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Hellinger—~Hahn type decompositions of the
domain of a Borel funection

by .
M. G. NADKARNI* (Caleuta and Bombay)

Abstract. In this paper we give decompositions of the domain of & Borel fune-
tion f from a complete separable metric space X (of cardinality ¢) into another com-
plete separable metric space ¥ where X and Y are equipped with their usual Borel
o-algebras and X is further equipped with a finite non-atomic measure su. These
decompositions depend on a deep theorem of Lusin which says that if f iz “countable
to one” then X can be partitioned into countable number of Borel sets on each of
which f is one-one. We also give a decomposition of X when f is not “countable to
one”,

Introduction. In this paper we give decompositions of the domain
of a Borel function f from a complete separable metric space X (of cardi-
nality ¢) into another-complete separable metric space Y, where X and Y
are equipped with their usual Borel o-algebras and X is further equipped
with finite non-atomic measure u. These decompositions, which are given
in Theorem 2.2 and 2.3. depend on a deep theorem of Lusin (Theorem 2.1)
and the method used in the proof of Hellinger—Hahn theorem for spectral
measures on a separable Hilbert space.

When f is a bounded complex valued Borel function, our decom-
positions of X completely describe the measures and their multiplicities
that oceur in the Hellinger—Hahn canonical representation of the spectral
measure of the normal operator T, on Ly(X, u) consisting of multipli-
cation by f. In Section 4 we indicate how this is so and also give some
applications.

1.

DaFxITroN 1.1. Let m be a cardinal number. A function f defined
on & subset of X into Y is said to be m to 1 if the inverse image of every
singleton is of cardinality m. It is said to be countable to one if the inverse
image of every singleton is either of finite cardinality or of cardinality R,.

ProposirroN 1.1. Let f be a Borel function on X with values in Y.
Then X can be partitioned into two Borel sets C and D such that

* Sincere thanks are due to Tata Institute of Fundamental Research where
his work was oarried out under a visiting fellowship.
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1) flo, the restriction of f to O, is countable to one,
2) flp is countable to one on no subset of positive p-measure in D.

Proof. Let § = {4: u(4d)> 0, f|,is countable to one}. If § is empty
we take D = X. If § is not empty let a = supu(d4) and let {d,}., be
A

a sequence of Borel sets such that u(4,) - a We take ¢ = (J 4,. Then
Tyes |

clearly fly is countable to one and. flx. o is countable to one on no subset
of positive measure. Take D = X —0C. m

2. In this section we give two forms of Hellinger—Ilahn type decom-
positions of the domain of a counta.ble to one Borel function. Firsgt of
all we need.

THEEOREM 2.1 (Lusin). Let f be a Borel function on X with values in ¥
such that inverse image of every singleton is coumtable. Then X can be decom-
posed into pairwise disjoint Borel sels Ay, Ay, Ay, ... such that fl,, is one-
one for each k.

For a proof of this we refer to ([2], p. 234).

LeMMA 2.1. Let f be a Borel function on X with values in Y such that
inverse image of every singleton is coumtadle. Then X oan be decomposed
into pairwise disjoint Borels sets N, A, Aq, Ay, ... such that

1) p(V) =0,

2) u(d;) >0 for each %,

3) flu, is one-one for each .

DerNIzioN 2.1. A Borel function of f on X into Y is said to be umi-
formly m to one if X can be partitioned into m Borel sets such that

1) f is one-one on each member of the partition,

2) meagures induced by the restriction f to these sets in the parti-
tion are mutually absolutely continuous. f is said to be essentially m o
one if f is uniformly m to one after removal of a y-null Borel set.

In the above definition we require m < ¥y. We note that if f is essen-
tially m to one and also esgentially # to one then m = n.

DEFINITION 2.2. Let f be a Borel function on a Borel subset of X
with values in ¥. We say that the domain of f has Hellinger—H ahn decom-
position of first kind if it can be decomposed into pair-wise disjoint Borel
sets NV, Oy, Cy, Oy, ... (thiz sequence may be finite) such that

1) w(¥) =0,

2) u(C;)> 0 for each i,

3) flg, is one-one for each 4,

4) measure induced by flg, i1 is absolutely continuous with respect
to the one induced by flg,.
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TarorEM 2.2. Let f be a countable to one Borel function on X with
values in Y. Then X has a Hellinger—Hahn decomposition N, O, Oy, Oy, ...
of first kind. If N', 07, Cy, O, ... be another such decomposition then the
MEASUes induoed by flo, and f | are mutually absolutely continuous.

Proof. Let N, A, 4,, Aa . be a sequence of Borel sets satistying
conditions of Lemma 2.1, Let 4, be partitioned into Borel sets 4, and 4,,
such that measures induced by fl, and fl,, ave respectively singular
and absolutely continuous with respect to the one induced by fls,. Now
the facts that 1) fl,, and f|,, are one-ome Borel functions 2) measures
induced by them are mutually singular together imply that f is essentially
one-one on A, ud,. For n> 3, let 4, be partitioned into Borel sets
A, and 4,, such that measures induced by f|, , and fl, , are singular and
absolutely continuous with respect to the one induced by fl4,u.4,u...ua
The function f is egsentially ome-one on 4; U A, u..
measures induced by f| Ly

n—11"
.U 4, and the

2 < p < n are absolutely continuous with respect

to the one induced by fluodyu.. .ua,, Lot Dy =A4; Udy U... U dy ...
and let D, be obtained from A,,, A, A, ... by the above procedure
leaving residual subsets Agy, Ay, Agsy ... oF Ay, Ay, Ay, ... respectively.

Proceeding thus we get a sequence Dy, Dy, Dy, ...
Borel sets such that for each %

of pair-wise digjoint

1) f is essentially one-one on Dy,

2) A4, =« Dy uDyu... Uy,

3) measure induced by flp,,, 18 absolutely continuous with respect
to the one induced by flz,.

Let O be obtained from D, by removing a u-null Borel et NV, so
that f is one-one on (. Let N;'s be absorbed in N and the resulting set
still denoted by N. The sets NV, 0y, 0,, C4, ... then form a Hellinger-~Hahn
decomposition of X of first kind.

Let N', 0y, 0;, ... be another Hellinger-Hahn decomposition of X
of first kind. Measures induced by flp, and f lUi are mutually abso-

lutely continuous since they are equivalent (in'the sense of mutual abso-
Tute continuity) to the measure induced by f itself. Now asgume, to use

induction, that measures induced by fly, and. f| | Are mutually absolutely
continuons for 1 < ¢ < n—1. We show that fl,, and f|0, induce equivalent
"

measures. Sup;poae they do not. We may suppose then that there is a Borel
set B < O, of positive u-measure such that f (B) hat flo, induced measure

zero. Then the set f~'(f(B)) is equal to Uf[ ( f(B)) upto a w-null set

and the restriction of f tio this set is essem,mlly (n—1) to one. But since.
#(B)>0 and B < (, the restriction of f to f~'(f(B)) is not essentially
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(n—1) to one. This is a contradiction. Hence flo and f]o, induce mutually
n

absolutely continuous measures.

DerNitIoN 2.3. Let f be a Borel function on X with values in Y.
We say that X has Hellinger—FHahn decomposition of 2nd Lind if X can
be decomposed into pair-wise disjoint Borel sets 7, Ve, ¥y, ¥as Vs --.
(this sequence may be finite) such that

1) uin) =0,

2) fra) nfly) =@ i i £,

3) fl,,, is uniformly % to 1 for each & < oo,

4) fly,, 18 uniformly ¥, to one.

TeEOREM 2.3. Let f be a countable to one Borel fumction on X with
values in Y. Then X has Hellinger~Hahn decomposition 1, v, ¥1; Vs, ..
of 2nd Kind. If 0’y v, 71y ¥ay ... be another such decomposition, then for
eachk, p(ye Avy) = 0.

Proof. Let N, Cy, U,, Cy, ... be a first kind Hellinger-Hahn decom-
position of X ag in Theorem 2.2. Let

Or=9yu Uy U Uy,

Yoo Y oen U Yoy,

...........................

VYoan Y VgV oo U Ypooy

where y, j =k k+1, k+2,... are pair-wise disjoint Borel subsets
of G, such that measure induced f l,,k], is absolutely continuous with respect
to the one induced by f |¢,; but singular with respect to one induced by fly. ..
Further yy,, is disjoint from y,; and measure induced by fl,,  is aggfl)-
lutely continuous with respect to the one induced by Flo, for each J. Now
take 7 = N and !

Y1 =Yy
Y2 = V12 U Yo

...............

We note that u(y) =0 and y,, y,, p, ... Yo 8T Pair-wise disjoint Borel
sets such that f], .is uniformly k to one, y; = 3, u Yo Y --. U Yy being
a decomposition of y; such that ffm is one-one and measures induced
by fl,;, is equivalent to the part of the measure induced, by flg, which ig
singular to the one induced by f lo,, e After removing a p-null Borel set if
necessary we can choose. .y, v, ..., 7, such that their images are digjoint.
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Now suppose that %', y1, ¥, .-+, ¥ is another Hellinger—Hahn decom-
position of X of 2nd kind. Suppose u(y;Ay;)+% 0. Then either y, or y;
has a subset of positive measure which does not intersect the other. Suppose
there is a set B < y, of positive measure which does not intersect ;.
Now the multiple valued function f is one-one on f(F) since E < y,
and it is not one-one on f(#) since F Ny, = @. This is a contradiction.
Hence u(y;Ayi)= 0. An inductive argument shows that for each m,
B(alyn)=0. B

Let Z be another complete separable metric space of cardinality c
and let » be a non-atomic finite measure on Z.

DrrINITION 2.4, Two Borel functions f: X — ¥ and ¢: Z—+ Y
are said to be equivalent if there exists a Borel isomorphism v: X —Z,
such that

1) the measures wr and » are equivalent,

2) f=9p() ae u

DerFINITION 2.5. Assume further that f and ¢ are countable to one
andlet N, Cy, Oy, Cs, ... and M, Dy, Dy, D, ... be the respective Hellinger—
Hahn decomposition of first kind. We say that these decompositions
are equivalent if for each % the measures induced by fly, and ¢lp, are
equivalent.

An elementary argument yields:

THEOREM 2.5. Let f and ¢ be countable to one Borel fundtions on X
and Z respectively with values in Y. Then f and ¢ are equivalent if and only
if the corresponding Hellinger—Hahn decompositions of first kind are equiv-
alent.

3. In this section we consider Borel functions which are essentially
uncountable to one, which we define to mean functions which are one-one
on. no subset of positive measure. In view of Theorem 2.1 it is clear that
a Borel function is essentially uncountable to one if and only if it i3 count-
able to one on no subset of positive measure. We prove

Turornm 3.1, Let f be a Borel function on X with values in Y such
that it is essemtially uncountable to one. Thew there ewists a Borol set A < X
such that fl, and flx. 4 induce equivalent measures.

Tor a proof of this theoren we need following two lemmas:

LommA 8.1. Let f be a funclion on a set B with range f(B) = F. Let
Ty = {Ay 1y ey Ay, ’“n} be a sequence of partitions of B such that

o
1) atoms of \wm, are singlstons,

Nuws]l
2) for each m, {f(dp1)y s f(Any,)} are pair-wise disjoint.
Then f is one-one on I :
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Proof. Let 4;, Ay, Ay, ... be an enumeration of | m,. Let A} = A,
n=l
and Ai = B~—4,. Then because of 1) for any given w<Z there exists

a 8eqUence &, &, &, ... of zeros and ones such that

o =APNA4A2N ... ndrn...
Then

flo) =f(AD A AP .. e é £z = () (7o)

deal
where the last equality is true because of 2). Thus f(z) belongs to an atom
generated by f(4,), f(4s),... It follows that f is one-one. m

LemmA 3.2. 4 Borel function on a Borel subset of X is essentially
one-ome if and only if the measures induced by restrictions of f to disjoint
Borel subsets are mutually singular.

Proof. That the condition is necessary is obvious. To prove that it
is sufficient let @, = {4, ..., 4,, k,} be a sequence of partitions into Borel
sets of the Domain D of f such that (J =, generates the o-algebra of D.

T==1
Since the restriction of f to disjoint Borel sets induce mutually singular
measures, for each # there exists a null Borel set I, such that images
under f of 4,,—-N,,..., 4, b —n are pair-wise disjoint. Applying
Lemma 3.1 to D—J N, with =, ={4,,—N,..., Ay p, — N} we see
N=1

that f is one-one in D—N. m

A consequence of above lemma is that if f is one-one on no subset
of positive measure, then given any set A of positive measure, there exist
disjoint Borel sets O and D in A of positive measure such that f|y and fl,
induce mutually absolutely continuous measures. This remark is used
in the :
-~ Proof of Theorem 3.1. Let § denote the collection of pairs (4, B)
91‘ disjoint Borel subsets of X of positive measure such that f|, and fly
mé!u.ce mutugm]ly absolutely continuous measures. Partially order % by
writing (4,3)> (0, D) if u(d—0)=pu(B~-D)=0. We show that
every chain in ¥ hag an upper bound. Let (4,, B,)ael be a chain in §
Let a = Squ,u(Au) and b = su%m(Ba). Let (a,)p., be a sequence of indi-

ces su;:h that u(4,,)— e and (Ba,) = b. Then the pair (4,.B) where

A = UA,,nmUBan and B = UB%- 4, is an upper bound of the
n=1 n=1 n=1 n=1

chain ({1‘,, B.), ael. Hence by Zorn’s lemma there exists a maxima]l element
(&, F) in §. By our remark X —F U F must have p-measure zero. Now

takg 4 =E—(X—H ulF) Then f|, and f|x_, induce measures on Y
which are mutually absolutely c¢ontinuous.
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Remark. We can choose A such that u(Ad) = u(X)-$.

TxAMPLE 3.1. Liet X = R* and let x be any measure absolutely
continuous with respect to the plane Lebesgue measure on X. Let f(w, y)
— 2. Then Fubini theorem shows that f is essentially uncountable to
one. Theorem 3.L shows that for any given n we can decompose X
into m disjoint Borel sets By, By, ..., B, such that measures induced
on B by flg, b= 1, ..., % are mubually absolutely continuous.

4. Let f Do a bounded complex valued Borel function on & and let T,
denote the normal operator on I, (X, u) consisting of multiplication by f.
The objective of this section is to describe the spectral measure asso-
ciated with 7,. For this purpose we first of all recall some of the relevant
results about spectral meagsuves ([1], [81, [4]).

Let $ be a non-trivial separable Hilbert space. Let C denote thg
complex plane and B its Bovel c-algebra. By a spectral measure B we
ghall mean a countably additive function on B, the values of B being
orthogonal projections in § and E(C) being equal to the .identity map
of §. For any we$ we have a non-negative measure u, defined by u,(0)
= (B(0)w, @), oeB. If H, denotes the subspace spanned by {B(o)x: oeB}
then $, is invariant under B and the mapping 8,: H(o)e =1, extends

- fo an invertible isometry from $, onto L,(C, ) in such & manner that

S, B85 = F,, where F, is the spectral measure on Ly(C, u,) defined
by F,(0) = multiplication by 1,(1, = characteristic function of o).

Tor any non-negative finite measure 1 on B and any cardinal nul_nber
n <N, we shall denote by nl,(C, 1) the Hilbert space which is th'e d{re'ct
sum of % copies of Ly(C, A). IE [ = (fi, fas fs, --.) (this sequence is finite
if m < ¥,) be an element of nl,(C, 1), we write

Fa;.(“)f == (J-qu 10]22 )7 oeB.

Then I, is a spectral measure on B. _

We now state ILollinger—Hahn. theovem. for spectral measures in two
different forms.

R LINGER-EANN Tunonem  (Hivst-foxm). Let B be a speoiral
measure. Thon G fimite measuras Ay, Ay, ,j”ﬂ’ . 0% B and an invertible iso-
matry 8 from $ ondo the direct sum D) Ly(Cy An) such that

Hsa 1
(i) for cach n, A, ., 48 absolutely continuous with respect to Ay, B
(1) 8BS == multiplication by oharacteristio fumotion, i.e. if f=(fi

FarFay oon) belongs do > Ly(C, A,); the

Pl

SE(U)S"lf = (L), Lofay ---):V‘“%'
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If 21y Ay Ay, ... be another sequence of finite measures for which @ an inver-
o

tible isometry 8 from $ onto 3 Lo (C, 1) such that (i) and (i) are satisfied
1

=
with respect to Ay, Xy, Xy, ... and 8, then for each n, A, and 2, are mutually

absolutely continuous.

For a proof of above theorem we refer to [(4], Chapter VII).

HeruNeer-HAEN THEOREM (Second form). Let H be a speciral
measure. Then W mutually singular finite measures Ay, Ay A, ... on B
and an invertible isomelry 8 from § onto the direct sum of n L,(C, Ay
no=00,1,2,8,... such that SHS™ = F = multiplication by characier-
istic function, 4.e., for each n, the restriction of ¥ to wLy (C, 2,) is . Turther
if Aoy A13 Zay - Do another sequence of mutually singular measures for which @
an isometry S’ from $ onto the direct sum of n L,(C, Ap)yn = c0,1,2,3,...
such that S'BS'™ = F' = multiplication by characterisiic Sfunction, then
for each m, 2, and A, are mutually absolutely continuous. '

A proof of above theorem can be obtained by specializing the results
of ([1], Chapter IIT) to the case of separable Hilbert space.

For any finite measure A on B we shall write 1 to denote the class
of o-finite measures on B which are mutually absolutely continuous with
respect to A and call 7 the measure class of 1. Tt follows from second form
of Hellinger-Hahn theorem that any spectral measure I uniquely deter-
mines mutually singular measure classes Ay, 4y, Ay, --- 50 that A, , Ay, Ay, ...
satisfy the conditions of that theorem.

DEFINITION 4.1. We say that E has wniform maltiplicity n with asso-
ctated measure class A, if in the Hellinger—Eahn theorem of second form
& = 0 for & # n.

Remark. It can be shown using Radon-Nikodym derivatives that B
has uniform multiplicity # if and only if in the Hellinger—Xahn theorem
of first form 1,, 4,, ..., A, belong to same measure class and Apyy 18 the
Zero measure.

Returning to Hellinger~Hahn theorem in ity second form, if 8 be
the isometry of that theorem, then the subspaces $, = S~ (Lo(C) 4))
are such that § is their direct sum, F$, = $,, the restriction of % to D
has uniform multiplicity » with associated measure clags T I we$ then p,
is always ‘absolutely continuous with respect to A, -2+ A, ... (this
is a o-finite measure). Further %, if and only if u, is absolutely contin-
uous with respect to A,, and indeed $Hn = {®: u, is absolutely contin-
uous with respect to 1,}. From this it follows that $y, does not depend
on choice of § or 2,74, 4y, ...

Limnvea. 4.1. Let 1 be a fimite positive measure on B and let FisFeseer Fm
en Ly(C, 1) be such that

@) V"f%ylafi J—ﬁ if i #J,
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(ii) the measures v;,v;(0) «= IL.fil2 belomgs to the measure dlass A.

Then m <3 N

Proof. The conditions of the lemma imply that for a.e. » with respect
0 4 the vectors fi(x), (@), ..., fu(#) are non-zero and they are ortho-
gonal. Hence it is clear that m = n.
" LuMMA 4.2. Let T be @ spectral measure of uniform multiplicity %
with associated measure olass A -4 0, Lab @y, @y, ..., 0y, c$ be such that

(i) Vo, Bi(o)w; | w; il 4 # ] . B

(il) the MEASUPOS Py tyys ooy Ha,, @76 Gl of measure class A

Then m =, M.

This lemma follows from Lemnma 4.1 by making use of the isometry S.

LeMMA 4.3. Let B be o spectral measure with associated measure
la8308 Tegs Ay Agy +- - aCCOTding to the second form of Hellinger—EHakn theorem.
Suppose that for every positive integer n, & @y, Ty, -.. ) FreH such that

(i) VooB, Blo)a, Lo if & #3,

(ii) for each i, the measure class u,, belongs io the measure class of
STy Ny I M

Then Ay == 0 for k < oo.

Proof. Suppose A is non-zero for some k < oco. Leb @y, @y, coy Dy
Dbe elements in § satistying conditions (i) and (ii) of the lemma. Ijet Yi=Pg, 0,
where Pg, denotes the orthogonal projection on 9. Let E;, denote the
restriction. of X to $). Then we have _

(») H, has uniform multiplicity & with associated measure clagy A

(b) VoeB, Hy(o)y; LYy, it 47,

(¢) for each 4, the measures »; defined by »,(o) = (B (o) s ¥:) belong
to the meagure class 4. By Lemma 4.2 this is impossible. Hence 7 = 0. m

Now let A e a bounded normal operator on §. Then by the spectral
theorem ([, p. 7L] & a spectral measure B supported o:n the spectrum

A such thatb '
. A = [ 2li{dz).
(4]
If 9 is any polynomial in ¢ and 2, then.

p(A, A%) = [ p(z,2) B(d2)
Q)

Turther for any @e$, the subspace spanned by {4"%, A¥g),
m=0,1,2,3,... is the same as the subspace gpanned by*ghE (o) G;T%}.
Thus H(ow | yVo if and only i Vm, A’”w_i__y?, A" ny. , cgv
take § = Ly(X, p) and A =T, For any  pely(X,u) write ,z;.( d)_
= i!|qo|2(n)ﬂ(dw.) and A, = gt e, 4, is the measure on B define

by 2,(0) = u?(f*(0)), 0eB. Lot 1 be the measure wft It is easy to
see that A, is aways absolutely continuous with respect to A.
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Let E denote the spectral measure of Ty. Then Vm = 0.

(TPg, ) = [Fw)lp@)u(du) = [ 7" (de) = [ (B(de)p, ¢),
P (o] o
(T7"p, @) = [ F"(0) lp(w)Pu(du) = [ &4, (de) = [ 2*(B(d)p, 9),
P (8] o
(TP 1,1) = [ 4" A(de) = [ (B(d)1, 1),
C L2

(Tf™ 1,1) = [#"4(ds) = [#"(B(de)1, 1).
C (s}

The second equality in the first two equations follows from transfor-
mation of variable formula. It is clear from these formulas that 1 = uf ™
belongs to the measure class of Ag+A+A+4 ... where ., 7,7, ...
are the measure classes associated with according to Hellinger—Hahn
theorem in its second form.

TarorEM 4.1. If f is essentially uncountable to one them T, has uni-
Jorm multiplicity N, with associoled measure class & where ) = uft

Proof. Let n be any positive integer. Let Ay, 4y, A, be a decom-
position of X in the fashion of Theorem 3.1, i.e., measures induced by
restriction of f to 4; are all mutually absolutely continuous and indeed
belong to the measure class 1. Let @, =1 Ayr ooy By =1, . Then it is
clear that for every integer m > 0 Tz, ™, are both orthogonal to a;
if § 544, hence for all ce®B, H(o)w, | %; whenever i+ j. Next for each 4,
the measure s, u, (o) = (E(o)a;, z,) is the measure induced by the
restriction of f to 4;, i.e., oy = Uf |;1? and belongs to the measure class 1.
Hence by Lemma 4.3 7, has uniform multiplicity - 8, with associated
meagure A.

Now let us assume that f is countable to one. Let Yeos Y1y Yoy +»e DO
& Hellinger—Hahn decomposition of X of second kind and let 2y denote
the measure induced by restriction of f to ,. Then iy, 7, Jgy ... is the
sequence of mubually singular measure classes associatod with the spec-
tral measure I of T; according to second form of Hellinger—H ahn theorem.
To see this it is enough to note that

(1) Lo(X, p) = Ly(X, l, )+ Ls(X, #h) @ ...
n n

(11) La(-X} I"lyn) = 1:2;: L2 (-X’ /"]ym;) ’ ‘where Yo = U YudsVui O Vg = 9
= i=] '

if 4 4. flyn i8 one-one for every ¢ and measures induced by fl,,m. are
mutually absolutely continuous, 1 <i< n M.

(iit) If 4,; be the measure induced by the restriction of fto v, then,‘

since f is one-one on y,;, the mapping §,,: 8,:9 = gof Wi is an invertible
isometry from I,(X 1dtly,.) and Ly(C, 1,;) such that for any helL,(C, 1)

(") Note that y,; here is yz, in Theorem 2.3.
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(SmTf S;&l h)(z) = 2h(2)
from which it follows that Vo B
BB (o) St h = 1,0,

n
(iV) if S»IROL :“ﬁ ;1];2(0: lm:)
K2
8y, = 2 S
Ae],

then & == S-+8;-+8g+ ... is an invertible isometry from Ly(X, u)
onto M DM DM D ... such that SHS acts on each Ly(C, 4,,) in the
manner given in (ili) above.

(v) The conclugion follows from the remark following definition 4.1.

© We continue with the assumption that f is essentially eountable to

one and show how the first kind Hellinger~Hahn decomposition of X yields
the measure classes asgociated with the spectral measure of T, according
to the MHellinger—Elahn theorem in its first form. Let C,, 0y, Cy, ...
be ag in Theorem 2.2 and let, for each %, A, be the measure induced by
restriction of f to ¢),. Let & denote the direct sum of Hilbert spaces Ly(C, ).
For any DBorel set oeB, let X (o) denote the projection operator
F(0) (911 925 Y2y -+2) == (a1, Laga; Lofay --.) WhOTO (1, ga; §ay ---) K. Then
I is unitarily equivalent to the spectral measure B of T, To see this
it is enough to note that:

(i) if 8, denotes the invertible isometry between L, (X, #lg,) and
L,(C, %) given by

Sph = hoﬂakl: hely(X, plo,),
then
(ShTfSI:l‘P) () = =p(#), ‘PEL‘J(C7 Ax)
from which it follows that for any pelL,(C, A,)
8B (0)85 g = 1,0, VoeB.
(i) Ly(X, ) ='““k,§;L2(X: Mla,ﬁ)'

Since 4., 18 absolutely continuous with respect to A, it is clea..r that
Jys hys Agy oor give the measure clagses associated with B according to
Hellinger~ahn, theorem in ity first form. )

The following theorem. iy an easy consequence of the foregoing

Trronmm 4.2. Let f be o bounded complen valued Borel function on X.
Then the spectral measure of Ty is of umiform multiplicity n < oo mf and
only if f is essemtially n to one. In pariioular it is of multiplicity one if and
only if f is essentially one-one. ) ] '

For the next theorem whose proof is left to the reader, keep in view
Definitions 2.4 and 2.5. ‘
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TemoREM 4.3. Let f and ¢ be essentially countable to one bounded com-
plexw valued Borel function on X and Z respeciively. Then T, and T, are
unitarily equivalent if and only if the corresponding first Tind Hellinger—
Halm decompositions of X and Z are equivalent, i.e., if and only if f and P
are equivalent.

Remark. It can happen that f is essentially uncountable to ome, ¢
is countable to one and Ty and 7', are unitarily equivalent. Indeed any

bounded normal operator on a separable Hilbert space is unitarily equiv-

alent to T'y where (y) is the function on I x € (I = Set of positive
integer) given by (w) (%, #) = 4, and where a measure on I X C is deter-
mined by the eperator in question. Note that () is always countable to one.

Acknowledgement (September 9, 1972). I would, like to acknowledge here
that Proposition 1.1 together with the first part of Theorem 2.2 are contained in
Rohlin’s heautiful study of Lebesgue Spaces in his paper “On Jundamenial ideas of
measure theory” (Amer. Math. Soo. Trans. Series 1, 10, pago 45). Theorem 3.1 also
follows from his result on the “existence of independent complement for measurable
decompositions which are not one sheeted on any set of positive measure”. I am
grateful to D. Ramachandran for pointing this out to me and for acquainting me
with the contents of Rohlin’s paper. Rohlin’s proofs of the results mentioned rely
on the existence of canonical mysterm of measures and they are obtained in the
process of giving a complete classifications of measurable decompositions of
a Lebesgue Space. Our proof of Theorem 2.2 is directly in the gpirit of classiocal
Hellinger-Hahn theorem for spectral measures. Theorem 3.1 also does not depend
in anyway on canonical system of measures. '
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Linear topologies which are suprema
of dual-less topologies*

by
N. T. PECOK and HORACTO PORTA (Urbana I1L.)

Abstract. Tho first result of this paper is that overy topological linear space
of algebraic dimension at least the continuum is lineamly homeomorp?ﬁc to a sub-
gpace of a dual-less space (i.0., a topological linear space with zero dual) in such a way
that the dimensgion and codimension of the image are equal. Using this result, it is
then proved that the norm topology of many of the classical separable Bmm.ch gpaces
can be written as the supremum of a finite number of dual-less topolog_les. $0mc
extensions of this are given for the non-separable case and for other topologieal linear
SPACES.

0. INTRODUCTION

It is ‘well known that the topology of convergence in measure is one
of the weakest topologies on a function space; for example, on the space
of all Lebesgue measurable functions on [0, 1] the only linear funct:lonal
which is continuous for convergence in measure is the zero functional.
In view of this it may be somewhat surprising that the norm topology
on the classical Banach spaces can be expressed. as simultaneous conver-
gence in three topologies, each of which is an inverse image of a topology
of convergence in meagure. Thig is proved below as a consequence of more
general results concerning the following problems: .

a) which lineax topologies on a vector space are restrictions of “very
weak” topologies on a larger space?

b) which linear topologies on & vector space can be expressed. as
suprema of families of “very weak?” topologies on it )

By a “very weak?” topology we mean a& linear topolo_gy tham: is at
least dual-less in the sense that it does not have any non-trivial continuous
lineaxr functional. Theorems A, B, O below provide some answers to these
problems. ‘. _

Questions of this sort were investigated by Klee in [5], to which we
refer the reader for background. In this paper, Klee proved that the supre-
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