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Semigroup algebras having regular multiplication
by
N. J. YOUNG (Glasgow)

Absteact. 'Wo obtain both algebraic and topological characterizations of those
loeally compuet somi-topological semigroups whose measure algebras have regular
multiplication (in the sense of Arens). The condition obtained also characterizes
rogularity of multiplication in the I,-algebra of the semigroup.

A Banach algebra is said to have regular multiplication if the two
Arens products on its bidual coincide. It is well known from the work
of Day [2] that I;-algebras of suitable semigroups afford examples of
irregular multiplication; in fact it suffices to take any semigroup admitbing
two distinet invariant means. This is not the only way the multiplication
can be irregular: Civin and Yood [1] find wide classes of groups whose
algebras comprise further examples, and in [9] it is shown that the mul-
tiplication iy irregular in the Lt-algebra of any infinite locally compact
TFaugdorff group. Flowever, the Banach algebra M (S) of finite regular
Borel measures on. an infinite locally compact Hausdorff semigroup &
cam have regular multiplication, as is shown by trivial examples: take
@y =y for all #,y, or take the multiplication in § to be constant. In
the present note an algebraic characterization is given of those locally-
compact semigroups whose measure algebras have regular multiplication.
Some rolated results can be found in a paper of N. Macri [5]. ‘

‘We ave concerned throughout with semi-topological semigroups —that
is, semigroups in which multiplication is assumed only to be separately
continnous. Basic facts about measure algebras on semigroups can b9
found in [3]. We begin by giving the purely topological content of the
characterization. AX denotes the Stone-Cech compactification of the
completely regular space X,

1. An extension theorem. If X and ¥ are completely regular spaces
and Z is compact Hausdortf, in order that a separately continuous mapping
f: X xY—Z should admit a separately continuous extension f's pX x
XBY—~+Z it is necessary and sufficient that, for all pairs (@), (Y,n) Of
sequences in X, ¥ respectively, the double sequénce (F(ns Ym)) should
have a double cluster point in Z ([7], Theorem 1). Here weZ is called

7 — Studia Mathematica XXL.VIL2
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a double cluster point of the double sequence (z,,) if every neighbourhood
of w meets infinitely many rows and columns of the double sequence,
each in an infinite number of terms. This concept was introduced by
Grothendieck [4].

TaEOREM 1. Let X, Y and Z be completely regular spaces and let
f2 XXX —=Z be separately cowtinuous. f admits a separately continuous
ewtension f': X XY —>BZ if and only if there is no pair of sequences
(@) (Ym) im X, ¥ respectively such that the sets

A = {f(@n, Yn): m>n}y, B = {f(@ yn): m < n}
are contained in disjoint zero-seis im Z.

Proof. To prove necessity consider any pair (#,), (¥,) of sequences
in X, ¥ and suppose &, 5 are cluster points of these sequences in X, f¥.
It is then easily seen that f’'(£, %) is a double cluster point in A% of the
double sequence { f(#ny ¥,)), and hence is a cluster point in fZ of the two
sets 4 and B above. However, if A, B are contained in digjoint zero sets
they have disjoint closures in SZ.

Conversely, suppose that f admits no separately continuous extension.
By the result cited there exist sequences (@), (¥,) in X, ¥ such that
(f(#a, 9,,)) has no double cluster point in fZ —that is, every £e¢fZ has
a cozero-set neighbourhood U which either meets only finitely many rows
infinitely often (say type 1) or meets only finitely many columns infinitely
often (type 2). By compactness we can write §Z as a finite union U, U...u
U Uy of such sets. Let P, ¢ be the unions of the U/% of types 1, 2 res-
pectively. P, @ are cozero-sets and are themselves of types 1, 2 respectively.
By discarding finitely many @,'s, ¥,,’s if necessary, we can arrange that P
meets no row of the double sequence ( flz,, ym)) infinitely often and @
meets no column infinitely often. Set H = pZ—P, K = §Z—Q. Then
H, K are disjoint zero-sets in fZ containing almost all terms of every
row and column respectively of ( flw,, ym)). We now select subsequences
of (2,), (¥) inductively. Set u; = #; and v, = y,. Let w,,, be the first
@, such that f(@,, v;) K for 1 < j < k; this is possible since {n: f(zx,, vy) ¢ K}
ig finite for each j. Likewise we may choose v, to be the first v,, such
that f(u;, ¥,,)eH for 1< j<<k Then
H if m>n,

K if m<wn,

H and K being disjoint zero-sets. It is easily seen that if X = ¥ = 2
and f is an associative operation then its separately continuous exten-
sion f’ to fX is also associative (when it exists). We have therefore:
CoROLLARY. If 8 is a completely regular semi-topological semigroup
them BS admits the structure of a semi-topologioal semigroup, with 8 as
o sub-semigroup, if and only if there is no pair of sequences (@), (¥,) i S

f(’l,l/n, Up) €
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such that the sels {w,yn: m>n} ond {©,Y,: m < n} are contained in
disjoint zevo-sets in S,

We note in passing that, on setting Z == X x X in the theorem, we
obtain a necessary and sufficient condition for fX xfY to have a natural
separately continuous embedding in (X X X). ‘

2. Biduals of semigroup algebras. We now examine the question
of how non-trivial the algebraic structure of a semigroup can become
before its mensure algebra loses itg regularity of multiplication. 8, denotes
8 in its diserete topology. ,

TrrmoruM 2. The following are equivalent for amy locally compact
Hausdorff semi-topological semigroup S:

(a) M(S) has rvegular multiplication;

(b) 1,(8) has regular multiplication; .

(¢) B8y admits the struciure of a semi-topological semigroup with S
as a sub-semigroup;

(d) there 48 no pair of sequonces (%), (Ym) in 8 such that the sets
(@l m >0} and {4, m<n} are disjoint; o

(e) every bownded soalar-valued function on 8 is weally almost periodic.

Moveover, if these conditions are satisfied, the bidual of 1.(8) is the
measure algebra of the compact semigroup B8;.

Tn. the above statement I, (§) denotes M (8,), the scalar field can be
taken to be ecither the real or the complex field throughout, and a bounded
function on & is said to be weakly almost periodic it the set of all its trans-
lates s velatively weakly compact in the Banach space of all bounded
sealar functions on & with supremum norm. The equivalences (b)<=-(e)
and (b)<==>(¢) can easily be deduced from the results of Pym [6].

Proof. The equivalence of (¢) and (d) is the Gf)rollary above. We
prove (a)=(d). A bounded scalar valued function defined on the product
of sets X, Y is said to duster if, for all pairs of sequences (2,) in X, (Yu)
in ¥, the two repeated limits of the double sequence ( f(%n, 'ym)) are equal
whenever they both exist (or-equivalently, the dou?)le sequénce (f(2,, ¥m))
has a double cluster point in the scalar field). A BaJn.ach algqbra £ has
regular multiplication if and only if, for every continuous linear .func-
tional I on s, the function I (2y) clusters on «7; X &, where &7 is the
unit ball of & (see [6], Th. 4.2 or [8], Th. 9). ' .

Suppose (d) fails, so that there are sequences (%), gym) in 8 for which
(Bt M > W) O (B Yt W< 1} =D, Let s P be. u;nt masses at 2., y,,,:
respectively and define i on 8 to be the chzyractemstw function of {w,ﬁym.
m > n}. Then b is & bounded Borel function on 8 and so determines
2 continuous linear functional H on M(S) by H (u) = f hdp. We have
H(py*vy,) = h{®,Y,), which ig one or zero according as m > n or m < %,
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8o that H does not cluster on the unit ball of M (8). Thus (a) implies (d).
If (e) is false then, by Grothendieck’s criterion [4], there are sequences
(@), (Ym) In 8 and a bounded function » on § such that

mlim b (2,9,,) = a,
nom

limlimk(%,y,,) = b
m n

with (say) e <b. Choose a<e<d<b, and set A = {s: I(8) < ¢},
B = {s: h(s)> d}. Then 4 and B are disjoint sets, and on discarding
finitely many of the z, and y, if necessary, we have that, for fixed =,
TpYmed for almost all m, and, for fixed m, z,y,,<B for almost all n. Pro-
ceeding by induction ag in the proof of Theorem 1 we may extract sub-
sequences such that z,9,,¢4 for m > % and x,y,<B for m < n. Thus (d)
implies (e).

If (a) is falge then by the criterion cited above there exist sequences
(#4n) s (7)) in the unit ball of M (S) and a continuous linear functional H
on M (8) such that the two repeated limits of {H (u,*v,,)) exish and differ.
Pick o <M (S) such that the subalgebra of M (§) generated by {u,, »,: » = 1}
is contained in L'(¢) = B (8). The restriction of H to I*(c) agrees with
integration of some bounded Borel function & on S, so that

® H(uxv) = [ [ ay) plda)»(dy)
e s 8

for p,veL*(s). However, if (e) holds, then (again by Grothendieck’s
criterion), &(xy) clusters on § x8, and so by ([8], §4.1, Bxample 2)
the bilinear form (1) clusters on bounded sets of L'(o) xIL*(o). Thus (e)
implies (a).

‘We have so far shown (a), (¢), (d) and (e) to be equivalent. The
remaining equivalence is obtained by applying (a)«==(d) to 8§;.

The dual of ,(8) is the space m (8) of bounded scalar functions on §
which -is isometrically isomorphic to C(8S;), the space of continuous
scalar functions on f8;, as a Banach space in the natural way. The bidual
of 7,(8) can therefore be identified with M (48;) as a Banach space. If (c)
holds then M (BS,) is also a Banach algebra under convolution; its mul-
tiplication is separately oM (f8;), C(fS,))-continuous and extends that
of 7,(8). It therefore coincides with both Arens products on M (8S,).

This last step shows that the equivalence of (¢) with the other con-
ditions can be obtained without appealing to Theorem 1; however, if
one were interested only in the topological portion of Theorem 2, it would
be somewhat rococo to prove it using the theory of Banach algebras.

The class of semigroups satisfying the above conditions is quite
restricted, as is best seen from (d). Suppose that S satisfies the condition
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() for every pair of {inite subsets A, B s 8 there are @, ¢S such
that B NA =@ = Bynd., , . .
Then S does not satisfy (d). One may seloct sequences inductively
ag follows: pick @y, y, arbitrarily, and choose @y, Yni1 50 that

. m?’lr*i'l{?/l’ weey f'/n} n{mr?/n: Ty 8 M'} = 0
{@yy 0oy mw.-H}:'/M»H N {w et v sin L, 8= n} == @.

Then the points ,y,, sre all distinet and so a fortiori have the property
required. .

Tt is easily seen that any infinite cancellation semigroup satisfies
(f) —and in particular the additive semigroup of positive integers does.
Tt follows that any semigroup satisfying (a)-(e) is periodic and has 0o
infinite cancellation subsemigroup. One can also show (uging (@) that
ity semilattico of idempotents containg no infinite chains.

An oxample of a commuting semigroup of idempotents (thought
of as o lower semilattice) which does satisty (a)-(e) can be obtained by
identifying the least elements in any collection of finite chains. One can
malke this example slightly more complicated (as was poipted out to'me
by Dr. J. Hickey) by adjoining & greatest element and taking the ordinal
product of the resulting semilattice with itself. Another type of example,
this time with s unique idempotent, is due to N. Maeri: let § be a set
with distinguighed elements 0 and 1 and define oy == 0 unless & =Y =% 1,
in which case @y == 1. In all theso cases, though, the 1'n,u1tiplica¢10n on .ﬂS
is rather trivial: & is constant for £efS\S, yeS. It would be mteres.tmg
to have an example in which this was not true. Tt would be especially
interesting if § satistied (d) but S did not, as this would yield an exa'mple
of a Banach algebra which had regular multiplication but 'W]C‘LOSO bidual
did not. T believe it is unknown whether such a thing is possible.

Finally, it may be worth pointing out that conditions (a)—(e) offer
no guarantee about the ideal structure of the bidual. In any of the above
examples (9, — 0,) M (BS) = {0} where § denotes point mass and £, e8NS,
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