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On complemented subspaces and unconditional
bases in 1,1,

by
P. WOJTASZCZY K (Warszawa)

Abstract. The isomorphic types of complemented subspaces in Iy+ly, 1 <p, g
< oo are deseribed. The form of unconditional bases in I+l 1<p<2<¢<
is established. By I, we mean the space usually denoted by ¢,. This paper generalises
the results of Edelstein [4].

Introduction. I seems to be an important question in the Bamach
space theory to describe all complemented subspaces of a given Banach
space X. In general very little is known in this direction. Petezyniski [13]
described complemented subspaces of the space 7,. Namely he proved

the following

THROREM A (Pelczyﬁs]n [137]). Any complemented subspace of 1
1< p < o, is isomorphic to the whole space or is finite-dimensional.

An analogous theorem for the space m was proved by Lindenstrauss [8].

All complemented subspaces of the Cartesian product 1,41, were
described by Edelstein [4]. In Section 1 we prove the foﬂoﬁng

TrrorEM 1.1. A complemented subspace of l,~+1;, L<p,q< oo is,
isomorphic 0 by, by, b,+1, or s finite- -dimensional.

In Section 2 we prove the following

THEOREM 2 1. Let (2,) be an unconditional seminormalized basis in
I+l L<p <2< g< oo. Then one cam divide the set of matural numbers
into two disjoint subsets Ny and N, in such a way that $P {Zn}ncy, ~ 1y ond
sp {"n}mNz ~ l

These theorems for l,-+1s, 1 < p < oo were proved by Bdelstein [4].

The main ideas of 1‘1118 paper are taken from Edelstein [4]. In some
places we repeat Edelstein’s argument. The proof of Theorem 1.1 is & gen-
eralisation of the proof of Edelstein. The proof of Theorem 2.1 uses
the same ideas as Edelstein’s proof but is much simpler. However, it
does not cover the most interesting cases, namely Iy+1Tz, bi+lw; latle.

In this paper we employ the notation commonly used in the Banach
space theory. The one exception is that the symbol 1, denotes the space of
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sequences tending to zero equipped with the supremum norm, usually denoted
by ¢, If we have a decomposition of the space X into the direct sum
X = X,+X,, by Px, we always denote the projection onto X, zmm-
hilating X, and by Px, we always denote the projection onto X, annihi-
lating X,. The term operator always means “bounded linear operator”
and the term subspace always means “closed linear submanifold”.
The symbol ~ denotes an isomorphism (ie. a linear homeomorphism).
For any subset Z of a Banach space X by spZ we denote the linear span
of Z and by §pZ we denote the closure of spZ.

All concepts and symbols not defined in this paper can be found
in [3] and [16].

1. Complemented subspaces. Let us begin with some definitions.

DerFINTTION 1.1 (¢f. [14]). Banach spaces X and X are fotally incom-
parable if X and ¥ have no isomorphie infinite-dimensional subspaces.

Such spaces were considered by Gurarij [5] and Rosenthal [14].
The following lemma is in fact contained in those papers.

Lvyva 1.1 [8], [14]. Let X, be a subspace of o Banach space X+ Y
such that X, and X are totally incomparable and X, N Y = {0}. Then PxlX,
is an. isomorphism.

The next definition was introduced by Whitley [17] in the context
of strictly singular operators. :

DEFINITION 1.2 (cf. [17]). A Banach space X iz said t0 be super-
projective if for every subspace ¥ = X with dim X/¥ = oo there exists
a complemented subspace Y, < X such that ¥ « ¥; and dim X /¥, = oco.

If s is an integer and X is a Banach space, then by X we denote
X+ B, if s >0 (B, means an s-dimensional space) or a subspace of X of
codimension —¢s if s << 0 (cf. [18]).

LeMMA 1.2. Let B be a Banach space and let us have two decompositions
of B into direct sums, B ~X,+¥, and B ~ X,+Y,, where (X, ¥y)
and (X, ¥,) are pairs of totally incomparable spaces amd Xy is super-
projective. Then there ewist an integer s amd a subspace 7 = Y{ such that
X, ~X+2Z.

Proof. Let us write U = X, NY,. Since X, and ¥, are totally
incomparable, we have dimU < co. Hence there is a decomposition.

L= U+j . By Lemma 1.1 l’lei’ is an isomorphism.

Let Uy = (Pl X) 7 (P, (X) n7,) and U =sp{U;UU}. Sinee X,
and Y, are totally incomparable and Py, (X) is isomorphic to a subspace
of X,, we get iim U, < co and so dim U < co. Hence we have a decom-
position X, = X+ U. B

Put I' =Py +Px,Px (Pxis a projection from ¥ onto X annihilating
T and Y,). Since Y, and Py, (X) aré totally incomparable and ¥; NPy, (X)

icm
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=0, we infer (by [14] Theorem 1 or [5] Theorem 14) that 7' is an iso-
morphism from XY, into B. Obviously 7|¥, —id and T(X) = X,.

Now we are going to show that T(Y,-+X) is of finite codimension,
in E. Suppose it is not so. Then T(¥,+X)NX is of infinite codimension.
in X. Since X is a subspace of finite codimension of a superprojective
space X;, X is superprojective. So we have X = M, M,, where M,
and M, are infinite-dimensional spaces and T(¥;+X)nX = M,.

Take me M,. Then we have

&) m—Px Py (m)eX; and Py Px,(m)eY,,

b) Px Px,(m)eT(¥,+X)nX,.

This statement is true because

Py Px,(m) = Px,(m) “.P 7 Px,(m) and
. Px,(m) =Py (m)+Px,Px(m) = T(m)eT(Y,+X) and
Py Px,(m)e¥, c T(¥;+X).
Using a) and b) and the definition of M,, we have

[Py, (m)ll = [lm—Px,(m)| = [lm—Px, Px, (m) — Py, Px, (m)]

= allm — Py, Px, (m)]| = af|lml],

where a and § are positive constants not depending on m. So Py | M,
is an isomorphism. But M, is an infinite-dimengional subspace of X,
and this contradicts the total incomparability of X, and ¥,. This contra-
diction proves that T(¥,+X) is of finite codimension in Z.

Thus we have T(X)+¥Y® =B, T(X)c X, T(X)~ZX" g0 X,
~XN+7Z and Z® is isomorphic to a subspace of ¥¥+". This completes
the proof of the Lemma.

Remark 1.1. It is unknown whether there exists a Banach space X
such that X is not isomorphic to X for some integer #. For subspaces
of I,, L<p < oo we have XM ~X for r = £1, 42, £3, ... In this case
the statement of the Lemma can be simplified in an obvious way.

Now we are going to state some known results which we will use
later. The next L.emma is a gpecial case of Theorem 1 of Zaharyuta [18].

LemmaA 1.3. Let Xy, X,, Y,, ¥, be Banach spaces such that any oper-
ator from X, into Y, and from X, into Y, is compact. Then X,+¥,
~X,+ Y, iff there ewists an integer s such that X, ~X and ¥, ~ ¥,

LevmA 1.4, Let X be a subspace of 1, and Y be a subspace of 1, where
P F#qL<p, < oo Then X and Y are totally incomparable Banach spaces.

This Lemma goes back to Banach [1] (cf. also [13]).

LemmA 1.5. The spaces 1, for 1 < p< co are superprojective.
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For 1 < p < oo this Lemma was proved by Whitley [17] Corollary 4.8
and for » = oo by Lindenstrauss and Rosenthal [9] Lemma 1.c.
LeMMA 1.6. Let p < q. Then any operator from 1, into 1, is compact.
This Lemma was in fact proved by Banach [1]. For more general
results see Rosenthal [15], Theorem A.2.
Lovwa 1.7. Let X < 1,-+1, be an. infinite-dimensional, complemented
~ subspace isomorphic to a subspace of ly where p, > 1. Then X ~1,.
Proof. By our assumption there exists a subspace V = 1,41, such
that Ilp+1; = X+7V. By Lemmas 1.4, 1.5, and 1.2, V ~1, -{-'[7 where V7
is 1somorphlc to a subspace of I,. 8o I, +1, ~ ,+V +X and by Lemma 1.3
and Remark 1.1 we have T7~|—X ~l . Then by Theorem A we obtain
X ~1,
Imvma 1.8. Let X be o complemmted subspace of B =1, -l—l such
that there exists o complemented subspace Z < X and Z ~ F. Thm X ~E.
Proof. In view of Theotem A we can assume without loss of gener-
ality that p < g¢. Let ¢, be a projection onto X and put @, =1 —@,
and Q,(E) = Y.
By Z, we denote the Banach space of all sequences (#,)2., = B such

el = ( 12y, (2, up) +( b 1P, () n“)

n=1 n=1

that

~

is finite. Clearly For a sequence of subspaces Y, —« B we pub

~ B.
D Yy = {(#): Yac ¥, and (y,) B}.
n=1
It is a closed subspace of H. If ¥, = ¥ for n — 12,3,
Z Y, by Y.

We denote the canonical unit vector basis in LB by (0,f),

and put L, = sp{(0,f,)}%, and Dk = 1,4+ 8p{(0, £ }1,>Ia By Lemma 1.6
we have

. we will denote

lm[[Py @ FB{0, )il =0 for r =1,2.

So we can choose a sequence of natural numbers (m;) such that

22, QB0 )}l < 5

for r =1,2.

Obwously ‘we have E EM+L and I = 5‘ B, T Z’ Lni Let us denote
Z’E by B and ZL by L. Obviously We ha,ve E ~E and L ~1,.

icm
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We claim that X+ ¥ o Z. This inclusion means the natural
isomorphie embedding.

Let us take (2,)¢Z. We want to show that (@,(2,))e 3 X and
(Qz(zn)) Z Y.

a) Suppose that 2, =P, (2,) for n = 1,2,3,... Then [|z,,|| < oo,

’Ib

g0 3 ||P,pQT(zn)|]” < oo for r =1, 2 and moreover
=l

( f 122, @ ()< 122, @01 ( b leal )< 1P, Q01 by lell?)?
Rl =1 ==l

for r =1, 2.

b) Suppose 2z, =Py (2,) for n - 1,2,3,... Then Z [l < oo 80

n=1

( 312, eif< 12,00 | X o) < 0o for r = 1,2 and
Sy 0.0f | 5
» =
(0t = [g(nznu P02 )]

<( P p)

n=1
because 2, SD{(0,7)}in,-
Since for (z,)< B, We have (z,)
claim.
Hence B > Y X+3Y > I and B = E—I-L This 1mphes that thero

exists a Z < L such that Y X+ 3¥ = B +Z. From our assumptions it
follows that there exists a Z, such that X = Z +Z,. Thus we have

Z+B ~ X+ Y+ 2~ (24 2)+ Y +Z ~ B+2,+Y+Z
NJ’4—Z1+Y+Z~E+Z1+Y+L+Z
~ X+ FV 42X +L ~ 2X+2Y+Z1+L
~ B4 Z4Z 4L ~ B2+ L ~ 240+ T ~ X+ 2.

=’ (Pl (%) )+(Pz (zy,)), we obtain our

Hence 1, +(l,+2Z) ~ X +Z. Since Z < I, the product l,+Z is iso-
morphic to a subspace of 7,. Thus by Lemma 1.2, in view of Lemmas 1.4
and 1.5, we obtain X ~ U-+1, where U is isomorphic to a subspace of 1,.
Thus U is isomorphic to a complemented subspace of 1,41, and by
Lemma 1.7, we have U ~1,. Hence X ~1,+1,. This completes the
proof of the Lemma. . ]
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Remark 1.2. As was pointed out by Edelstein [4], it is not true
that if B = X, +X, then B = YX,+ 3X,.

Levwa 1.9. Let X be a complemented subspace of 1, +1, 1 <p, < oo.
Then there are only three possibilities:

a) X ds dsomorphic to a subspace of 1,.

b) X is isomorphic to a subspace of 1,. '

¢c) X contains a complemented subspace isomorphic to by +1,.

Proof. Suppose there exists a subspace ¥ < X, dimX /Y < oo such
that P,p[Y is an isomorphism. Then obviously X is isomorphic to a sub-
space of [, (cf Remark 1.1). If such a subspice exists for the projection
P, , X is isomorphic to a subspace of 7.

Suppose now that P, piY and P,qu’ are not isomorphisms for any
subspaces ¥ « X, dimX /Y < co, By (0, e;) and (f;, 0) we will denote
the canonical unit vector bases in l, and 1,, respectively. The standard
“gliding humyp” procedure (cf. [2]) gives us a sequence of natural numbers
(m) and sequences of vectors (;) and (y,) such that

A1

: 1
o1 3 1
Py — Z a0, 6)| < o5 and |y, — Z Bilfir 0)“< .
=ngtl - 1 <
. Npge1 Neete1 i
for some scalars (a;) and (8. Since 5p{ 3 ai(0,0), 3 Bu(fi, O))7 is
I=np+1 T=np+1

linearly homeomorphic to l,+1, and is a range of projection of norm
one in 1,41, by Theorem 2 of [2] we infer that SD{@y, y,b.}:;l iy a com-
Plemented subspace of X isomorphic to 1,1, '

TeEBOREM 1.1. 4 complemented subspace of by+1l,1<p,qg< 0o is
isomorphic to 1y, 1,,1,+1, or is finite-dimensional.

Proof. Xf X is an infinite dimensional, complemented subspace of
the space 1,+1,, then by Lemma 1.9. there are three possibilities. In the
cases a) and b) of Lemma 1.9. the conclusion of Lemma 1.7. gives that X
is isomorphie to 7, or X is isomorphie 50 1. In the case ¢) of Lemma 1.9,
we use Lemma-1.8. to obtain that X is* isomorphie to 1,+-1,. Thus the
Theorem is proved. ‘

Remark 1.4. By Whitley [17], Corollary 4.8, spaces IL,(0,1) are
superprojective for 1 < p <2. In [15], Theorem A.2, Rosenthal stated
‘when all operators from L,(u) into L,(y) are compact. Using the results
of Banach and Mazur [1], Paley [12] and Kadec [7] on linear dimension,
of spaces 1, and I, and the results of Pelezynski [13], one easily finds
when spaces 7, and L,(0,1) are totally incomparable. Those facts and
our Lemmas 1.2 and 1.3 yield the followinig results:
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ProrosITION 1.1. Let X be a complemented subspace of Ly(0, 1)-!—1},
for 1< q<p<2 and let X be isomorphic to a subspace of 1y Then X is
isomorphic to 1,. ;

PROPOSITION 1.2, Let X be a complemented subspace of L,(0,1)+1,
and let X be isomorphio to a subspace of Ly(0,1) where 1<\p <2 and
p < ¢ Then X is isomorphic to & complemented subspace of L,(0,1).

2. Unconditional bases. In this section we are dealing with semi-
normalized, unconditional bases in I,--1, where 1 <p <2< g< oo

TEvrA 2.1, There ewists o finite constant By, 1< p < oo, such that
Sor any fimile set {@}fu1 = 1, we have

n n 1
min ” 2 eimj“ <B, ( Z ”ijZ)z for p>2,
tejl=1"j=1 j=1
kg n l
min | 3 g <By( D) lof?fp for 1<p<2.
fejl=1"3=0 i=1 .

The proof of this Lemma is a non-egsential modjiicati.on of the proqf
of Theorem 1 in Kadec [6]. It was observed by Edels_tem [4], I"ropom—
tion 2. An independent proof of the ‘second inequality was given by
D. Saragon and Y. P. Rosenthal (cf. [15] Lemma A.3).

Rematk 2.1. This Lemma is obviously not true for p = oo.

The next Lemma is a well known theorem of Orlicz.

Lmmwa 2.2 (ef. [11]). There ewists a positive constant y such that for
any findte set {)}je; < by, 1< P < 2, we have

n n . l
max | 3 gjef] =7 3 o)
Isjl=1 "j=1 j=1

LEvMMA 2.3. Let 2, = (@, Yn) b€ & seminormalized, unconditional b:sis
inl+l,l<p<2<g< o Then 0 is a limit point of the set {|lwyll}nms-

pPrgof. Suppose that there exists a constant p > ¢ such tha.,t' ||l = 1
for m =1,2,3,... By the standard “gliding hump” an'd stability a,rgu;
ments (c¢f. [2]) Wwe can assume that there exist a subbasis (ez) oi ht}f uni
wector basis in 1, and & sequence (my) of natura..l numbers sueh tha

B4l -
0,00 = O @i ¥s)-
T=npt1
Rinee (z,) is an unconditional basig, for any sequence of numbers
7'Lk_|_1 B .
i si uence equivalent
(&)215 1&gl = 1 the sequence S solwg, Y isa basic seq q

t=np+1
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Pe+1
to (¢;). Thus l’,p}Eﬁ{ 2 &%), | is a compact operator (by Lemma, 1.6),
T=ng+1 )

7lk
and so lim sup|| }j’l &;0;w)) = 0. But by Lemma 2.2,

k legl=1 d=np41

i1 o1 1 P41 1

2|2 u 3

sup | ) sl z v S lwadFrom( Y ),
legl=1" s—pt1 T=ng 1 el

' M1 1
and we conclude that im{ > |o] 2 =9,
ko d=ngl
On the other hand, by Lemma 2.1

4 kL M1 1. o1 1
: 7 7 3
min | 3 say)<B,( Y lagdf P < 0B,( 3 oY,
legl=1 " ;1 fe=ng 1 pRTIeE |

where O is a positive constant. So we can find a sequence ()., le;] =1
Pget1

such that the sequence > &z converges to zero. This contradicts the
. A
faet that this sequence is equivalent to the basic sequence (é). This contra-
diction proves the Lemma. -
. Levua 2.4. Let 2, = (s, Ya) be @ seminormalized, unconditional basis
il l<p <2 I < g < co. Suppose that we have a subbasis (%) such
that @, ~>0. Then 8042y, Yy ~lg-

Proof. Let us consider the sequence ¢ — (@n; ym) of biorthogonal
?unctionals. The sequence (z%) is a seminormalized, unconditional basis
m lptlp, < @*<2<p* < A/p*+1/p =1,1/¢*-+1/q =1). Since
Ty, —> 0, 'We may assume that inflly,,|| > 0. Since

k

1= |em (2,) < Iac,";k(wnk)l—i—[yzk(ynk)I for k¥ =1,2,3,... and

sup llom,ll < oo and liin (@]l = 0, We infer that there exists a 6 > 0 such

that |lyy || > 6 for k =1, 2,3, ... By Lemma 2.3, §p{z, } is not isomor-
phic to 1. +1,, and so by Theorem 1.1 we have either Eﬁ{zﬁk} ~Tpe OT
sp{zf_%_} ~ lgn. Suppose that $D{en,} ~ . In this case the operator
P,q,lsp{zﬁk} is compact and Pz,r(z,";k) =y’,‘§k, a contradiction. Thus we
have obtained sp {z:k} ~ I and 55{%} ~1,. This completes the proof.

Lemma 2.5. Let 2, = (@, ¥,) be a seminormalized, unconditional
basis in L+, l<p<2< q < co and let (20;,) e o subbasis suoh that
i];fl[w,,k[} > 0. Then 5p{e,} ~1,. ‘

" Proof. Immediate from Theorem 1.1 and Lemmas 2.3 and 2.4.

icm
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Let d(X,Y), X and Y being isomorphic Banach spaces, denote
the greatest lower bound of numbers ITINT), where T' is an invertible
operatior from X onto ¥. Let I% denote the n-dimensional space equipped

I3 1
with the norm [|(a;)%.,|| = iz: e ?)P.

We will need one Lemma about spaces .
Levma 2.6, Lot 1 <p <2< q< o and

a(m) = inf{|2] |,
where T' is an isomorphic embedding from Iy into 1,}.

Then a(n) o oo,

Proof. Obviously a(n)< a(n-+1) for n =1, 2,3,... Suppose a(n)
is bounded. Then by [10] Corollary 2 of Proposition 7.1 and an easy
approximation argument we find that L,(0,1) contains a subspace iso-
morphic to ;. Bub this contradicts the classical result of Paley [12].

Limvwa 2.7. Let 2, = (%,,y,) be a seminormalized, unconditional basis
M by-ly, 1<p << 2 g < oo, Then zero is an isolated limit point of the
set {”wn“};.:zwl' :

Prool. Suppose that zero is not an isolated limit point of this set.
Then there exist a decreasing sequence (¢,) tending to zero and a sequence
N, of infinite, pairwise disjoint subsets .of natural numbers such
that @, < ||6,)| < 0; for neN,. By Lemma 2.5 @{zy_}nsNi ~1, and leb
My = A1y, §13{zn}ml\,'i). Let us choose a finite subset N, = N, such that
8P {#n}new, containg a subspace ¥, contains a subspace ¥, dimY; =k,
where a(%;) = img, d(X,, 1) < 2m,. Put X = Pien} © 5 By Lemma, 2.4

f=1

X ~1. Obviowsly ¥, X for 4=1,2,3,... So -for ¢=1,2,3,...
we have an embedding T: If -1, such that [[T|157 < 2d(T,, X)m;.
But obviously ||Z]|177Y = «(k;) > 9m; and we obtain 2d(l,, X) >4 for
¢==1,2,3,... This contradiction completes the proof of the Lemma.

Toworem 2.1. Let (2,) be a seminormalized, unconditional basis in
ly+ly, 1< p <2< g < co. Then one can divide a set gz natural numbers
into two disjoint sets N, and N, in such o way thdat 8D {Rntnery, ~ lp and
Eﬁ{zﬂ}nil\fg ~ Zm i '

Proof. When p = ¢ == 2, the statement is trivial. When p # g, by
a simple duality argument we can assume that 1<p <2< g < oo
Then by Lemma 2.7 we can divide the set of natural numbers into two
digjoint subsets N, and N, in such a way that i]?vf llzall > 0 and nﬁlgl 1zl

€No

. neNy .
= 0, where @, == P,pzn. To see that sets N, and N, have the desired prop-
erty one has to apply Lemmas 2.4 and 2.5.
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Added in proof. Theorem 1.1 can be generalized to the following
form:

TEEoREM 1.1a. Let X be o complemmted subspace of Z‘ . Then X

s fimite dimensional or X is isomorphic 1o Z’l for some subset {p%}};_1
Of the set {p'z =1 . 3
The details will appear elsewhere.
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Splitting quasinorms and metric approximation properties

by
8. SIMONS and T. J. LEIH* (Santa iSarbara, Calif.)

Abstract. In this paper we consider quasinorms on the class of operators of
finite rank between Banach spaces, the dual quasinorms that they define, and their
connections with the Persson-Pietsch duality theory, maximal ideals and the metric
approximation property.

INTRODUCTION

L stands for the class of all bounded operators between Banach
spaces and I, stands for the subclass of L consisting of all operators
of finite rank. In what follows, a is a quasinorm on I, (see Definition 3).

In Section 2 we consider three factorization conditions that can be
imposed on a, namely that o be left splitting, right splitting or splitting
(see Definition 7). (The second and third of these conditions were suggested
by some comments of A. Pietsch. In particular, “splitting” was suggested
by Pietsch’s “upper semicontinuity”.) We prove in Lemma 8 (¢) that
if o ig left splitting then o' (see Notation 4) is right splitting and in Theo-
rem 13 that if o is splitting then o' is splitting. We do not know whether
it o iy right splitting then o' is left splitting (see Problem 10).

In Section 3 we consider a general process by which splitting quasi-
norms on L, can be defined. In particular, we discuss the g, and d, norms
of Saphar (see Remark 19).

Sections 4 and b are devoted to some technical results.

Tn Sections 6 and 7 we define a function «”: L —#* and investigate

" some of ity properties. In Section 8 we investigate the class D, of operators

for which P < co. If « is reasonable (see Definition 38) then (D,, o P D,)
is & normed ideal (see Lemma 42) even if a fails to be a norm on L,. How-
ever, if a i3 a splitting norm on L, then we can prove a duality result
(Theorem 44) which seems to be at the base of the Persson-Pietsch duality

* The research of the first named author was supported in part by N'SF grz.mt
number 20632. The second author was supported by a NDEA traineeship during
this research and part of this paper will appear in his Ph. D dissertation.
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