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On linear functionals in Hardy—Orlicz spaces. III

by
R. LESNIEWICZ (Poznad)

Abstract. The paper contains theorems on the representation of linear functionals
on spaces H' and H*, and their dual spaces.

Thig paper is a continuation of papers [6] and [6] We adopt the
notation and continue the section numbering of papers I and II. We
cite the results of papers I, IT and III, writing the number of the section
and the number of the result in the section; within the same section. the
gection number is omitted.

V. THE CASE OF SPACES H' AND H*®

1.1. We shall firgt congider t]{e representation of linear functionals
and the question of veflexivity of Hardy space H'. For H* we shall use
the usual norm

2m

on
17y = sup { [ 17 (re")|de: o<r<if = [ [F(ehat, (FeHY).
0 0

Here we have H* = H*? = HO? and (HYF = (AYF = (HL* = (HLE,
since ¢(u) = u satisties conditions (4,) and (V,). We equip (HY* with
a usual norm

€I = sup{|£(F)|: PeHY Pl <1}, (£« (HY¥).
From I11.3.1, IIT.3.2, TIL.6.1 and I1.8.1 we infer that the space [(H¥, |]
is isometiric isomorphic with the space [(F[Y), [Il;], where
GHl; = sup{2r |(F@) (2)|: FeHY | Flly < 1,0eD}, (G (HY).
1.2. For every fumction Ge(HY' there ewisis « funmction ge L™ such
that @ is its Camchy integral and |G|y = |lgll¥ ([9]).

Proof, analogous to that of IV.1.2 and based on the integral represen-
tation of linear functionals from (I*)* by functions from L%, is omitted.

1.3. For every fumction ge L™ its Cauchy integral G belongs to (H)'.
Besides there holds the imequality |G < llglls ([9).
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262 R. Leéniewicz

Proof, analogous to that of IV.1.1, is omitted.
1.4. We designate by LT the class of all functions fe L™ for which

ar
[fwe™a =0 form=0,1,2, ...
0

L3 is a closed linear subspace of [L*, |]-I|’:°]; Agin IV.1.4 we denote by I=
the quotient space L®/LS. The norm in L™ ig defined by

g™l = mE{lf +gls: fe L3}, (9 L)

The space [(HY', |{1] is isometric isomorphic to [L®, |'l=]. This
isomorphism establishes the operation of Oauchy integral.

This theorem is & consequence of 1.2, 1.3 and the fact that the Cauchy
integral of a function ge L equals 0 if and only if ge L.

= 1.5. The space H* of analytic and bounded functions in D is contained

in (HY'; besides |F|y < |Fllo for every FeH (19D).
This theorem follows from 1.3 in the analogical way to that in which
IV.1.5 follows from IV.1.3.

2.1. By € we shall designate a space of these functions f continuous
on [0, 2=] for which f(0) = f(2r). For 0 we use the usual norm

IFI1 = sup{|f@): 0<¢<<2m}, (FeO).
Cleazly, [0, ||I*] is a closed linear subspace of [L%, {51
‘We shall demonstrate that
For every function ge C its Cauchy integral G belongs to (HLp)

Proof. Let G be the Cauchy integral of ge 0. Tt is known that the
sequence of functions {T, g}, where

i
11— 3

1
I O ek o<r<1
(T,9) 27c0f 1—2rcos(t—7)+7? STS S

g(7) df)
converges uniformly to g as r - 1—, i.e. \T,9—g|* - 0 as r - L—. The
function 7,6 —@ is the Cauchy integral of T,g—g, and so, by 1.3, we
have | T, — @ < ||T,g —g|*. This means that 7,6 -G~ 0 as r >1—,
and hence Ge (Hy,) .

2.2. The space K of functions amalytic in D and continuous in D is
contained in (Hy,)'.

This theorem follows immediately from 1.5, IIL1.7 and 2.1.

2.3. We shall designate by ¥ a class of all functions A of finite varia-
tion on [0, 2x], equal to 0 for ¢ =0 and right-continuous on [0, 2n].
Obviously, ¥ is a Banach space relative to the norm

|4l = var{A(t): 0 <t<2n}, (Ae¥).

icm°

On linear functionals in Hardy-Orlicz spaces. 11T ’ 263

It is well known that:

For every functional 5e (O)* there is a unique function Ae ¥ such
that .

21
n(9) = [ g@)dAt) for every ge0;
1}

moreover [flf¥ = |14}

2.4.':[161] us write €, = ¢ NI% and, as in IV.3.2, 0 will designate
the quotient space C/C,.. We equip C with the norm given by

g = it {lf-+gI*: fe O}, (ge0).

The space 0 is complete relative to this norm since it is the quotient
of the complete space [C, |l|*] by its closed linear subspace C..
We shall show that

The space [(6)‘*’:, I-#1 is dsometric isomorphic to the space [HY, |||]-

More precisely, for every functional nﬁe(é)# there is a unique function
Fe H* such that

an
0= (g™ = [ Fle"g)at  for geC,
0

and, conversely, eucﬂh Sunctional = represented by this formula for a function
T e H* belongs to (O, and |ln=|* = ||F|,.

Proof. Let #~e ((NJ)*F. ‘We mnotice first that the funectional 4/(g)
= 7™ (g™) for ge ¢ belongs to (O)* and its norm equals |Jy|* = [[y™|*.
On. account of 2.3, there is a unique function Ae ¥ such that

b7
n(g) = [ g(t)ar@)  for ge s
0

motreover [ly||* = [|A]%-. Since the functions ¢~% for k = 1, 2, ... all belong
to €, it follows then that

2
0 = p(e™™) = [ 6"™ai() for k =1,2,...
[

1 U 12
it k%'ll T T orcostt i’
we see that an analytic function F defined by the Cauchy-Stieltjes integral
2
1 1
Fz) = - — | ————dA(2n~—1), (2e¢D),

2n i 11— 39.—“


GUEST


264 R. Lefniewicz

is representable in the form of the Poisson—Stieltjés integral

an
1 1—r?
i
F(re") = 2-;:! 1 —2rcos(t—z)+r*

Thus we get for 0 <7 < 1

BEr—7), O=<r<l).

[ 1Peea< [ 1ai@m—a) = 145

This means that Fe H. Now let
1
M) = [F(e)dz, (0<t<2m).
[

Clearly
2m

1 1 ‘
0= EEof T () +2(2r —1))

for ze.D.

From this we geb
21
[ e ™a(n)+i@r—1) =0 for k=0, 1,2,...
] .

Besides, we have also
2

2r
f eilctd(ll(t)+2(2n—t)) =f e~ gA(t) = 0

0

for b =1,2,...
Hence
A27) =1, (2n) =0 and }ﬂ () +A@r—1))d™at =0
: 0
for & = 41, =2,... From this and the right-continuity of 1 we deduce

that 4, (#) + 42w —1t) = 0 for all t¢ [0, 2n]. This implies that 1 is absolutely
continuous and

i
—d—t—(t) = F(e™ for almost all te [0, 2x].

Further, we infer that [|A[}- = |F],. Thus for every functional 7 e O)¥
there is a unique function Fe H* such that

am
717(g™) =f F(e~g@)ds for every geC;
0

moreover |ln=|¥ = [|Fl;.
Let FeH: Let us consider the functional

2n
nlg) = [ Fle"ygat  for g<C.
0

icm
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This functional belongs to (0)¥, since

27
(@) = | [ Ple=g | < 1Tl = 17l gl
0
for every ge (. The functional represented. for fe L% by an integral.
21
[ f)g(t)ds, where g is a fixed function from €, is an element of (L*)¥.
[

Hence for any ge ¢, we have

1(g) == lim [ F(re™")g(t)at

s S
0 bid
= lim 3y, (B)r [ g (t)dt = 0.
=l =0 0

This implies that the funetional #~(¢4™) =7 (g) for geC is well defined
and belongs to (O,

From the preceding proof we conclude thab

Every function ie ¥ such that

27
f @"'"”dl(t) = ( for n = 1, 2;
0

is absolutely continuous on [0, 2n] (ef. [10], Chap. VIL (8.2)).

2.5. The space ['('J’ , |I[I=1 is isometric isomorphic to the space [(H L) s L2
This isomorphism establishes the operation of Cauchy integral.

Proof, analogous to that of IV.3.3 and based on 2.4, iy omitted.

92.6. Several corollaries follow from 2.5. For instance, we have the

following
Tvery function Ge (Hy,) is the Cauchy integral of some fumction g O.

This implies further that the space O is isomorphic to the space
{g~e L”: geC}; this isomorphism is the operation of correspondence
between classes ¢~ e 0 and g~ ¢ L™, Besides, in view of 1.4 and 2.5, we
have, for g 0, |lg~Iim = ll9™I™

3.1. For every function FeH* the fundtional defined by
(-+) 7C(@) = lim 2m(F+@) (r) == 2m(F*G) (L) for Ge (Hhy

>l
belongs to ((HL,) f*; besides || = |F|l,. Conversely, for every Functional
7O e ((HL,)'J* there is o unique function I analytio in D and such that (+)
holds ; this function belongs to H* and is defined by

1 .
Ple) = = D1n°(Ue"  (@e D),
=0

where U, (z) = 2" (ze D), forn = 0,1,2,...

(+++)
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This theorem follows from 2.4; the proof, quite analogous to that
of IV.4.1, is omitted. ’

3.2. For every fumction FeH' the funciional 3 defined by () for
Fe(HY belongs to ((HY),,J*; besides (qlff = || F,. Conversely, for every
Sunctional e (HYp)* there exisis o unique function I analytic in D and
such that (+) holds for T e (H)'; this function belongs to H* and is repre-
semted by (—+ +). ’

Proof. Let Fe H* and 5 be defined by (+4) for F'e (H)'. Then we
have

In(@)] = 2= |(F*&) (1)| < |7, |6

This implies that ye ((HY)')* and [#llff < |7],. Applying the theorem on
attaining a norm by functionals, we see that there is a functional &e (H4)#
such that ||&|¥ =1 and [[F|, = &(F). Since (HY¥* = (H)*, this yields,
in view of ITL.3.4, the existenge of a function Ge (H')' such that ||}y =1
and [[Fll, = 2n(F *@) (1) = n(&). Hence |F||; < [yl and so [l4]F = [IF]..
For a function HeH* we have, by 1.3.6, |T.F—F|,—~ 0 as r - 1—. Let
us notice that | T3y — y|# = | T,F — F|,. This implies that [ T#5— |if — 0
ad 71— and this entails 7 e {(H),,)*.

Conversely, let e ((H'),,)*. Then the restriction #° of 5 to (Hy,)'
belongs to ((Hj,) J*. By 3.1 there is a unique function F analytic in D
and such that () holds for Ge (H,,) ; this function belongs to H* and
is represented by (+ -+). Let us congider the functional 7, (@) = 2w (F*G) (1)
for Ge (H')'. In view of the reasoning of the first part of this proof this
functional belongs to ((HY),,J*. For Ge(H,,) we have 5,(¢) =°(&)
= 7(@). For arbitrary Ge () and 0 <7 <1 we have T,Ge¢ K < (H,)
and the sequence {T.@} converges very weakly to @ as r —1—. Hence
for arbitrary Ge (H)' it is true that

for every Ge(H*) .

7(6) = 1i11t1 n(T,6) = lim y(T,6) = 7(6).

1l

This accomplishes the proof.

3.3, Bvery funclional ne (HY)')* may be uniquely represented in the
. form .

N =ny+1ne, where qye (HYy)® and yye ((HY) ).

((EYY~J* denotes a space of functionals ne((HY)'J¥ such that n(G) =0

for every Ge(H,,).
Proof, analogous to that of IV.4.5 and based on 3.1 and 3.2, iy omitted.

3.4. By (H%)" we denote the class of all functions F analytic in D
for which

7|l = sup {2 |(F*&) (2)]: Ge (HY, |6 < 1, 2¢ D} < oo.

icm°
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Ag in IV.4.7, we get here
LY, T = CEY L]
3.5. (HY # (HL,)-
Proof. Let us define a sequence of real functions

ot if 9n—te B,
@) =1 1
Ful®) lWT; for other ¢ from [0,2x),

where B, = (27", 27", n = 1,2, ... Next we define a sequence of ana-
Iytic functions

2
« 1 bt
lf’n(z) == @X] (?T;‘f %‘—j—}z-logfn(t) dt), (ze .D) .
’ 0

Tt is known ([10] Chap. VII (7.33)) that these functions ¥, e N’ and are
guch that |F,(6%)| = f,(t) for almost all ¢e[0,2r). This together with

b4
[ fayas<2m-t27"+ @it 2r < 1
0

implies, in view of 1.8.3, that F,e Hband |F,l, < Liorn =1,2,... Noti_ce
that |Fn(¢?)] = fn(t) >0 as m — co for almost every te [0, 27). This,
by virtue of the Ostrowski theorem, means that {F,} converges very
weakly to 0. Now we define the function

sgnF (e~ for te H,, n=1,2 ...

1) =
9t) 0 for other ¢ from [0, 2%).

Clearly, ge L. Hence the Cauchy integral @ of g belongs to (H*)". .Besides,
from TIL.1.6 and from the norm continuity of a functional represented

2
by the integral [ F()g(f)di, on I* we get
0

am an
2 (Fk@) (1) = lim [ F,(re~*)g(t)dt = [ Fole~g(t)dt
Prploe 0

for n =1,2,... We verify that
[F e g@it = [1Pa(67")]d8 =2"7427"0 =12
Hy, Hy,

and ; .
» 1 1
(0 )g(t)dt‘gmﬂn =

[0,2m)\Eyp
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Hence we get

1
2’n+1

2 |(Fx6) (1)] > —;— - 2% for n =1,2,...
This implies that G¢ (HL,) ’

3.6. The space ((HY'~)* is not a trivial one, i.e. there ewist mon-trivial
functionals 7 e ((HY) Y ¥ such that 3 (@) = 0 for every Ge (Hy)'. For these
functionals there is mo fumction F analytic in D and such that () holds.

The proof, analogous to that of IV.5.2, is omitied.

3.7. The space H* is not reflexive.
This is a direct consequence of 3.6.

4.1. We shall now deal with the representation of linear functionaly
and the reflexivity of H* and its subspace K. The space H* is not of
the Hardy-Orlicz type, however, there is a close similarity between these
types of spaces; it is our objective to investigate this similarity. For H®
we shall use the usual norm

I1Flle = sup{|F(@): ze D} = [|[F(")s, (FeH™).

Two types of convergence will be distinguished in H*: the norm con-
vergence and the very weak convergence, which will be defined as in
the cage of the Hardy-Orlicz space H*® (see L.4.1). Let us note here, that
the results of 1.4.3, I.4.4 and I.4.5 remain true also for H™.

In analogy to the notation used in. the case of Hardy-Orlicz spaces,
(H=)* will denote the space of norm continuous linear functionals and
(HZ,)* — the space of very weakly continuous linear functionals on H*.
The space (H%)* is equipped with the norm .

I&1% = sup{l&(F)|: FeH™, [Fll, <1}, (£e(H™)¥).

Similarly, (K)* denotes a space of norm continuous linear functionals
and (K, )* a space of very weakly continuous linear functionals on K.
The space (K)* is equipped with the norm

€01 = sup {|&° (F)]: Fe K, |Fl, <1}, (6% (K)H).

From Hahn-Banach theorem we deduce that for every functionar
&0 ¢ (K)* there exists a functional &e (H®)¥ guch that &(F) = £°(F) fol
FeX and ||g)E = €]+,

Lastly, (H*)* will denote the space of functiomals £e (H*)* guch
that £(F) = 0 for all Fe XK.

It is clear that (H®)* is complete with respect to the norm [|-|# and

that (H “Y# iy its closed linear subspace. And also the space (K)* is complete
with respect to the norm ||-||*.

icm°
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4.2, For every fumotional E°e (K,,)* theve is a wnique funciional

Ee (HZ)Y such that &(F) = EO(X) for Fe K ; this functional is defined by
§T) = lim (T, F)  for D™,

Proof. Lot £0¢ (Km,,)”. hllrther, let F'e H* and {r,}, {r;.} be two
gequences such that 0«7y, vy, <1, ry, -1, 7, -1 a8 n—>c0. Observ-
ing that then the sequence {T, F-T, F} of elements of K is very

"1
weakly convergent to 0, we get "
Him (5‘31’( ROES (T, F)) = 0.
Neir0

The above combined with
o< 1) < sap {)| €| H )T, ot

yields the existence of the limit lim &°(T,.F) = &(F) and, moreover,
Pl

1E(I)] < |&°]* || Fox & the relation &(F) = £°(F) obviously holds

for all Fe K. Begides &e (H*)* and &% = ||£°]*. We shall now demon-

strate that &e (H,). Let {F,) < H* be any sequence very weakly con-

verging to 0. We find & sequence {r,} such that ¢ < rn <l1,r,~1lasn-—» oo

and

0<r <1} = ||,

|&(F) — £° (T, T for m =1,2,...

Blements of the sequence {!’ 2T} belong to K and this sequence is also
very weakly convergent to 0. Thus E(1,) - 0 ag n — oo, Hence £e (Hpy,)'
The uniqueness of such a functional & is obvious.

4.3. The functional £e (H®Y* belongs to (H,)*
lim [T &— &% = 0.
fa g B

Pl < L

if and only if

Proof. Let &e(H®)# and |T#&— &% -0 as r -1 —. Further, let
{F,} = H® be a sequence very weakly converging to 0 and such that
supHF,,Hw < M. For a fixed ¢ > 0 we take 0 < r < L such that |TF# &— &I

aJVI ~), Hence we get

]f(lﬂnn = |T;“5 (Iﬂn)l -} |5(-Fn)
and next

— e ()] =< |6(T, H) + 8

lim.gup | &(I,)] = 8.
Tmir 0D
Thig implies that £(F,) - 0 a8 % — co and henee &e (Hey,)¥.
Asgume now that T35 & - &|% +» 0 as » — 1 —. Then there are a num-
ber & > 0, a sequence {rn} and a sequence {F,} = H* such that 0 <7, <1,
i1 (1> 00), [Pyl <1 and |TF £(I,) — E(F)| > ¢ for m =1,2,
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Sinee the unit ball in [H*, [|]l.] is sequentially very weakly compact,
there is 8 very weakly convergent subsequence {I',} of {F,}. The sequence
{Trnklf‘nk—F.nk} then converges very weakly to 0. For this sequence we
have the following estimation

iE(T"nank'"Fnk)l =8
Hehee &¢ (Ho)*.

44, (HZY is a dosed linear subspace of [CE Y, {-I%].

Proof. Let {&} < (H%)¥* be a sequence convergent in ~norm B3
to Ee (H®Y¥. Since for fe (H*)* and 0<r <1 we have T &% << (&%
we get the following estimation

(T € — 8l < ||TH &— T &,E + |15 & — it 411 & — EIE

This, in view of our assumption together with 4.3, implies that £e (Hp,)*.

for b =1,2, ...

4.5. Let 2 be a fimed point in the circle D. The Sfunctionals

1
Vool F) = F(@)  and yuo(F) = ;,—F(”’(Z) form=1,2,...
are easily seen to belong to (H%)*‘ For these functionals the following relations
hold

[V, ()] < ol 14| S

1
(1—1el)

Proof. The above inequality is obvious for # = 0. For n =1 let
us take the circumference C, of & radius 0 <7 < 1—|¢] and centre in 0.
By Cauchy integral formulae we get

for m =0,1,2,...

1 F({+#) i 1
el = | 5 J | < e (P ()l L€ 0)
1

Passing to the limit as » —1-— |2| we get the desired inequality.
This result allows us to apply Theorems IL1.4, IL.L5 and ILL.6 to
the space H®.

5.1. We denote by (H*) the space of all functions ¢ analytic in D
for which
(e = sup {2 |(F*@) (&)|: Fe H®, |Fllo<L,2e D} < oo,
We shall show the following

icm
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For amwy function G analytic in D
Gl = sup {2m [(Fx@) (2)]: Fe X, |||y < 1, 2¢ D}.
Proof. Since K <« II™, we have the following inequality
sup {2m |(F56) (A)]: Pe K, [Pl < 1, 0e D} < |G

Lot now e H® bo any function such that [, < 1 and 2 any number
from .D. T,FeX for every 0= r<1, and so we have

(TG (12)] < sup {|(F@P)(@)]: Fe kK, |[Fly <L, ee D} for 0<r<1.

Pasging to thoe limib as 7 - L, wo get

(T @) (2)] < sup{|(F*G) (2)]: Fe K, [T, <1,2eD}.
Hence .
e 2 sUD 27 (T2 6) (2)]: Fe X, |Fllo <1, 2e D}

5.2. For every G (II®) and every % H™ the function I < G is bounded
in D. Moreover, for every ze DD the inequality

2w |(F *6) (2)] < |1l IG5
is satisfiod.

The eagy proof of this theorem is omitted.

Lot us notice the function I(g) == (L—2)~" (2¢.D), belongs to (H*)'.
Indeed, for this function we have (FxI)(2) = IF'(2) for every e ™
and zeD. Tt follows that [|I], == 2w This means that functions Ge (H™)
and Fe H® are not always such that their convolution could be completed
50 2§ o form a continuous function in D.

5.3, Tor every Ge(H™) and every Fe I the funciion F+@ has the

“vadial limits everywhere on the ciroumference {z: |2] = 1} and it completion

with these limils is a continuous function in the cirde D.

Proof. Let Ge (H*) and Fe K. Since Fe I, wo have |83 — F|oe = ©
as b —» 0. Thus for every s> 0 there is a 6 > 0 such that ||S,Lll'f’ﬁ»5*h21ﬂ|‘l°°
= [ g & He =5 8 for [hy-hyl < 8. Hence we gety for |[hy—hy| < 8
and 0= r <1,

2 (X G) (roths) — (w6 (r6™8)] = 27 (8, T — 83, F)G)(r)]
, < 118, 7= 83, Pl |60 < 26
Henco the functions f,(§) = (F*@) (re®), 0 << < 1, are uniformly contin-
uous with respeet to . From 5.2 it follows also that these functions are
commonly bounded. By Fatou’s and Arzela’s theorems we now conclude

that the sequence {f,} is uniformly convergent asr - 1, Thus the theo-
rem. is proved.
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5.4. For any function G analyiic in D, TGl is @ non-decreasing
function for 0 <r <1 and

6l = }irlrl_llTrG]I;c-

Thus, a function G analytic in D belongs to (H*=) if and only if
sup {|| T, Hlo: 0 <7< 1} < 00,
Proof. We take 0 < r, < < 1 and FeH*. Let us notice that
SUp{|(F#1T,, @) (2)l: #e D} = sup{|(P+G) (ry#)]: #e D}
< sup{|(F*@) (r49)]: #e D}
= sup{I(F*fl’rﬁ) (#)]: e .D}.

It follows that I|Tr1G|];°< IIT,.zGll;,. Hence ||T,G|, is a non-decreasing
function for 0 < r <1, and so we get further

lim 7,6 = sup{I|T,6llk: 0 <r<1}

e
= sup (2n|(F*@) (r)|: Fe H®, ||Fli,<1,2¢D, 0 <r <1}
= sup (2 |(F*@) ()| Fe H®, |Fll, < 1,26 D} = ¢

6.1. A functional defined by .

(+) O (F) = 2n(F*@) (1) = lin on(FxG) (r)  for Fe K,

where Ge (H™), bdongs to (K)¥. Moreover ||E°|* = ||G||,. Comversely, for
every funciional £°e (E)* there is a unique function G amalytic on D and
that (+) holds; this function bolongs to (H®) and is represented by the
formula

(++4) 66) = 5= D W, (D),

n=0
where U, (%) =2" (#eD), n =0,1,2,...

Proof. Let Ge (H®) and &° be defined as in (--). From 5.3 it follows
that £° iswell defined on X, and from ITT.1.1 it follows that £° is linear.
Taking into account 5.1 and the fact that ||8,F, = ||F]l, for every
Fe H® and every real h, we get here

&% = sup {2 |(F*6) U)]: Fe X, |Fl, <1}
= sup {2 |(F*@) (2): Fe H®, |Fllo <1, 2¢ D} = |Hlco-
Conversely, let £°¢ (K)* and G be a function defined by (+ ). We have

19 (UM < IEO* for n =0,1,2,... since U,eK and |U,l, =1 for
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a = 0,1, 2, ... This implies that ¢ is an analytic function in D. As in the
proof of TIT.3.2, wo check that & satisfies () and that ¢ is a unique ana-
Iytic function. in D satistying (-+). We claim that & belongs to (H%)".
Tndeod, for arbitrary Fe H® and # = re'e D wo have

[ EPIHT F p  1EC I 1o
and henee |Gl = 1£°1%
6.2. If G 18 a fundlion analytio in D and such that
Tim (I @) (7) = (I Q) (1)
P P
omists for every FHell™, then Ge (H*Y. Morcover, the fumctional &(T)
e 9o (TG (1) for e H® belongs to (H™)* and Nl = {6 -

Proof. Lot @ be a function analytic in. 1) and sueh that the convolu-
tion TG has a radial limit (Fx@) (1) for every Fe H*. As in the proof
of I11.3.5, we notice that, for 0 < r <1, 2w (F@) (r) = £(T,F) = TF (X
is satistiod for overy Fe H®. By 4.0 wo get

(T E(I)| = 2| D yalT)pal @17 < 2m Tl D) 7 G19"

el s}

The series on tho right-hand side of the above inequality is convergent
for 0 < 7 << 1, since G is analytic in D. This means that T#&e () for
0 < » < 1. The funetional £is a pointwise limit of a sequence of functionals
(T £ as » —1—. Thus, by virbue of the Banach theorem, Ee (H™)¥.
et £° boe the restriction of & to the domain K. Obviously, £9 ¢ (K)*. Apply-
ing 6.1 to tho functional &°,we get Ge (H®) and [|£°)%* = &5 - Finally
we obtain for any Fe H*
|| == lim [§O(T,.H)]| < 1irlﬂ (1€°1* 1T Flloo)
ool e Pl
o [|EOI* oo < NENE Moo
and

&~ [€01% = 16

6.8. Tor overy functional &e (H®Y¥ there is ab most one function &
analytio in 1D and suoh that

(+) E(T) = O (F @) (L) = lim on(Fx@) (r) for FeH™.
Fa B .
If such a function G ewists, it belongs to (H*=Y and is ropresented by (- -+).

Proof. Lot us assume that for a funetional fe (H*=)* th.ere exi'ats
a function @ analytic in D and gatistying (+). Then, by 6.2, this function
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belongs to (FI™)'. & is the only function satisfying (), since its coefficients
are determined uniquely
yu(@) = (UG (1) =;;—£(Un) for n =10,1,2,...

6.4. For every functional Ee (HS)* there ewists a unique function G
analytic in D satisfying (+) for Fe H®. This function belongs to (H>),
is represented by (+ ) omd is such that ||&|[E = |G-

Prooif. Inview of 6.2 and 6.3 it suffices to show hetre that for & (H. ,3‘{0)"“’
there is a function & analytic in D and satisfying () for Fe H*. Let £°
be the restriction of & to K. Obviously, &0« (K,,)* = (K)*. By 6.1 there
is a function. ¢ analytic in D and such that &°(F) = 2=(F*@) (1) for
Fe K. Since it is T, Fe K for Fe H® and 0 <r < 1, we infer by 4.2 that
the following limit exists and the following equalities hold

E(F) = lim &O(T,F) = lim 2n(F+@) () = 22(F*G) (1) for FeH™.
r—>1— N P P

6.5. In the sequel (H,)' will denote a clags of all functions Ge (H*)
for which the functional & defined by (+) for Fe H* belongs to (HZ)*.

From 6.4, 4.4, 4.2 and 6.1 it easily follows that (Hg,) is a closed
linear subspace of [(H*®), |llL]-

‘We shall show that

If G is a function analytic in D, then T,Ge (HS,) for 0 <<r < 1.

Proof. For a fixed r, 0 <r <1, we define a functional

E(F) = 2n(F*@) (r) = 2n(F*T,@) (1) for FeH>.

Let {F,,} = H* be asequence very weakly conveirging to 0. Then sup ||
3

711.”00

7
=R < co and p,(F,;) =0 as m — oo for = 0,1,2,... In view of 4.5

we have for every m and k
, <R Z [ (@7

|Zn(F Inl6

n=rh ne=Fk

Since the series on the right-hand side of above inequalitiy is convergent,
then for every &> 0 there exists a %k such that

e S Eaaten| <

% for m =1,2,.
n=k .
Now, the fact that y,(F,) =0 as m - co for n =0,1,2,..

. implies
that for an al'rezudy fixed s> 0 there exists an m, such that

&

—  for m = m,.

2n i Z Vu(Fm) yu(@) 1" <3

=0

icm
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Hence we get for m = m,

= 27 15:71:,(1”171)%14((})7” l[ <

n=0

This proves that &e (H,)*. Hence T,G¢ (H )
6.6. A funciion Ge (H™) belongs to (

lim |1, G-GI’ =

|£(Fm)l = 2W|(Fm*a) (7')]

’Lf and only if

Proof. Let Ge(Hi,) . Let us congider a functlonal & corresponding
to the function @. For every Fe H® and 0 < r < 1 we have

(TF = &) (F) = 2n(F*(T, 6 — ) (1).

Thig, in view of 6.4 and 4.2, implies that

IT,6— @l = |TF &~ EIE 0

On the other hand, if for Ge (H*) is |T,6 —@|,—0 as r -1 —, then
by 6.5 we have Ge (Hy,)"

6.7. The space [(HZ), |llw] % separable. Polynomials with rational
coefficients form a dense set in this space.
Proof. Let Ge (HS) and ¢ be any positive number. By virtue of

ag ¥ - 1—.

' 8 .
6.6 there exigts am 7, 0 <r <1, such that |T,G -G, < 5 Since the

geries S] |y (G)|7™ is convergent, it follows that there exists a k such
nea 0

that

or| N @@ |< 2 D@ <
ne=io n=k

for Fe H® such that |F], < 1. Let us now take rational numbers a,
such that

(@) 7" — 4y < (k) s for 4 =0,1,..., k-1,

k—1
and we construct & polynomial @ (2) == Z‘U a,2"
P

For FeH™ such that |[Fl, <1 we now have
| (' (1,6~ Q)) (1)]

Tom

<2r 3 17al)] Ipn(@)1" ] +zn)2mﬂ’ (@

ne=0 Nk

By virtue of 5.1 we get |7, —Qll, < ¢/2. This yields
16— Qe < 6 —T, &+ 17,6 —Qll < &
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6.8. For non-trivial functionals &e (Y such that () = O for every
FeX theve ewists no funclion G analytic in D satisfying (~+) for I'e H™.

Proof. Let £ be a non-trivial functional from (H*°)*. Lot us suppose
that there is a function ¢ analyuc in D satisfying () for Fe H™. Fune-
tions U,(2) =2 2eD, n = 0,1,2, ... all belong to K. Hence

(@) = for no==0,1,2,...

1
(Unx@) (1) =5~ (Uy) =0
™
Thus we get G(z) = 0 for all z¢D and then §(F) == e (F @) (L) = O
for every F¢ H®, which contradicts our agsumption on &,
The funetionals referred to in 6.8 exist, since tho functional

p(F) = inf{|F — G, Ge K}, (Fel™),

is a non-trivial homogeneous pseudonorm on H™ such that p (F) < ¥,
for every FeH™ and p(F) = 0 if and only if Fe K. This encnbles s, in
view of the Hahn-Banach theorem, to construet such functionals.

7.1. For every fumction Ge(H®)" there is a function de ¥ such that G
is a Cauchy—Stieltjes integral of A, i.e.
b
1 1
G(z) = i
and |Gl = 1215 ~Var{l(t) 0<t<<2my (of [9])

Proof. Let £° be a functional from (K)* corresponding to Ge (H*)
according to 6.1. Since the space [K, |]o] is, via functions F'(e” ", Fe K,
isometric isomorphic to a linear subspace of [C, [|-|*], there is, by virtue
of the Hahn-Banach theorem, a functional le (C)¥ such that &°(7)
= U[F(¢~")) for Fe K and |[I|¥ = ||£°|*. In view of 2.3 for I there is a func-
tion Ae ¥ such that

— @A), (e D),

Uf) = [ f@0)aa@  for feO  and U = Al
Thus we geb
EO(F) = fﬂ(e—“)dz(t) for FeK and [|£)% = |||}

Let @, be the Cauchy-Stieltjes integral of 2. Then for 0 < 7 < L and I'e I
we get

) ar
m(FxGy) (1) = D (B [ e ™dag)

n=0

= [ Flreaa) = £°(L1,7),

icm°
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and so
2m (B #6y) (1) == £ () "Zn(F*G) (1) = for every FeK.

By 6.1 we have ¢ = @,. Hence @ is the Cauch:
y-Stieltjes integral of A
and @l = A5 ”

7.2. For evmy fmwtwn eV its Qauchy—S
y—Sticltjes integral G belongs to
() and 61l < 1A (e (9] !
Proof. Let @ be the Cauchy-Stieltjes integral of A< . Then for Fe H™
and zeD we have

S (TG (Q) = 2,), (T2 nf e~ M)

N
= f (2o~ da().
0

Thus we get for Ie H*® and z¢D

2 |(F*@) (2)| < sup{|F (2e~%)]: 0 < ¢ << 2} (A
Hence [|G|m <

|45 and so 7.2 is proved.
7.3. We denote by ¥, the class of all functions Ae ¥ for which

< 1l 1245 -

ar

[ o™aa@) =0 forn=0,1,2,

0

It is easy to see that ¥, is a closed lineaxr gubspace of [, 5] For A;, Aye?”
we say that Ay ~ A, if and only if A, —2;¢ ¥ . This relation iy an equiva-
lemce relation on », The quotient space ¥ [~ = "/’ ¥, will be denoted by ¥
As usual, }.N designates the equivalence class ‘determined by A We equip
the space ¥ with the norm

A~15 = ik {JA+ Al Ae? "y}, (Ae¥).
. l’f»e space [(H®Y, ||*[w] i¢ isometric isomorphic to the space [ﬂ} s 1151
This w?mom’h/iam establishes the operator of Cauchy—Stiélijes integration.
This is an immediate conclugion from 7.1 and 7.2, and also from

1;;1@, fact that the Oauchy-Stieltjes integral & of Ae ¥ equals 0 if and only
AeV .

7.4, For evory funclion ge L' ils Cauchy integral G belongs to (HS,)
and @l < |gll}-

Proof. Let ¢ be the Caucly integral of a funetion g¢ L*. By IIL.1.6
we have for F'e H* and zeD

e (I 4@ (g) = fli‘(za'“ Y (&) d

6 — Studia Mathematlea XLVILY
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and so
om|(F*6) (2)] < [Pl 913 -

Hence ||§]l < llgl} and Ge(H*)'. Let us now observe that for 0<Cr<1
the function T',§ is the Cauchy integral of T,g. In view of what is already
proved we have for 0 < » <1

|T,6—Gle < I1T,9—9l3-
Tt is known ([2] p. 33) that for ge I* Vg —gl} 0 ag y -1~ Thus
\T,6 —Gil., -0 as r —1— and, by virtue of 6.6, Ge(Hg,) -
7.5. We denote by L' the class of all functions ge Lt for which

b
[ emgmar =0 for m=0,1,2,...
0

It designates the quotient space I*/L% . On the space I' we define the
norm by

g5 = int{lg+7I3: fe L}, (geLlh)-
Since L' is complete with respect to the norm |-} and I is its closed

linear subspace, the space It is complete with respect to thiy norm.
We shall show that:

The space LAY, |I1#] 45 dsometric isomorphic o the space [H®, [I]looJ-
More precisely, for every functional #™e (LY¥* here is o unique function
Fe H® such that

n=(g=) = [ PleHgwar  for ge It
0

and, conversely, every functional represented by this formula with a function
Fe H™ belongs to (LA¥. Besides |n~F = ||F|le-

Proof. Let #~e (f)l)#. The functional 5(g) = n=(g™) for ge L* clearly
belongs to (LY)* and |lF = |y~ It is known that for » there exigts
a unique (up to the set of zero measure) function fe L™ such that

bud
n(g) = [ fO)gt)a for ge I
[

Moreover, then |y|# = [If||%. Since the functions ¢~* belong to I for
k=1,2,..., it follows that

N 2
0 =n(e™) = [ ft)e~™at fork =1,2,...
N 0

By virtue of IIL1.7 we now conclude that the Cauchy integral F of

f(2n—t) is also the Poisson integral of the same function. This implies -

icm
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that Fe H* and [, = ||fl%- Hence for n”e(fﬂ)*‘t there is a unique
function '« H* such that .

27 27
n=(g™) = [ PeeNgwas = [ Fle")g(t)a

for ge L* Then also |7, = |y~
Convergely, let Fe H*. Let us consider the functional

an .
n(g) = | Fle~g(t)at for geL*.
[
This functional belongs to (LY)¥* since F(6~")e L*. Let ge Ll . By 7.4,
6.5 and IIL.1.6 we get

27

lim f Fre Mgty dt

resle

it

n{9)

b

lim D'y, () [ e"™g(t)d = 0.

=l g 0

i

’J.‘hisﬂmeans that #™(™) = n(g) is well defined for §~e It and belongs
to (L. : ‘
) 7.6. The space [L~1, 51 is isometric isomorphic to the space [(Hy,)'s

I-le]- This isomorphism is established by the Cauchy integral operation.

The proof of this theorem, as quite analogous to that of IV.3.3, will
be omitted.

7.7. From 7.6 follow a number of corollaries. Tor instance

Ewery function Ge (HS,) is the Cauchy integral of some function ge L*

Let ug denote by &% a space of functions 1 defined, absolutely contin-

uous on [0, 2n] and satisfying 1(0) = 0. Clearly &% = ¥". By the remark
made in 2.4 it follows that ¥, = #%. The correspondence

¢
M) = [gnyar, 0<t< 2%, geL?,
[
is easily seen to be an isomorphism of L* onto &% and also L, onto 7" .
We then have also ||l = ||g|if. Hence the space [I% ||7°] and [ &€ /7",
I'll*] are isometric isomorphic to each other.
7.8. HY < (HZ) and H s (HS)'; besides ||[Flo < | Fll, for every
Fe H .
Proof. Let FeH? Then F(¢")eL*. By 7.4 the Cauchy integral I
of F(e*) belongs to (HZ) and [Pl < |[F(eNy = |F|,- Let us now
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. We take an arbitrary function geL*. By

suppose that H* = (Hy,)
Since (HZ,) = H*,

virtue of 7.4 its Cauchy mteg'ral @ belongs to (H3,) .
we have, G< H. Hence G(¢)e I* and so0

g = %(—2%! g(@)do+g(1) “2G(6")), (0= t<2ﬂ)

is a member of L. This jmplies that ¢ — § maps I* into itself, which,
as is well known, is not true (cf. [3]). Hence H* 5 (HG,)"

8.1. In the spaee (H*)' we may consider, besides norm convergonce,
also the very weak convergence, which will be defined analogously to
the previous cases.

Tn the same manner asin II1.5.1, IIL.5.2, TXL5.3 we obtain the follow-
ing theorems:

A sequence {@,} = (H™) converges very weakly to Ge (H™) if and
only if the sequence of functionals {£3} < (K) * corresponding to the sequence
{6} by 6.1 pointwise converges to E° e (K)* corresponding to G-

A sequence {G,} < (H®) is very wealkly convergent if and only if
sup |8,/ < oo and the sequence {y,(Gy)} is convergent for & =0,1,2,...

™ A sequemce {G,} = (H*)' is very weakly convergent if and only if sup Gl
n

< oo and the sequence {G,(2)} is convergent on the set of points ze D having
a cluster point in D.
The unit ball {G< (H®): |G|, <

8.2. For every Fe H™ the functional defined by
(1) 7°(@) = lim 2x(F*@) (r) = 2n(F*G) (1)

Porle

fOT G € (H‘U’LD) !

belongs to ((H,)J*; besides |In°lI& = ||l Conversely, for every fumc-
tional 4° ¢ ((H,) ¥ there ewisis a unique function F analytic in D for which
(+) holds; this funciion belongs to H™ and is represenied by

F(z) = Sz U,)e",

The proof of this theorem, based on 7.5 and analogous to that of
IV.4.1, will be omitted.

~ 8.3. For every I'e K the functional v defined by () for Ge (H®) be-
Tongs to ((H*)u)T; besides |l = ||F|l,. Conversely, for every fumctional
ne (H*)w)™ there is'a unique function F analytic in D satisfying (+) for
Ge (H™)'; this function belongs to K and is represented by (- ).
" 'The proof of this theorem greatly resembles that of IV.4.6 and will
be neglected '

(++4) (z¢ D).

1} 4s sequentially very weakly compact.
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8.4, (H®) o (H)
3 This follows directly from the fact that (H™)' is isomorphic to
¥ =¥V, and (H,) to &%)+, andthen ¥, « &% < ¥ and oF #= ¥
8.5. For non-trivial fumctionals ne ((H™))* such that (@) =0 for

every Ge (Hy,) there ewisis no function F analytic in D and satisfying ()
for Ge(H™Y.

The proof, based on the fact that functions U,(2) = 2" zeD,
n = 0,1, 2, ... all belong to (H3,), and similar to that of 6.8, is omitted.
Functionaly referred to in this theorem. exist gince
(@) = {|¢—Flo: Fe(H3)}, (GeEH™)),

is a non-trivial homogeneous pseudonorm on (H*)" such that p (@) < |3l
for Ge (H*) and p(@) = 0 if and only if G'e (H,)'. This enables us, in
view of the Hahn~Banach theorem, to construet such functionals.

8.6. (H*)" denotes the class of all functions F analytic in D for
which

Pl = sup{2n|(F*@) (2)
Ag in IV.4.7 we obtain that
, [E™Y", [l = [H™, o] ([8D)-
As a consequence of our considerations we get
8.7. The spaces H* and K are not reflexive.

|: Ge (B, @Il <1,2¢ D} < oo.

8.8. The regults given in 1.4, 2.5 and 7.6 can be presented in another
form if we consider the operator: g(t) — h(e™) = e~ #g(2n —1) for g defined
on (0,2mw). This operator maps isometrically the space L™ onto itself
and regpectively, for ¢ and L*. For ge L1 and n = 0,1, 2, ... the equality

f g()e~™dt = 0 holds if and only if f g(2r—1t)e ™ ”“("“)’dt = 0. From
thlﬂ we deduce that this operator maps the space L onto H*, ¢, onto K
and LY onto H*. Thus we have

The space (H*)' is isomelric isomorphic to the quolient space L>[H®,
and so is the space (Hb,) to O|K and the spaoe (H%) to L*/H. This iso-
morphism establishes the opemtor

_hid)

G = 2m T 2L

ac, (2e D),

where O is the boundary of D with the positive orientation. Moreover, then
for Fe H and h(e")e L* or for FeH® and h(e")e.l}l we have

lim (F*@)(r)

Py

f POMOE,  (of. TV50).

Ty
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8.9. The result given in 7.3 can also be presented in form analogous
to that of 8. 8. We denote by h* the space of all funetions b harmonic in D
for Whlch . S

/4]l = sup {}" |h\(ve"t)ldt:. 0 <r<if< e
0

The space L* can be identified with the closed linear subspace of h* We
prove that .

The space A |- ||1] is isometric isomorphic to the space [V, |[3+]. This
isomorphism establishes the operator

b

1 1—r*
o J. 1—2rcos(t+ 0) 412

B (r a“‘) 6 da 0y,
(Ae e ) <r<1). Moreover, this operator maps the space ¥, onto H™.
" Proof Let h be the function constructed as above for Ae¥". Then
by the easy esmmatmn we obtain |k, < HZH,/ Conversely, let he ht. We
obgerve that

21

h(roe) = 6 da,(0),

1 1—r
e : o< <1
2% Of‘l‘wzwcos(t—{— 0) - 7% ¢ ST e !
‘where

. 0 -
2e(0) :fe "h(ge"" .
. 0

We see that 2,(0) = 0 and var{l,(0): 0 <0< 2r} < [|h]}y for every O <

< 1. By the well known Helly theorems we obtain a function 4, such
that :

) o
N 1 1—»2
h(rey =
(re”) o= ) T—areos(i+0)+r

fan(0), (0<r<i),
and var {4, (6): 0< 0<2m} < |b,. Since for any fixed ¢ and » (0 < r < 1)
the first function under this Riemann-Stieltjes integral belongs to ¢,
we may repmce in this integral the function A, by a function Ae ¥ guch
that HAH,/ Zvar{i,(0): 06 <27\:} [IAlly. For Ae¥” let

“’d}t(@) == for all re'e D.

f 1—2'reos(t+ 0) 412

Then we have

2 . . 2m . ,
[ cosnbe®di(6) =0 and i [ sinnfe?di(g) = 0
1] (]
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for n == 0,1, 2, ey and next

o
{ ™ d(0) = 0 fQT n o= 0, +1, 42, ...
0

Trom this, as in 2.4, we obtain A = 0. Thus we have a complete prooi‘
of the first part of the theorem.

- Now let le v, . Then 2 is absolutely continuous on [0, 2n]. Hence

the harmonic function & corresponding to A is the Poisson integral of
ar dx
et ¢ P ¥ T
¢ "»-C,ﬁu (2r~0), and f~d-’»e.lﬂ,k.
he H* Conversely, lot he H:. Then we have ¢~ #h(e™" ¢ Ll and A(0)
0
= [ ¢ "h(e""dt.) Henco Aev .
0
From this theorem it follows immediately that
The space (H™)' 4s isomeiric isomorphic to the quotient space h*|H™.
This isomorphism establishes the operator

From this we infer, as in 8.8, that

1Y)
. . 1

M1m27r i édC’ (ze D, heh),‘
where O is the boundary of D with the positive orientation. Moveover, then
Jor el and he b we have

lim (F6) () = lim f 7
'3

Foml res]— LT o

Oh(ro)dg

I wish to express my warniest thanks to Professor W. Orlicz for his
helpful criticigm, valuable advice and inspiration.
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Operators associated with representations of amenable groups
singular integrals induced by ergodic flows,
the rotation method and multipliers

P by

RONALD R. COIFPMAN and GUIDO WEISS (8t. Louis, Mo.)

Abstract. Supposo G is an amenable locally compact group, keZ*(G) has com-
pact support, and R, is a upiformly bounded representation of @ acting on IL? (IN).
It is shown that the operator

#HR). = b[ k(W) B,y du

has LP (I)-operator norm not exceeding the L? (@)-operator norm of the convolution
operator defined by %. From this one can obtain ajp extension of the rotation method
for singular integrals on. R% to Lie groups. Moreover, results of Calderén, on com-
mutator operators, de Leeuw and Fife, on multlphersi, are generalized.

§ 1. Introduction. In their work on Slngular Integrals, OCalderén and
Zygmund observed that properties of those Singular Integrals having odd
kernels could be derived easily from properties of the Hilbert transform

ff@—t

The approach they used, called by them the method of rotation, can be
described in the following way. An odd kernel has the form k(y) = Q(»)/ly",

mmmijmﬂ

o TC
e T

n R .
where § = (g, Yay <o Yn) B ly| = (3 y))"* and 2'is' an odd function
)

‘which. is hamogcnoous of degree 0 and whose restriction to the surface
of the unit gphere &, ; == {yeR": |y| = 1} is integrable. Let us fix a point
¥ of %,_;; we then consider the one-parameter group {Uh}; —oo <t < oo,
of transformations of R" defined by

(1.1) Uho = oty
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