', B> 0 is complete relative to the morm v(*; R).
Proof. Le {£} < (H*)f be such a sequence that v,(&,— &; B)— 0
when %, I ~> oo, Since for every I'e H' there is o @ > 0 yuch that e, < B
thus
[ (F) ~ &(I)] < a7, (£ — &5 R)

for every I and I. From this wo may deduce that &(F)— &(F) 0 when
y T~ oo for every Fe II*?. This meang that for every Fe H*? a sequence
{6,(I} is convergent; its limit we designate by &(F). Obviously, & is
a linear functional on JI*?. By our assumption it follows that for every

¢ > 0 there is a n, such that
16 () —~ ()| < vy (85— &5 B) <o for By 12>

5 — Studla Mathematica XLVE.L
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and for every Fe H* such that |F||, < R. Passing to the limit with I+ oo
we obtain

&, (F)— E(F)| < e for k> m, and for Fe H*® guch that ||, < R.
This implies further that
'”qz(f; R) < 3""%(51»0; -R) < 0, .

what proves, by 2.2, that £e (H**)% and »,(&— &; R) e for k> ny.
This means that {&,} converges to & with respect to the norm »,(+; R).

2.8. (H;))%, B> 0 is a closed linear subspace of [(HWE, v,(+; R)].

Proof. It is clear that (H,”)% is a linear subspace of (H™?)%. Let
now {£&,} < (Hy)* converge to £e(H*?)% in the norm »,(-; R). Then for

€ ‘
every &> 0 there is a n, such that »,(§—§,; R) <—2~ RB. & e (H#V% and

&
80 by 2.4 for this e> 0 there is a R, > 0 such that Ry, (&,; RB) < 5

for 0 < B, < E,. By 2.3 we deduce now that for 0 < R, <inf {B, R}
Rl_l"'w(gi R1)<R;1"'w(§”‘£noi Rl)”i'-R;l"w(Eno; R,)
<R—1'yw(§—£no; R)+-R1-17’¢(§n0; -Rl) <e.

In view of 2.4 this implies that &< (Z37)E.
3.1. For &< (H*Y* we define

#,(£) = inf{e > 0: ;I,,,(E; 1le) <1},

In view of 2.1 and 2.2 we note that for every &e (H*)¥ holds x,(&) < co.

We shall prove that the functional x, has the following properties on
(=Y

1° %,(8) = 0 if and only if & =0,

2° ny(ag) = u, (&) for |a| =1,

8% s (Ext &) < (£1) + 2, (£9).

By these properties (H**)* is a metric space if we define distance of
&y Eae (H")* by

A(&yy &) = %(fr‘“fm)-

Proof. If & =0 then for every &> 0 we have vp(€; 1/e) =01
and so #,(§) = 0. On the other hand, if x,(£) = 0 then 1.(€; 1/e) <1
for every &> 0. Thus |£(F)| < 1 for every Fe H**. Tf follows that |&(aB)]
< 1 for every a > 0 and Fe H*?, Pagsing to the limit with a ~ oo we get
§(F) =0 for every Fe H*. Therefore £ = 0.

The proof of 2° i obvious.
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To prove 3° let us take ¢ > #(&1) and e, > ,(&,). Then Vo615 1/ey)

<1 and »,(&; 1/e,) < 1. This, by 2.3, implies thatb
V¢(51+ Ea; 1/(€1+82)) < ”qz(51§ 1/(81+82)) +7’¢(525 1/(31+€z))

= ((ene2)vp (€15 1/ (ex+e0) + (61 + £2)v, (£ 1/(ex+89)))/ (1 + 22)

< (51%(515 Lled) +e, V(€23 1/52))/(51+52) <1
Thus w, (& + &) < ey + 6,. This immediately gives us 3°,

3.2, Any e (I and Fe H* such that % (E) I P, < L satisfy the

foltowing  imequality :
(&) < (&) 1B,

Proof. Let us take &> #,(€). Thus »,(£];1/e) <1 and, further,

by 2.1 ' )
IE(F)] < vy (&5 1/e) \F|l, < & | P, for FeH* such that ¢ 7, < 1.
From this we get
W) < %y (€) [1Fll,  for Fe H* such that x,(£) 7], < 1.
Now, by norm continuity of & we the desired inequality.

3.3. For a sequence {£,} = (H*")¥, »,(£,)~0 when n— oo if and
onty if vy(én; R) -0 when n - oo for every R > 0.

It follows straight forwardly from 3.2.

34. The space (H**Y* is complete relative to the metric d(&,, &)
= #p(€1— &3). :

Proof. Let {¢,} < (H*)* be a sequence such that %p(Ep—&) >0
when %, I - co. Then, by 3.3, o(éx— &; R)— 0, when %, | — oo for every
B> 0. It means that the sequence {&,(F)} is uniformly eonvergent on
every ball {Fe H*:- I, < R}, B> 0. The limit functional & is clearly
linear and norm continuous on H*? Further, »,(&,—&; R)—0 when
k- oo for every R > 0. This, by 3.3 implies that %y (& — &) = 0 for & — co.

8.5. The space (Hu)* is a closed linear subspace of [(H™)¥, x,].

Proof. Let {&,} = (HiN* converge to &¢ (H*?)* in the metric K-
Then, in view of 8.3 »,(£,— &; 1) = 0 when n > co. Thus for every &> 0
there exists a n, such that Volbny— & 1)< % Since &, < (H0)¥, it follows
now from 2.4 that for the already fixed ¢ > 0 there is a By > 0 guch that
B, (£ny; R) g—;i for 0 <RE<R,. By virtue of 2.3 we now get for
0 < B<int {1, Ry}

By (85 B) S B, (6~ &yy; B)+ B9, (8,5 R)
Srp(§—&5 1) +F By, (&, B) < e
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Taking into account 2.4 we see that &e (H,7)*.

8.6. The space (H**Y¥ (resp. (H9)E) is, for every R > 0, a closed linear
subspace of [(H**)¥, u,] (resp. [(H¥, #,]).

It follows directly from 3.3, 2.7 and 2.8.

-84, The space (H*")¥ (resp. (H3)¥) 48 a closed limear subspace of
[(E**), x,] (resp. [(H3)¥, ,]).

Proof. Straight forward application of 3.6 and 2.6.

3.8. A functional Ee (H*)* is a member of (H*?)J if and only if x,(af)
— 0 when a— 0.

Proof. Let us notice that if £e (H**)f then vp(&; R) < oo for all
R > 0. Thig in turn implies for every B > 0 that »,(aé; B)= |alv,(&; RB) -0
when a— 0. By 3.3 we now get that x,(aé) ~0 when a - 0.

Conversely, let for &e (H*")* be w,(af) >0 when a—0. Then, by
3.3, vy(af; R)—> 0 when a -0 for every R > 0. It means that for every
R > 0 there exists ap> 0 such that »,(apé; B) < 1. Thus »,(&; R) < i’
and £e (H*)F. _

3.9. The space [(H*")¥, x,] is a Fréchet space and (H)¥ is its closed
linear subspace.

It follows clearly from 3.1, 3.8, 3.7 and 3.5.

3.10. The space (Hy0)* is a dlosed linear subspace of [(Ey0)F, #,].

Proof. That (Hy%)* is a subspace of (¥ is an immediate conseq-
uence of 4.2 of Section I and 2.5. Now, let {&,} « (H;&)* be a sequence
convergent is morm x, to &e (Hy?)¥. Let, further, {F,} « H** converge
very weakly to FeH*® and, besides, let sup ||F,, — I, < E. Then, in

m

view of 3.3, for every &> 0 there is a n, such that »,(&— bnyi B) < &/2.
For, this given ¢ > 0, by virtue of the fact that £, is a member of (Hyf)¥,
there is a m, such that |&, (F—T,)| <e/2 for m > m,. Thus, for m = m,
we obtain

< '”np(f”" £n°§ R)+ [5rzo(1ﬂ"‘Fm)| < &

It follows then &(F,)— &(F) when m-—» oo, and &e (HED)¥.

U

4.1. Let & be a linear functional on H*?, We define

(T¥E)(F) = E(T,F) for every FeH* and 0 <r <1

and
(SF &) (F) = &(8,T)

Simple consequences of the above definitions and 3.6 of Section I are
the following:

for every FeH*® and a real h.
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vo(TH &5 B) <,(&; R)

(8% &5 B) = »,(&; R)
Further, for &e (H*7)*,
o (THF &) <y () for 0<r <1

for 0<r <1 and B> 0,

for % real and R > 0.

and

4y (S &) = (&) for h real.

4.2. If Ee (H*)¥ then T &e (HI* for every r, 0 <7 < 1.
Proof. Let the sequence {F,} = H** very weakly converge to Fe H*?.
Then the sequence {F,(z)} converges uniformly on the ecircumference

{#: |ol =1}, 0<r<1. Now, the sequence {T,F,} norm converges to
T.F. Thus -

lim T# &(F,) = lm&(T,F,) = £(I,F) = TF £(F).

This proves that T £e (Hi2)* for every 0<r < 1.

4.3. A functional &e(H**Y* belongs to (HEY¥ if and only if

lm x, (1% &— &) = 0.
. Pl

Proof. I fe(H™)* and w,(TH#£&— &) >0 for #—1— then, by 4.2
and 3.10, £e (o),

On the other hand, let £e (H,5)*. Let us take on arbitrary R > 0,
and let {r,} be such a sequence that 0 < r, <1, r,~1— and

lim sup », (T &~ &5 B) = lim »,(TF §— £; R).
N—c0

e B

Since T £ — e (Hyp)* and the ball {FeH*: |F|, <R} is, by 4.5, of
Section I, sequentialy very weakly complete, then for every s there is
a F,eH* gsuch that

Py < B  and v, (T £— & B) = (TF £— §)(F,)] = |£(T, Fo— T,

Now, because |[F,l,< B for # =1,2,..., we can find a subsequence

{Ty,} of {I,} very weakly converging to some Fye H*. Then also the

gequence {T,.", 7y} is very weakly converges to Iy. In fact, sup “Trnank”v
g k

< &uplllf’nkllm < B, We further get, by Maximum Principle,
I '
sup {| Ly, Fn, (&) = Fo(2)1: lo] < g}
== §up {|Fy, (7,2) — Fo(2)|: J2] < o}
< SUP {| T (1 2) — Fo (1,2 2] < 0} +5Up {1 Ty (7 8) — Fo(2)]: I2] < 0}
< sup {|Fy, () —Fo(2)]: (2] < o} +5up{|Fo(rn, 2) —Fo(a)l: lel < @}
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It follows now

sup {|T, F, (2) ~Fo(2)|: [o] < g} -0
for every o, 0 o<1,
Thus, by 4.4 of Section I {T,nank} very weakly converges to F,. Now,

lim sup », (T £~ &; R) = lim |6(Ty, By —Fy,)| = 0.
P>l Fe—rc0
This leads to a conclusion
Bim o, (TH & — £; R) = 0
Feop] e
for every B> 0, and in virtue of 3.3 u, (T ¢~ &) — 0 when r—>1—.
44, If Ee (HP)*, then for every Fe H**

lim TF £(F) = lim £(1,F) = &(F)
Pl —

r—rl—

when. % - oo

and
lim S &(F) = lim &£(8,F) = £(F).
B0 ]
This is an immediate consequence of 3.6 of Section L.

5.1. A sequence {£,} of functionals defined on H® iy said to be
pointwise convergent to a functional &, if for every F e H*®

lim £,(F) = &(7).

The space H*® equipped ‘with a norm I*ll, is & Fréchet space, Thus, by
Banach Theorem ([1]) every sequence of functionals {&.) = (H*7)¥,

such that the sequence {&,(F)} converges for every Fe H*, iz pointwise:

convergent to a funetional &e (H*?)¥,

5.2. A sequence {&,} < (H**)* s pointwise comvergent if and only if
s1'1‘p #y(£,) < co and the sequence {€.(F)} comverges for every F' belonging

to a certain linearly demse subset of [H™**, ||-|,].

Proof, Let {¢,} < (H**)* be pointwise convergent. Then, in virtue
of Mazur-Orlicz Theorem ([10]), for every &> 0 there is a 4> 0 such
that |&,(F) < & for every #» and for every Fe H* guch that 2, < 6.

Thus there is an B > 0 such that vy (£n; B) < L dor every n. Now, w,(&,) sé-%?«

) 1
for every #, and so sup 7o (&n) < % < oo. Conversely, assume that {&,}
n
< (H**)* be a sequence such that BUp #,(£,) < oo and {£,(F)} converges
n
for every ¥ from a set X dense in [H*?, Ilp]. Since sup #,(&,) < oo, by
n

3.2 it follows that for every ¢ > 0 there is a ¢ > 0 guch that 1€, (1| < »3
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for every n and every Fe H*, |F|, < 4. X is dense in [H*?, 11,1 and
so for every Fe H*? there is a G-¢ X such that I —@l, < 6. The sequence
{£,(@} is convergent, thus there is an n, such that for &, I > n,, 1&.(6G)—

—&(6)| <3 For k1> m, we have then |5,(F)— &(F)| < |&(F—6)|+

+186() — (@) + 18(G ~F)| < e.

This means that {£,(F)} converges
for every Fe H™.

5.8. If {&,) < (H")* is pointwise comvergent to £e (H**)* then
v, (¢ B) < liminfw,(&,; R) for every R> 0,
N—+00

and algo
#%,(€) < lim inf »,(&,).
N O

Proof. Let for B> 0 {¢,} be such a subsequence of {&,} that
lim inf v, (¢,; B) =lim v, (&, ; R).
N->00 F->00

We can assume here that this above limit ig finite. Then for every s> 0
there exists a k&, such that

ey (B <l B) < 1im vy (£, 5 )+

for every k= k, and every FeH', 7, < B. Passing with k— oo we
obtain
|&(F)| <I}im Vo(€nys B)+e

for every FeH', ||F||, <R, and '
vo(€; R) <£m 'Vw(é-nk; R)+e.

But ¢ > 0 was an arbitrary number and so we proved the first of inequalities
in question. Now, assume &> lim inf »,(£,). Then there exists a subseq-

N->00
uence {&,} of {§,} such that »,(&,) <e for & =1,2,... This implies
that #,(&,,; L/e) <1 for k =1, 2,... Application of the first inequality
now yields »,(£;1/e) <1, and #,(£) < e This accomplishes the proof.

6.1. Let us now consider linear functionals on H°¢. Similarly as for
H*" we can define classes: (H°*)* of norm continmous functionals on
H°?, (H,")* of modular continuous functionals and (H,5)* of very weakly
continuous functionals on H°" and others. In a similar faghion we define
functionals »,(&; R), B > 0, and #x,(&) with respect to H°*. Let us observe
here that all so far proved for linear functionals on H*® results with
exception of 1.6, 2.5 and 4.5 hold also when H*? is replaced by H°?. From


GUEST


72 R. Leéniewicz

now on, to distinguish functionals relative to the space H°? from those
relative to the space H*?, the former will be marked o, e. g. ”m( £ R)
will denote sup {|&° ()| F e H, |F|l, < R} for & defined on H°7,

6.2. Let & be a linear functional on H™?. Since H°? < H*?, then the
range of £ can be restricted to H". Thus we can construet a linear funec-
tibnal ¢ on H°? out of a linear one ¢ on H*? in such a way that:

£ = §(F)
Clearly, for every &e (HE?EI e & e (HE
(&% B) <, (&5 R)

for every Fe H?.

&t and

- for every R > 0

and then
#p (£°) < 2, (8).

6.3. Tor every functional &« (H"Y* there exists a functional £ (H*®)*
such that

EI) = E(F)  for every Fe H?
and
vo(£%5 R) = v,(&; R)  for every B> 0.
Proof. It Fe H* then T,Fe H for 0 <
ative functional on H™ by
P(F) = sup {|&(T,1]: 0

Let v,,,(§ R) < oo for R > 0. Then, by 2.1 and 3.6 of Section I for every

r < 1. We define o nonnoeg-

r<i), (FeH*).

FeH", |F, <R we have for every 0 <r» < 1

&) < B 9(£; RB)|IT, i, < o (&% B)F,.
This implieg that
(*) P(F) < BV (£ R) |7,

‘for every Fe H*?, 7], < R. From this we conclude that p(HY < oo for
-every FeH*®. This functional p(-) is, obviously, a homogoneous pqeu
donorm on H'. By 3.6 of Section I for every FeH, £ (10,00~ £° ()
for 7 —1-. From this as well as from definition of 1;( ) it follows that

€ <p(B)

By Hahn-Banach Theorem there exists a linear functional & on H*® such
that

for every I'e H°?,

EF) = () for FeH™

and

[E(I)| < p(F) for Fel*,
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The functional & has the desired properties since for every R > 0 such
that #5(£%; R) < oo in view of (*) we have

(85 B) <9, (& R)<sup{p(F): FeH*, |F|, < R} <+3(&%; R)

and for every I > 0 such that v, (&°; R) = oo, by the inequality »,(&°; R)
< v, (&5 B) also v,(&; R) = oo

6.4. For every &< (H"Y¥* there ewists wwique fumctional £e(HyPy¥
such that

E(I) = &)
Moreover, for avery B > 0,
(&5 B) =9 (&% R).

Proof. In view of 6.3, for £ (H,")*, there is a &e (H**)¥ such that
§(F) = &(F) for FeH* and »,(¢; B) = v (&5 R) for B> 0. By 2.4
(H,?)¥. Thus also B~%,(&; R)—0
ag R —0 and by 2.4 £ (H;?)*. Now, let & ¢ (HX)¥ be another functional
guch that 51(11 = £°(I") for every FeH. Take an arbitrary Fe H*-
Since T,Fe H for 0 <7 <1, then (& — &)(T,F) = 0. By 4.4 it follows
that (&— &) () =0 and so £ = &

6.5. Tor every & e (Hyo)™ there ewists o unique Ee(H'9V* such that
E(I) = E(F) for every Fe H.
Moreover, for every R > 0,
(&5 B) = %, (£°; R).

Proof. By 6.4, in view of the inclusion (H,2)¥* « (H,?)*,fora &« (Hj,‘}';)*"
there iy a unique £e (H)7)* such that &(F) = & (F) for every Fe H.
Tor this functional v,(&; B) = 9,(&; R) for every R > 0. We shall show
that &e (HL2)¥. Assume, on the contrary, that &¢ (HX2)*. Then there is
a g >0 and o sequence {IF,} < H' very weakly converging to 0 such
that |E(F,)| 2> 26, Since £e (UP)Y* then by 4.4 lim £(T,F,) = £(F,)

P
for w = 1,2, ... 1t Lollows that for every n there exists an r,, 0 <7, <1
such that

for every Fe H?.

]E(ﬂmﬁ,ﬂ) e f(lﬂnn < &

Thus for n =1, 2,...
& 5 |E(F)| €Ty, Fy) — §(F,)] < |6(T, T)].

Elements of {Z, F.} belong to H"W Since {F,} very weakly converges
to 0, by 3.6 of Section I

sup |1y, Full, < sup ([Fyll, < oo.
n n
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Applying now the Maxiroum Principle we get for any 0 < p < 1

sup {|T, Fp()]: le| < ¢} = sup {|F,(rp2)l: 1] < o}
< sup {|Fy(2)l: o] < g}
Thus {Trnlﬂn} very weakly converges to 0. Now, since
|8(T, )| = |E(T,, T 2 &
we get & ¢ (H,5)*. This contradiction accomﬁliﬁtheﬂ the proof.
6.6. If & (H*V¥, then for every Fe H°?
lim 7# £ (F) = lim §(Z,F) = &(F)

rrl—

and
lim §§ & (F) = lim & (8, 7) = £ ().
h—~0 J0
This is an immediate consequence of 3.6 of Section I
6.7. A sequence of functionals {£,} = (H*")* converges pointwise (on
H®) if and only if sup x,(&,) < oo and for m = 0,1,2, ... converges the
n
sequence {£,(U,)} where U, (2) = ™
This theorem follows from 5.2 reformulated for H°’ and from the
fact that polynomials form a dense subset of [H°®, ||:[,].

7.1. If ¢ satisties condition (A,), then, as iy known, H*?= H°? and
modular convergence and norm convergence are equivalent. Then we have

(Ha)® = (H'/% = (HV* = (H )™,
Also

(EDE = (@)F = (B = (HF
and

HE = (E™ = (B = ()
for every R > 0.

7.2. If ¢ does not satisfy (A,) there cwist non-trivial Sfumationals
& e (H™)¥ such that

E(I) =0 for every FeH™.

Proof. The functional [-], is, by 3.5, of Section T a homogeneous
pseudonorm satysfying conditions: [F], = ¢ if and only if Fe H® and
[F], < /F|l, for Fe H™. If ¢ does not satisty (A,) then H* s H°?. Take
Fye HNH* and put

§(aly) = a[Fy], for any number a.
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Further, by Hahn-Banach Theorem we get a linear functional & on H*®
such that £(aF,) = o[Fy], for any number & and such that |£(F)| < [r1,
for every Fe H'. Observe that & posesses the required properties.

7.3. If @ does not satisfy (A,) then (H**)§ = (HIP)E.

Proof. By 7.2 there is then a non-trivial linear functional £e (H**)¥
such that £(F) =0 for every FeH°". Suppose that (H*")¥ = (H7)¥.
Then &e (H ). By 4.5 we get now for every Fe H*?

E(F) = lim §(T,F) = lim &(T,F) = 0.
Pl e o)
This contradicts the assumption that & is non-trivial on H*®.

T4, If Ec (H'")¥ ig such a funotional that

E(F) =0 for every Fe H®
then &< (H*)§. More precisely there is a constant M > 0 such that
|E()| < M [(Fl, < M |F|, for every FeH*.

Proof. Since e (H"?)* then there exists a & > 0 such that for every
FeH", |F|l,< & the condition |£(F)| <1 holds. Now, let for Fe H* be
[F], < #6. Then, in view of 3.6 of Section I there is a G'« H°* such that
W —@Gl, < 6. Thus [&(F)| = [§(F~G) <1 Bo for every FeH* guch
that [I'], < 44 is true that |£(F)| < 1. This yields that

3 3
§(F) SEEF]WSE 11,
for every Te H*?. ‘
7.5. (H**)* will designate a class of all functionals &e (H**)* such
that £(I) =0 for every FeH™.
Cleazly, if a sequence {&} < (H*¥)* pointwise converges on~H*°’
to & £e (H*?)* then &e (E*?)*. This, together with 7.4, implies that (H**)*
is a closed. linear subspace of a Fréchet space [(H**)¥, x,1.
7.6. The space (F**)* oam be endowed with & homogeneous norm defined
by :
VEIG = v, (&5 L) = sup {|§(F)]: Fe H™, ||, <1}, (£e (H*")¥).

This morm is equivalent on (E**)* with the norm x,.

Proof. By 7.4 (H*")* < (H**)¥. From this we conclude that ||£|F
= v, (£; 1)is a homogeneous norm on (E*?)*. Notice that (H*?)* is a closed
linear subspace of a Bamach space [(H*")¥; v,(-; 1)]. Thus, (H**)¥ is
a Fréchet space when equipped with any of the norms w, and [|-|¥. By
3.3, for a sequence {£,} < (H*")*, a convergence x,(&,) -0 implies con-
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vergence [|&,/[# = »,(&,;1) > 0. Now, the Closed Graph Theorem applied
to the identity operator says that for a sequence {£,} = (H*)* a conver-
gence [|&,|F = v,(&,; 1)~ 0 implies x,(&,) - 0. It means that the norms
II-I# and %, are equivalent on (H*")*,

8.1. If (H*")* = (H*)¥ then the space (F'*Y* can be endowed with
the homogeneous norm defined by

NEIF = 9, (&; 1) = sup{|E(F)|: FeH'?, [P, <1}, (§e (H*)*),

This norm is then equivalent with s, .
Besides, for every set Y < (H*"Y* sup {||EF: £ ¥} < oo if and only if
sup {#,(£): £e X} < oo.

Proof. By 3.7 the space (H"?)* with the norm », is then a Fréchet
space. Since then also (H*")* = (H**)¥, thus by 2.7 the space (I[*7)*
with the norm. »,(-; 1) is o Banach space. Finally, 3.3 says that for a se-
quence {&,} = (H*?)* a convergence x, (£,) — 0 implies »,(£,; 1) — 0. Again,
the Closed Graph Theorem applied to the identity mapping gives the
reversed implication, and so the norms H~”jf and x, are equivalent on
(= 7y,

Let now sup {|&#: &e ¥} < oo. Then the set ¥ is bounded in the
space [(H*?y¥, ||-[#]. Hence Y is also bounded in the space [(H*?)*, »x,].
It follows then that sup{w,(£): &e¢ ¥} < co.” Conversely let sup {», (£):
£¢ Y} < co. Then there exists an B > 0 such that sup {»,(&; B): fe ¥} <L
This means that ¥ is bounded in the space [(H™)%, »,(*; B)]. Since here
(H**)E = (H*")# = (H*y* it follows that the space (H**)* ig complete
with respect to both norms »,(-; RB) and ||-|[f = »,(-; 1). Since then for
every e (H*y* we have 1,(&; 1)<»,(& B) for Rz 1 and v,(£; R)
< 9,(&5 1) for 0 < B < 1, thus, by the Closed Graph Theorem applied to
the identity operator, the norms »,(-; R) and || |[¥==»,(+; 1) are equiv-
alent on (H')*. Thus Y is bounded in the space [(H*?)¥,|-|#]. Ience
sup {[|¢]F: &e ¥} < oo :

I (H*)¥ = (H*)§ then, obviously, (H'P)# = (H?)¥.

Theorem 8.1 remains valid it H*® ig replaced by II°%.

8.2. (H™)* = (H')VF if and only if (H°7W* = (H )i,

Proof. If (H'")#* = (H**), then by 6.2 and 3.8 also (H°?) = (L°P)i,
Conversely, let (H°*)% = (H°")¥, Lot us take an arbitrary £e (H**)*
Then the functional & linear on H°® and such that & (F) == £(I) for
every I'e H by our hypothesis belongs to (H°?)¥. In view of 6.3 for &
there exists a & in (H**)* yuch that & (I") = & (I for every I'e H°? and
%(£"5 B) =,(&; R) for every R> 0. This yields & e (H*)¥. Now,
E—E1e(H™)F and (£~ &) (F) = 0 for every Fe H*. Applying 7.4 we get
E—é‘;:wgg*“’)ﬁ*. Thus & = (§—&)-+& e (H™), and it means that (H*7)¥
= o

icm
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8.3. If @ satisfies condition (V,) then (H*?) = (H**)¥.

Proof. Let e (H')* By 2.2 there is then an E,> ¢ such that
v,(£; By) < oo, Let mow R be any positive number. Since ¢ satisfies
(V,), then by 8.7 of Section I there is a o> 0 such that [[aF|, < R, for every
Fe H', ||, < R. From this follows that

(€5 R) = sup {|&(IN)|: Fe H*,||T], < R}
= o~ sup {|§(al)|: FeH™, |7, < R}
<ot wup {[§(F): Fe H', |7, < By
= a7, (£ Ry) < oo,

=

This implies that »,(£; R) < oo for every B> 0 and, further, £ (H**)¥.
Thug (H**)¥ = (H"7)f,
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