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STUDIA MATHEMATICA, T. XLVIL. (1973)

On group algebras of nilpotent Lie groups

by
H. LEPTIN (Bielefeld)

Abstract. It is shown that N. Wieners Tauber-theorem holds for all connected
nilpotent Lie groups N of class 2: o

If ¢ is a proper closed twosided ideal in I'(X) then there exists a primitive
jdeal M, i.e. a kernel of mon trivial irreducible continuous unitary representation
of I1(N), containing #. The quotient algebras I'(N)/M are explicitely determined.

. Tt would be 2 not to extreme standpoint of view abstract harmon-
ic analysis as the attempt to generalize N. Wieners famous theorem from
1932 as far as possible within the realm of general locally compact groups,
see e.g. the remarks in [15], esp. ch. I, § 4, ch. VI, § 1. After that had
been done successfully for abelian groups it was inevitable that investi-
gations would turn towards noneommutative groups. But it turng outb
immediately that in the nonabelian case there are two essentially different
possible directions of research corresponding to the fact that for a commu-
tative locally compact group G one can work either with the algebra
I'(6) of Haar-integrable functions or with the algebra A(é‘) of functions
on the dual group G of @, which are Fourier-transforms of functions from.
L'(@). An extension of the theory to noncommutative groups, based. on.
the A4.(@)-algebra approach, was given by P. Eymard in his thesis in 1964
[2], with so much success that other workers on A (@) for noncommuta-
tive @ seemed to have been paralyzed for some time. A more recent survey
about the 4,-algebras can be found in [3].

Left open seems to be the question wether some kinds of ‘Wiener-type
theorems hold for Z*(@) for noncommutative and — to avoid trivialities —
noncompact groups G- A very natural question in this context seems to
me the following ome:

‘Under what conditions on @ is it true, that every proper closed two-
gided (or *-invariant) ideal of I'(&) is annihilated by a nontrivial contin-
uous unitary representation of I*(@), or in other words, is contained in
an ideal from Prim (@), the set of primitive ideals of L*(@), defined by
irreducible continuous unitary representations of L*(@).

Wieners theorem states that this is true for @ = R. Of course it ig
always true for abelian and for compact G But apparently very few
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is known in more general cases. Among these the most interesting case,
where the angwer is affirmative, seems to be the connected affine group @
of the real line, i.e. the solvable twodimensional Lie group of all pairs of
real numbers (@, y) with x>0 and multiplication (2, y)(«', ¥')
=(x2’, 'y +9’). For this group P. Miiller-Roémer proved a very surprising
and interesting theorem [14], which implies that for this group the answer
to the question raised above is yes.

The main purpose of the present paper is to prove that the same
answer holds for all connected nilpotent Lie groups of class 2. Moreover
we determine completely Prim (@) for such groups ¢ and describe explic-
itely the quotient algebras L*(&)/M for all ideals M <Prim(@). These
quotient algebras are simple and symmetric and are closely related to
the “imprimitivity algebras” in the sense of [4], [6] and [11].

The first part of the paper containg a discussion of the interrelations
between some properties clogely related to the one stated in our problem.
Tt is easily proved that symmetry of L (@) implies the validity of a version
of Wieners theorem slightly weaker than the one stated above. Hence
according to results of Hulanicki [6] and Z. Anusiak [1] the theorem holds
for all discrete nilpotent and the weaker version holds for all class compact
groups. This first part, by the way, deals not only just with algebras L*(@)
but with general involutive Banach algebras. Clearly our problem can be
stated for these algebras.

In part II we define involutive Banach algebras I'(G) and I (G)
for an arbitrary locally compact group G. Here I'y(®) is exactly the impri-
mitivity algebra.of G with respect to the trivial subgroup {e}, as defined
in [5]. While Iy (@) is always simple, we can prove this for I'(@) only if &
is -abelian.

The third part contains the investigation of the ideal-theory of L*(&)
for connected nilpotent Lie groups of class 2 and the proof of the main
result already mentioned above. It is easy to see that it suffices to prove
the theorem for a special type of “universal” nilpotent Lie groups N of
clags 2. The main idea then is that these N as manifolds can be ideunti-
fied with real vector spaces A in such a way that the Haar measure on N
coincides with the Lebesgue measure on 4 and that moreover in the
corresponding identification of the Banach spaces L'(N) and L*(4) the
twosided ideals in L'(N) are at the same time ideals in the commutative
algebra I'(4). So we can apply Wieners original theorem. Unfortunately
this method does not work for arbitrary milpotent Lie groups of classes,
greater than two.

My investigations had been stimulated by interesting conversations
with Professor P. Porcelli in Baton Rouge, especially on the subjects
discussed in part I, and with Professor A. Hulanicki. To both of them I
wish to express my gratitude.
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I

Let & be an involutive Banach algebra, over the complex number
field €, with an isometric involution « >t Let o = o, if .M has an
identity, (which will be always denoted by 1), and let as usually of = Cp A

if o does not have an identity, with (a@®w)(8DY) = of ®(oy + = +2y),
la@o| = la|+lo]. We write ¢ @0 =a, 003 =2 and identify »7 with

the ideal of the elements 0@w = ». With (a+a)* = g+a%, # is an
involutive Banach algebra with unit.

Let P (/) be the cone of non zero continuous positive. linear func-
tionals on o7, let Sp« be the speotrum of &, i.e. the set of all 1« C such that
21— is not invertible in 7, and. let o(x) be the spectral radius, i.e. ()
= gup{|A|; A<Spa}.

For < we state the following properties:

(S) .szi is symmetrie, i.e. 8p(a*®) = 0 for all wes?,

(S) o is symmetrie,

(U) & is unitary, ie. for every proper modular left ideal & < &
there exists a non zero positiv definite linear function f with f(%) =0,

(U) & iy unitary.

(T) If # is a closed twosided ideal in & such that the quotient al-
gebra &7/ # is not a radical ring then there exigt non frivial continuous
unitary representations of <, which anmihilate #.

‘We have

ProrogITION 1 (8), (§), (U) and (ﬁ') are equivalent and imply (T).

Proof. For (8)< (§) = (T) see [16].

(U) (U) Let £ be @ proper modulal left ideal in 7. 'I.‘here exists
a left ideal # in o w1th P =2 +2 Let feP(.sz{) with f(Sf’) = 0.
The restriction f from f on 7 is non zero, because o =+ and f # 0.
Hence feP(M (&) = 0.

(O) = (U) Let « be unitary and take a proper left ideal £ in o7
w1th R4 {54’ Then there existy feP (&) with f(.? N o) =0, Beeause
@ A o is modular in «f, the functional f is extendable to Jsl hence let f
f.‘rom P(M) be an extension of f. Let = be a eyclic umtaay repregentation
of &l in a Hilbert space § $ and let ¢ be a eyclic veetor with f (@) = (=(®)s] g,
wess. Then Ho = n(M) ¢, the closed hull of 14116 span. of all m(x)s, wes, i8
w (o) — invariant and consequently also = (/) — invariant. Let ¢ = &+ &
With ee$, and ($ois,) = 0. For wes it follows that

n(@)'$ = nld"F)e = n(H)e = Ho

hence ($|m(x)es) = (m(@)*$les) =0 and m(w)e; = 0. This implies f(w)
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= (m(n)& &) for @ess. Thus & — (w(®) &) &) for wesl also extends f and
consequently we may assume that £ = $,. Then = is non degenerate
on o, for m(&Z)& =0 implies

(H18) = (w(H)el &) = (eln()§) =0,

hence & = 0. Because dim (/%) = 1 there exists ges With & = (¢) +2.
It follows that i

w(L)n(Q)e < m(Hg)e « w(F)e =0,
hence w(g)e =0, %(Z) =0, f(£) = 0.

(U) = (8). Let zeZ and b = 2*2. I h would not be quasiregular,
then &7 (1+ %) would be a proper modular left ideal in .« and there would
exist an feP (&) with f(o/(1+8)) = 0. It follows that f(+xh) = f(x)+
+f(axh) = 0 for all zess. Because f is positive and b = #*z this implies
f()+f(h?) =0, f(h) =0 = f(h?). From the Cauchy-Schwarz-inequality
we conclude f(zh) =0 for all zes/ and hence f(x) =0, f = 0, which
is not the case. Therefore &/ (1+h) = « and 80 & is symmetric.

(U) = (T') Let # be a proper closed twosided ideal in .o such that
| # is not a radical ring. Then £, = # N £* iy *-invariant and =//#,
is not a radical ring. If » is a unitary representation of .« and =(.#,) =0,
then also #(#) = 0, for if < #, then o™z = ¢, hence n(z*s) = m(x)*n(z)
= 0 and therefore =(x) = 0.

So we may assume that ¢ = #*. Becawse &’ = &7/ ¢ is not a radi-
cal ring there exists wes/' with &' (1+u) % &’. Hence & contains a prop-
er modular left ideal & with ¢ = £, &' (1+u) = Z/#. By (U) there
exists f « P(#) with f(#) = 0. Considering f as a functional on &’
we conclude that P (/') is non empty and consequently has non trivial
unitary representations. It follows that < satisfies (T).

COROLLARY If & is commutative, then (S), (T) and (U) are equivalent.

Proof. If ¥ is a proper modular left ideal in &, then it is twosided
and &/ is not a radieal ring. Hence by (T) we have a representation
% # 0 annihilating . Then of course all states belonging to m vanish
on %, i.e. (T) implies (U).

Remarks. 1) Without the restriction on the structure of «/f
in (T) the implication (8)= (T) would not hold, in other words there
exists symmetric Banach algebras < containing twosided closed and
*-closed proper ideals # such that «//¢ is radical:

By Malliavins theorem the real line R (or any other non discrete
locally compact abelian group) contains a set M which is not a set of
spectral synthesis, ie. & = L*(R) contains a closed ideal # with h(#)
= {2cB;f(2) =0, fed} =M, but & + k(M) = {geI*(R); §| M = 0).
By [16], (4.7.7), k(M) is symmetric, but k(M)/ ¢ is a radical ring.
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2) Let of =+ of. Because any representation z of & can be extend-
od to & by m(A®®) = M +x(x) it is immediate that « satisfies (T),
if &/ does.

3) The equivalence (U) < (f?) of course also follows from (U) <= (8)
and (8) <+ (9).

4) As the referee has pointed out to me, Mrs. Anusiak, using approx-
imate units, proved the equivalence (S) > (U) for L*-group algebras
(On generalized Beurling theorem and symmetry of I,-group algebras,
Collog. Math. 23, pp. 287-297 (1971), esp. p. 290).

IX

Tet G be a locally compact grounp with left-Haar measure du, le-
A(G) = A,(G) denote the Fourier-Eymard algebra of G and let O, (&)
be the C*-algebra of all complex valued continuous functions on G vant
ishing at infinity. Then 4 () = O, (@) and for the respective norms we have
|6} > |als, for acd (@). The left translations in @ define a strongly contin-
wous monomorphism 7' of @ into the automorphismgroups of A(G),
respectively O, (@). The continuity of T with respect to O, (@) is clear,
with respect to A(G) it follows easiest from the fact that aeA(G) has
the form a = f*§, §(w) = g(@™), with f,g = L*(&) and le| < |fl21gls.
The Gelfand spaces both of 4 (@) and 0, (G) can be canonically identified
with @ go that the action of @ on @, induced by T, is the left translation.

Now we can form the generalized L-algebras

@ =I¢, A@; T, B), In@) =I6, C(@); T, B)

in the sense of [97], [10] with trivial factor system E. We have a natural
normdecreasing injection
I(G) —~ I (G)

and the C*-hulls of both algebrag coincide. .

TBvidentlty I (G) is the imprimitivity algebra of @ with respect to
the trivial subgroup {e}, see [5], [13]. It is the simplest possible case
in the sense of [4], p. 110 £, or [11], p. 277 £f, with H = {6}, # = C and
trivial factor system. It follows that wp to equivalence the only irreducible
representation of I (@) respectively I'(&) is the one induced from. the only
onedimensional non. zero representation of L(H, C) = C. If we jdentify
elements from I',(G) with functions on G x & in the obvious way, then
this representation o acts in L#(@) and is given by

(fu(f)f)(w) = f Flt, 1 w) (T ) @ = f flott) E@) dt
G

G


GUEST


42 H. Loptin

for £ IX @) and fel'W(@) (or feI'(G)). Tt follows that if f is continuous on G x ¢
and has compact support then «(f) is a Hilbert-Schmidt operator. Conse-
quently the C*-hulls of I'(@) and. Iy (G) may be identified with the algebra
A (P (G)) of compact operators of L*(@). Hence we have partially proved:

TuporeM 1. For an arbitrary locally compact group G the C*-hulls
of T'(@) and I'(@) are isomorphic to the algebra A(L*(G)) of all compact
bounded operators of I (@), especially these algebras are liminal with only
one point in their dual spaces. Furthermore Iy (G) i3 a simple imvolutive
Banach algebra, If G is abelian then also I'(@) is simple.

Proof. Let ¢ be a twosided closed ideal in I'(G), respectively I\ ()
and let & = A4(@), respectively o = O, (@). Then ¢ ix invariant under
left —and right ~mu1tip1ica,tion with the operators D,,a™<I'(@),
respectively <l (@) (see [9], § 4) for every 2¢@, aecss, at loast if o has
an approximate identity, which is always the case for A = 0 (@) and
for o = A(@)if @ is amenable [11].

For any fel(s(@) we find

(i) Def Yo, y) =F(7 ', 9),
(1) (fD.) (2, y) = flwe™", 2y),
{is) @*f) (@, y) = a(eyn)f(@,9),
(1y) (fa*) (@, y) = a(@)f(®,9).

Now let us consider first the case o = 0,(@).

In this case I (@) is a module over (,(G x@&) (= complex-valued
confinuous bounded functions on G x @). For geCy (G x ) and fel\(G)
the element ¢f is defined by (¢f)(#,¥) = q(@, ¥)f(»,y). It follows that
19f1 < lglwlft for the I'i(G)-norm. Now let a;,b; be arbitrary elements
from O,(&), i =1,...,n, and let q(w,y)= 2% (wy)b;(y). Then from
(is,4) We see that ¢f = Za# fbif. Hence g.# < ¢ for all these ¢ and because
these functions form a dense subalgebra in (G x @) it follows that the
ideal # is invariant under multiplication with functions from O, (G x G).
For every compact K in @ take greC, (G x @) with 0 < ge (@, y) < 1 for
all @, y @, gx(#, y) = 1 for o, y<K and such that ¢, has compact support.
The family {gx}z is naturally directed and satisfies

h'm 9=f =f

in I4(@) for every fel(G): This is trivial for f with compact support
and follows for arbitrary f from |gxf| < |f| and because functions with
compact support are dense in I'i(@): It follows that- gf = limguqfe f
for every fe.# and every ge(, (& x @), because gz g<0, (G x@).

Now we can apply Satz 8 and Satz 9 from [10]: With the notation
of these theorems we see that # is O(@)-invariant and because of (i)
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also A-invariant, hence (Satz 9) # is of the form I(#") with a closed ideal

o < o. From Satz 8 (iv), we see that o must be G-invariant. But 0 and

0., (G are the only closed G-invariant ideals in 0 (G). Hence f =1(A) =0
or = I'v(G).

Now let @ be abelian with dual group @. Then we can identify A (@)
with I*(@), the automorphisms 7', given by

(Tof) (p) = (=1W)f(v),

with the notation : @ — (#|y) for the character 'q)eG
Now as Banach spaces we have a natural isomorphism I* (G, I* (G)
o L‘(GxG), the latter L1 -gpace formed with the Haar-measure dxdy

on the product group G X G. The formula for T, shows that this isomor-
phism becomes an isomorphism of involutive Banach algebras if we define

(o), ) = [ lvnfl@ vy, )9 (@, 07 dydy
@, = @v)f(e, v

But with these definitions L*(@ x é) is exactly thé generalized IL*-algebra
ING x G, C; P) with trivial action of & X & on € and with the factor gystem

Wﬁé‘,

Py wn = (ly)-

Hence I'(@) ~ I*(@ x &, C; P).
Instead of (i), ..., (i,) We now have

(i) (D(z,t)f) (&, y) = (m—lzié)f(zﬁlwv y),
(j2) (fDg,0) (@, v) = (12y™)f (2™, pZ 7).

Now let # again be a closed twosided ideal in MG X G P) and let fe #
Then also D, o f: (@, %) ) = flz" '@, w) (¢ the identity in &) and fl)(, bt
(@, ») = f(e, yJC“l) are contained in # which means that # is an ideal

in the commutative ordinary Li-algebra L*(@ X G) Moreover (j,) and
(jo) imply that # is also invariant under multiplication with the functions
T

(@, p) = (@) (#lp) for arbitvary QeG‘ 2e@. But because GXG = GXG
these are exactly the characters of the abelian group 4 = @ X @ Now
the only closed ideals in L'(4), A abelian, which are invariant under
multiplication with characters acA are 0 and It(A) itself. This proves
that L' (G x @ ; P) and I'(@) are simple algebras. As an easy consequence
from [1] we get:

PROPOSITION 2. If G is abelian then I'(@) is @ simple and symmetric
involutive Banach algebra.
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Proof. Let # be the central extension of the circle group T by @ x ét,
defined by the 2-cycle P. Then. all elements in H have relatively compact
classes of conjugated elements, i.e. H is a [FC] -group and hence I*(H)
is symmetric [1]. But L'(G X é; P) and so I'(G) is a factoralgebra of L(H)
and. therefore I'(G) is symmetric. '

III

‘We will now investigate the L'-algebras of certain nilpotent simply
connected Lie groups. Let 4 be a real finite-dimensional agsociative nil-
potent algebra of clags r: A" £ 0, A" = 0. For « and y in 4 we define
the product

(0) woy = oty +ay,

s0o in A we have (1+2)(1+y) = 14xoy. Obviously with (o) as a prod-
uct 4 becomes a n-dimensional nilpotent Lie group of class r. We denote
this group by N (4) or, if 4 is fixed, just by N. For zed the mapping
t — ¢ —1 defines a one parameter subgroup in N and it is easy to see that
this can be used to identify the Lie algebra a defined by A (i.e. a =4
as linear space with [u,v] = wv—ou) with the Lie algebra of N. For
every aeA the transformation L,» = ax is nilpotent, hence 1+ L, is
a unipotent transformation of the real vectorspace 4. Because of aow
= a -+ (14 L,)x it follows that the Lebesgue measure on A and the Haar
measure on N coincide, so, considering 4 as a real locally compact vec-
torspace, we have L*(A) == L*(N) as Banach spaces.

From now on we only consider the special case 4 = A, @.4, where
the n-dimensional subspace 4, generates A, 4, is spanned by the prod-
uets @y, w, yed,, oy = —yo, and A® =0, in other words 4 = G, /R,
‘where &, is the 2"-dimensional Grassmann algebra and R* the third power
of the radical B of &,. If {b;};.,.. , i8 & basis of A,, the products b;by,
j. <k form a basis of 4,. The corresponding Lie algebra a is the free
nilpotent Lie algebra of class 2 with generators {b;}: a is generated by
the eleménts b; with the only relations. [b;, by] = b;b;, a® = 0.

For the product in N = N(4) we find the following formula:

(a+b+ab)owo(a—b+ ab) = x4 2a -+ 2bx.

We conclude that a closed subspace £ in L*(N) is a twosided ideal
if and only if it is translation invariant, hence an ideal in L*(4), and
invariant under 2all transformations

Ty: ¢ —>a-+by

with bed. Now let # be such a twosided proper ideal. Then ¢ ag an ideal
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in I*(4) has a nonempty hull H in the dual group zi, invariant under’
the adjoints of the transformations T.

Now we introduce a euclidean inner product (z]y) on A such that
the b; and by, == b;by, j <k, form an orthonormal basis. Using this prod-
uct we identify A with 4: An element y<A corresponds to th'e character
gyi @ — 6™, Because T, =1+I, the adjoint T, = 1+L, with the
adjoint Ly of Ly. It follows that the orbit of an element zeA i8 the coset

0(2) = {2+ Iyz; bed}

of the linear subspace Iz in fl, especially it follows that all orbits are
closed and the kernels

M, = 5(0() = {feIM4);[10() =0}
ave Ty-invariant ideals in I*(4) and hence twosided closed ideals in IL(N)
Tt follows immediately that # < M, if and only if z¢H ; 50 we have:

(1) The ideals M,, zeA, are maximal twosided closed ideals in L(NV).
Every twosided closed ideal ,# in L*(N) ig contained in an ideal M,.

Our pext aim is to determine explicitely the quotient algebras
LY N)/M,. Let

B =1L,z F=2I"={yed;(Bly)=0}.

Then 4 = EGQF and b can be identified with L,z = B. For feI*(N)
define

el @) = [ flot+yKa+y,dy, w©eb
r

where Cu, o) is defined ag ¢~2™0®, y, ved. o f—o(f) is a bounded
linear map from L!(N), respectively L(4) onto the Banach space L\(B, dv),
dw Lebesgue meagure on K. For the Fourier transforms we have for ueH
= Te:

ey =f o(f) (@) <@, wydn = [ [fl@+y)<o+ye)<e, wydydw
B B
= ff(ﬂ(t: z"l"‘u)dt :f(z.‘,.u)
A

because <y, ud =1 for ye<F. It follows that o(f) = 0 if and only if f]0(2)
= 0, hence

kerp = M,
and L*(N)/M, = L*(H) as Banach spaces. Now ‘define the factor system
@ ={Qu,} by

w,vel.

Qu,o = (U0, 2y,


GUEST


46 H. Leptin

Tt is easily checked that @° is indeed a continuous factor system on B
with values in 7. So we can form the algebra

(B, C; @).

We will prove now that ¢ is a full isomorphism between the two
involutive Banach algebras,

First we remark that oy -+y2 = 0 for all ® and y in A. By definition
this is true for #, yed; and it is trivial if @ or y is in .4,, because A4,
= A, A = 0. It follows that {wu,z) = {um,2) =1 for all wed, uck.
Next we see that

(o) o(N)@) = [flwoy) <woy,z> dy
F
because méy =gt+y+ay =2+(L+2)y and dy = d(1l+2)y. Similaly
o(f) (&) = ff(yom)(yom,z)dy. Now evidently 4, < F, hence vy = zoy
F

(mod F) and —a = &~ (mod F).Because the right hand side in (o) depends
only on the coset of # mod I it follows that for # and s in I we have

o(fY(x+s) = ff(mosou)(mosou,z}du,
F

e(f)(—s8) = ff('vos"l)@os“l,z}dv.
Using the fact that ZJ hy)dy Ii—— E[ E_f h(vos)dsdv the convolution fxg in
IA(N) can be written as
(f*g)(@wou) = ff(wouovos)g(s‘lov‘l)dsdv.
Hence o
e(fxg)(@) = [[[ flwouovos)g(s~ v ") (wou, &) dudvds
= fff fl@ouos){mouos,zyg(s~ov) (s *ov, 2)ddudvds

with & = (wouov—wouos—s'owv,2). Because v and v are in ¥ and
{wou, 2y = {@-+u,2) ete. it follows that

d=L{otutv—os—u—s—a8—8"—0,2)
={—ws—8%,2) =<{—(®+8)8,>.

It is easy to see that F is normal in N and that the inner automorphisms
of N leave the Haar measure on F fixed. It follows that

ff(mouos) {gouos, 2)du =ff(‘mosou’*)<wo.s-ou‘, z)dﬁ

= o(f)(z+s) (hereu’ =s'cuos).
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Consequently the last formula for o(fxg)(#) yields
o(frg)(@) = f@(f)(w +8)e(g)(—8)— (2 +8)s, 2>ds = e(f)*e(g)(@).
Tt follows that ¢ is multiplicative.

Finally o(f*) = o(f)*: F is a subgroup, so with yeF also y'eF
and, as is easily checked, dy = dy™'. Furthermore @oy™'+yos™
=p—y-+y:—ay+y—o+at—yr = x*--y*—oy —ys, which implies for
yek': e

(@oy™t, 8y = {gow ey (—at, iy = QL1 yow ™, 8.
It follows that
= Q% ([ flwoa ) <you, sy dy)~ = o(f) (@)
We will now explicitely determine the algebras
(V) = L"(E, C; ).
Of course I,(N) depends only on the bilipea.r form
Bz, y) = (ay2).

This form B is symplectic and non degenerate: B(x, y) = —B(y, =) because
ay = —yx, and B(x, y) = 0 for all v« F and fixed y < I/ implies (W Lye) =0

for all we, (y|Lyz) = — (u|L,2) = 0 alsofor all weF, hence yeB (N L@
= 0. It follows that dimE = 2m and that we can introduce coordinates
B == By, anny gy Dry oeny B} <BR™, ¥ = {5, 85}

m m .

with B(@,v) = 33 (@8 — ¥;3,). With o(#) = % 3 @;¥; We get: the following
1 =1
identity

Bw,y) = — Dby +o(@+y)—o(@) —o(y).

The factor system @ was defined by @, , = ¢~*"2®?), 8o with 0, = ¢*™®
we find
Quy = 60, 0,0 051,

It follows that @° and the factor system P = {P,,}, Puy= iy
are equivalent, i.e. belong to the same clags in H2(R*,T). But identi-
fying R™ with its dual R™ and R™ = E with R™ x R™ the factor gystem.
{P,,4} is exactly the one which we used in our investigation of I'(¢) and
L‘(Gx@‘;l’) for abelian @ in the first part of this paper. So from [9],
p. 263, we get the result:

(8) For every #<A. the factoralgebra I(N) is canonically isomorphic
with the involutive simple and symmetric Banach algebra I'(R™).
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Now we can easily prove our main result:

TuEoREM 2. Let G be a cownected wilpotent Lie group of class two,
IA(G) be the L -group algebra and Prim (@) the set of primitive ideals of
IM@G), i.e. the set of kernels of nontrivial drreducidle continuous wnitary
representations of L*(G). Then

1. Buery proper closed twosided ideal of L'(G) is contained in an ideal M
from Prim(G). ‘

2. If M Prim (@) then there ewists a positive imteger m such that the
quotient algebra IM@)|M is isomorphic to the simple and symmetrio in-
volutive Banach algebra I'(R™), defined in part XL

Proof. Assume that Theorem 2 is true for ¢. If NV is a closed normal
subgroup. of @, then the I*-algebra .L!(G/N) of the factorgroup G/N as
is well known (gee e.g. [15], p. 164) is a quotient algebra of L*(@). From
this one easily derives that Theorem 2 holds also for @/N. Therefore it
suffices to congider only simply connected groups. But the Lie algebra
of such a group is a homomorphic image of a Lie algebra a as considered
in the first part of this section of the paper. Consequently every connect-
ed nilpotent Lie group @ of class two is a factor group of & group N(4)
for a suitable algebra 4 as defined above. Theorem 2 now follows from (1),
(2) and Theorem 1. ITn another paper we shall prove that for the groups ¢
congidered in Theorem 2 the algebras L'(@) are indeed symmetric.
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