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Let H be dense in }}”. By the theorem, H separates K E-essen.tiaylly.
Hence there exists an F-null set N in K such that H separates M,\ N
and M,\N. Using the condition (b) of Proposition 1 in Section 1 for
¢ = 1/n and applying the usual compactness argument, we can construct
the sequences of sets which are completely separated by i and whose
u}lion is equal to M,\ DN resp. M,\N. Conversely, let M,, M, be two
“disjoint closed subsets of K. Since the LP-norm is order continuous, K
is extremely discomnected and every rare subset is an F-null set in JK.
Hence we can agsume that M, and M, are open-and-closed. It is now clear
that thg above condition impliex that o separates M, and M, except
for an H-null set.

Remark. First, it is clear that the proposition holds also if H is an
algebra contained in L*. Moreover, the case of a o-finite measure space
can be treated similaxly. This shows that the result of R. F. Farrell [8]
is included. If F.is a Banach function space on (X, I, u) with absolute-
ly continuous norm (see [7]), . Nakano [6] has shown that the norm
of B is even order continuous. Hence nothing essential has to be changed
and Theorem 2.2 of M. M. Rao [7] follows also.

CoroLLARY. Lot X be a compact space, u & finite Borel measure on X
such that every non-empty open set in X has positive measure. C (X) can
be ‘(canonically) identified with a dense sublatiice of L?(X, p), 1< p < oo
if and only if u is regular. ) 7
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Existence of some special bases in Banach spaces

by
P, WOJTARZCZYK (Warszawa)

Absteact. The main result of the paper is that if X is a Banach space with
o basis and ¥ has a normalized basis which is woeakly convergent to zero and sabisties
o cerbain condition, then X --¥ has a normalized basis which is weakly convergent
o zero. A fow similar results for other classes of hases are stated. New bases in 00, 1]
and Iy [0, 1] are construeted. A few results about universal bases are stated.

0. Introduction. In this paper we consider the following problem:
Suppose we have a Banach space X with, a basis and a Banach space Y
with a basis possessing some additional properties. Can we construct
a Dbasis possessing some additional properties in the space X+Y% We
solve this problem for webases and for p-Hilbertian and p-Besselian
bages (for the definitions see below).

Section 1 contains the definitions, notations and gome known facts
which. ave used later. .

The central section of the present paper is Section 2. In this section
we prove one fact on bages in the finite-dimensional Banach space (Prop-
osition 2.1). This proposition is our main tool in Sections 3 and 4.

In Section 3, Proposition 3.1, we prove that if X has a basis and Y
has & wo,-basis satisfying some technical conditions, then X +Y has
a we,-basis. Tn particular, from our results it follows that if ¥ has a shrink-
ing bagis, then X - ¥ has a we-basis.

In Section 4 we prove some analogous theorems for Besselian and
Tilbertian bases. As an application we obtain the existence of some inter-
esting bages in O[0,1] and Ly[0,1] Those examples answer certain
questions of A. Pelezydski [8] (ef. also [10] Problem 11.1). )

Section § is devoted. to universal bases. We prove the non-existence
of we,-basis universal for all wa,-bases. We obtain some information about
bases universal for all shrinking bases. Since the proof of this result is a
simple modification of the preof of Szlenk [12], we only point out the
necessary changes in-his proof. ‘ -

The author is greatly obliged to prof. A. Pelezyhiski for suggesting
the problem and many useful comments during the: preparation’of the
present paper. In particular, the possibility of applying Proposition 2.1
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to Besselian and Hilbertian bases, that is in fact the whole Section 4,
was observed by him.

1. Preliminaries. A sequénce (z,) of elements of a Banach space X
is said to be basis iff there exists a sequence (x}) of bounded linear func-

tionals on X such that & = Y @(®) &, and @, (#,) = Oy for s, m =1,2,...
1

N=
The functionals (}) are called the coefficient funciionals of the basis ().
They are a bagis for the subspace of the dual X* which they span. It is
well known that the sequence (z,) of elements of a Bzmach space X is

KiIZa 2

for each sequence of sealars (a,)?F and each » and k ’T‘he sma]lest Huch
constant K is called the morm of the basis. A basis is called normalized
iff )l = Lform =1,2,..., and it is called seminormalized iff 0 < inf|lm,|
< sup |, < oo, A ba.s1s is m,lled. a wey-basis iff it is seminormalized and
weakly convergent to zero. A bagis (z,) in X is called shrinking iff for
every feX* we have lllcgl If lopangagyssll = 0- A sequence (X,) of finite-dimen-

a basis for X iff there exists a constant K such that ||Za o] <

sional subspaces of X is called a finite-dimensional decomposition iff for
each weX there exists a unique sequence of vectors ,eX,,, » =1,2,...
such that # = Y u,. If we have a basis (@,) and an increasing sequence
of integers (), then the sequence of subspaces Xy = span (T, 11, -+ ¥, " J
forms a finite-dimensional decomposition. The following Lemma is a par-
tial converse of this fact.

LevmA 1.1. Let (X,) be a finite-dimensional decomposition in X

and let each X, have a basis (a™)in, of norm less than or equal to K. Then
- the sequence

1 1 2 2 3
By eoey By By ovey Biogy By oo

is @ basis for X.

This lemma is well known and goes back to Grinbylum.[2]. In this
form it is stated in [4].

The symbol X -+ ¥ means the direct sum of Banach gpaces X and Y.
The elements of X+ Y will be denoted by «-+y where weX and yeX.
We will identify the space X (resp. ¥) with the subspace {w-+0: weX}
e X+ X (resp. {0+y: ye¥} = X+ Y). We can introduce the equiv-
alent morm on X+ Y by [e-yll = max(jlzf, llyl). The space X+ X
with this particular norm will be denoted by (X + ¥),,.

The reader is referred to [10] for general information about bases
considered in this paper and for the proofs of all the facts about bases
used without specific reference.

All the considerations are valid both for the real and for the complex
case.
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2, Tn this section we prove Proposition 2.1 concerning bases in finite-
dimensional spaces. This proposition is our main tool in the rest of the
pregent paper.

propostion 2.1. Let X be an n-dimensional Banach space, n = 2,
with basis (61, of norm K and coefficient funetionals (et Let B be
the one-dimensional B(maoh space and let e<R be a vector of norm one. Then
the sequence

L

. .
yummgwkzsu v =t o (=1, 2y 000y )

dom ]

"
where ¢ = || Y ¢;|| is a basis in the space (R+X), of norm less tham or
Aem ]

el S+

Proof. It is easily seen that (¥,)i-, is & basis in (B+X)e-
estimate the norm of the new bagis. For this purpose let us take

g = 2 Liyie(B+ X

qoan)
Using the definition of y, we have

- (i’;d)%e-pzﬂ: (& L6

equal to

(71

‘We shall

with [le] < 1.

Since |k < 1, by the def.lmtlon of the norm in (B +X), we get
| D<o HZ(;.,JFci)eiHsl
Areal) [
Thus
n n n n
2 Lt (n—1) | m\2(¢o+c¢>1 = l(glc;‘)(t_zl(mgm] <o,'

which implies |£| < 2e(n—1)""
Next we estimate the norm of the vector }j’m/, for 1L <k <n.

(Sl -G Soanrl ek

i=f-+1

oS S el
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‘We will estimate each quantity separately. For the first one we have

ERIEE I Sia)(3 el

2 X L2 26
Sw-1 +HZ% St +K(1'W:.TH§

because “25167” K [|Z‘C¢e¢]| and

H;m HZ@OH

For the second quanmy we have

HZ Gt set( O, ef 2 HZ(:UH, o] X
<K+n——_01(K-|_1)”;gi

—~1501+~]

|

-+ 14l

D

w3l

So we obtain

3
H 2 LY
=0

2
< max (—-——— +K(1 +
\n—1
5 n
2¢
=K —_—
( fn—lugef n—1" n—1

2¢ = 2¢ >
- x| | 2w
( K n—1 g;ei )+fn—1 ;gi
This completes the proof.

3. In this section we congider the question of the existence of
wey-bages in some Banach spaces.

We begin with the following

ProposrrioN 3.1. Let X be o Banach space with a basis and let ¥ be
@ Banach space with the wey-basis (y,) satisfying the following condition:

there ewist two sequences of matural numbers ()2, and (%),
(*) such that 7c < Ppp1 < Kppy—1 and hm(c —py) = oo and the sequence

o ), K+——n%_3—1 (K -+1) HZnei “)
4=l
=]

)+2max(

”2 M | Zyn) is weally amwergent to zero.
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Then X -+ Y has & wop-basis.

We shall need the following essentially known fact (cf. e.g. [10]
Chapter IL § 9).

ToMMA 3.2. Let Y be an n-dimonsional Banach space and let (1)
be a normalized basis in Y of norm I, Then the sequence f, = ¢4, fi = ¢;—e6;,

$=22,8,...,n 08 abasis in ¥ of norm less tham or equal to K-+ sup ]| Z‘ e,H.

Jl[oreowr we hawe 2 3= sup \fil 3= ind |fill = suplleg|™* for i = 1 2,

and? || Z‘ 11 2= n, where (¢f) and (f7) denote the sequences of coefficient fzmotwn-
o

als of the bases (e) and (f;), respeotively.
Proof. The sequence (f,) is obviously a basis in Y. Pick an y =

n N1 *

= iZfi‘(?/)me with |yl < 1. Since y = Z:(f? ()~ @) e+ Fa (@) 0
o] fm

we have

| 3] =] 3 (- Fa@let i wa] <X+ 15
i1 b=l

<x+om| 3]

because fj = {th fork =1,2,..., %
Since ||f| <2 for ¢ =1,2,...,n, we get
1 = o} (f) < lefIfell < 2161,
which implies the second of the desired inequalites. Finally, we have

n—-i(z,fi (Zfil Hzﬁ E HZL m\)zfi Ieﬂll—“Zﬁ]

Proof of Proposition 3.1 Letb (3 (v}) be the coefficient funk(jmona:ls of

the basis (y,). We can assume without loss of generality that hm || Z‘ il = o0
Let us prove this cla,lm

If we have llnlﬁupHZ"t/ [| = o0, We can. easily pass to a subsequence

Dy
in the sequences (pr) and (k). So assume that HZ%“\M We apply
TLemma 3.2 for each 7 t0 & basis ¥y, JirsPr in the space Y = §pamn. {ypﬁ{}ﬁo r.

#
Since (y}) is a basic sequence, we have sup, gsup H ynH < oo, Moreover,

p—Pyp- Py
since (y,) is a basis, the norms of bases (¥, +i)bg®r are uniformily bounded.
So we can apply Lemma 1.1 to the sequence of spaces

k
span{y )iyt  span{yii,,  span{y)fEi.,  SPAn{Ydide, .-
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and to natural bases in odd spaces and to bases constructed in Lemma 3.2
in even spaces in order to obtain a seminormalized basis in Y. It is easily
seen that this basis has the desired property.

‘Let us consider the space (X -+ Y),. Let (2,)r.; be a normalized
basis in X. In the space (X+ ¥), we congider the finite-dimensional
decomposition (Z,);.,; Wwhere

Zyyy =span{yfzi . and  Z, =span{w,, {y;}ir,,}-
To each gpace Z, we apply I?%?position 2.1 in order to obtain the
new basis in it. Since the sequerice (Z%)ﬁil is a basic sequence, by Theo-
rem 3.1 of [10] we have o

% %y
e 2wl [ ;yz‘\{sﬂl-

Thjus' by Proposition 2.1 the norms of bases in the spaces of the de-
composition are uniformily bounded. So we can apply Lemma 1.1 in
order to find that the sequence '

4

ey ky
-1 (@ @,
w7 (5 3 ) 2
‘;’i Al - Y. ,-A-1 prl)Al-l‘il/pl.,.l,

2 Teq
-1{ &, "
Soll (e Ds o
2 Do

o
where 4, = HpZ’y;* ; is & seminormalized basis in (X + ¥),,. Since 4, - oo,

Yar oor Upyots

&y
, Z:'*‘ylcla

yk1+15 rery ?/p2~—17

we see that the summands in which Z, appears are norm-convergent to
zero. The other summands are by our assumptions weakly convergent
to zero, and so this basis is a we,-basis. '
Since X+ ¥ ~ (X + Y),, the Proposition follows.
Remark 3.3. We suspect that the condition (%) is superflows. We do
not ]Enow an example of wey-basis which does not satisfies this condition.
OROLLARY 3.4. If X has a basis and contains @ complemented sub-
.21::0(; i::zl;stgfu Y+ Y ~ Y and Y has a wey-basis satisfying (%), then X

Proof. X ~Y¥Y4+Z~Y4+Y+Z~T
o o2 + +X and we apply Propo-
THEOREM 3.5. Let X have a basis and Y a shrinks ;
o ! ! shrinking basis, more spe-
cific if Y is reflemive. Them X + ¥ has a we,-basis. ! , ?
. .Proof. It is ‘W.ell known that any shrinking basis is a wes-basis. So
in view of Propos‘m}on 3.1 it is enough to prove that any shrinking basis
_ satisfies the condition (*). Let (y;) be a shrinking basis in Y. Then, for
amy sequence (p,), (,) of natural numbers such that p, < k, < Prpr—1
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Iy Tey
and (k,—p,) ~» oo, we find that || 3 ]|"* Xy, is weakly convergent to zero
P »,

‘ by the definition of the shl‘inki.n& Dasis.

In particular, since the space l,, 1 <p < oo has @ shrinking basis
and. 18 isomorphic to its square, by Theorem 3.1 and Corollary 3.4 we
obtain.

JOROLLARY 3.6, Let @ Bunach space X have o basis and contain a com-
plemented subspace isomorphic to 1, for some p with 1 <p < oco. Then X
has o we,-basis.

Since by Thoeorem of Sobezyk [11] (cf. also [T1) ¢ is always comple-
mented in a separable Banach space and the unite vector basis in ¢, i8
shrinking and ¢+ ¢y ~ ¢y, Wwo have

COROLTARY 3.7. If a Banach space X has & basis and contains a sub-
space isomorphic to ¢y, then X has a wey-basis.

A predual of L is a Banach space X such that X* ig linearly isometrie
to Ly(u) for some measure u. Combining our Corollary 3.7 with the result
of Zippin [16], we infer that every separable predual of L, has a we-basis.
In particular, the space C[0,1] has & woy-basis. This fact has recently
been proved by Warren [13]. :

Liet us recall that a Banach space X hag the bounded approximation
property iff there exists a sequence of finite-dimensional operators
T,: X —» X such that for every »«X we have T (@) - .

COROLLARY 3.8. If a Banach space X has a basis and Y has a basis
(or Y has a basis and X* has a bounded approwimation property), then X + Y
has a woy-basis.

Proof. By Theorem 1.4 of [4] ¥ has & shrinking basis, and so we
apply Theorem 3.D.

Remark 3.9. The spaces O[0,1]41, where 1 <p < oo give an
example of continuum non-isomorphic spaces with wey-bases. No basis
in O[0,1]-1, is shrinking or boundedty complete or unconditional. A
slightly wealcer fact was established by Holub [3] Theorem. 4.4.

4. In this soction we consider p-Besselian and p-Hilbertian bases.

Let us recall the detinitions.

A seminormalized basis (w,) in a Banach space X is said to be
o o0

p-Hilbertian if 3|a,|” < oo = Ya,, is convergent;

. 1 n=) .

N
0

p-Besselian if 3 a,@, is convergent. = l@,|? < oo,
Pl =l
We agsume 1 < p < oo : ) )
Tt iz obvious that if p < p, and the basis (,) is p,-Hilbertian, then

(w,) is p-Hilbertian, and if (z,) is p-Besselian, then it is p4-Besselian.
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THEOREM 4.1. Let X have o basis and contain o complemented sub-
space isomorphic either to 1,, 1 < p < oo, or to ¢,. Then X has a basis which
is p'-Hilbertian for every p’ < p; for every p if X contains ¢,.

Proof. We will prove the theorem in the case where P < oo. In the
case of ¢, the proof ig the same. Since X ~ X +1, it is enough to prove
the assertion of the Theorem for the gpace (X +1,).,. Let (=, Jm=1 D@ & nor-
malized basis in X and leb (e,)>., be the unit vector basis in the space I,.
Let ¢ = p(p—1)~Y. We put ’

antl_g

zn = (2 q‘”n"’ 2 )

K2
: —
B =2 awn+62"+’i-17
B=1,2,...,4=1,2,.., 9"
K3 gm1_q

Since 20 =1 Y e

nn
(111 an analogous wcmy as in proof of Proposition 3.1) that the sequence
2,2, 2%, 80, ...,2k 20, .. isa semmonnahzed basis in. the space (X Flp)eo-

&l it follows from Lemma 1.1 and Proyposition 2.1

Loeot 223 tako & sequence ¢f, n =1,2,..., k = 0,1, , such
that 7221 kz; leh?" < oo for some p’ < p. We have to prove that Z Z%zn is
convergent. We have =

) n 2" co 2" n

B " [ 09 B
;go kil é:(o 27 +2" Z cn)wn+glg(m 02 Pom g

We will consider each sum separately. The first one ig absolutly
convergent. Indeed

© _n 2" © «©

PUELRES 3}:0{: <22~"|cn1+2§]2 7 fof]

=1 =] =l N1 Jorel

< S (3 3 (5 Sty
fom=] =l fo==1 A= k=]

_22“”10 |+(22 |c"|”) (222”(1"") T <o forp<p.
N=1 M=l k=] N1 fo==s ]

The second sum is convergent because for P’ < p we have

oo 1 o0 00 o

(S SerarFop (S Srpe(S S fp

n=1 k=0 n=1 k=1 n=1 k=1

0

(3 S Sarp <

Nl el n=l
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This completes the proof.

Remark 4.2. A proof analogous to that of Theorem 4.1 gives the
following result:

Let X have a complemented subspace isomorphic either to 7,,
L p = o0, or to ¢y Tuel N be an Orlicz function such that M(z Yo @ = 0

whete p~t4-¢~! = L and M iy an Orlicz function complementary to J.V
o0
Then X has a normalized basis (w,) such that > a,®, is convergent when-
New],
ever EN(la,, ) < oo,

Zhor the definitions and pr*t)pex‘muﬁ of Orlicz functions we refer
to [5]. ,
COROLLARY 4.3, The space ([0,1] has a basis which is p-Hilbertian
for all p < oo

Remark 4.4. Since a p-Hilbertian basis for 1<p< oo is a
woy-basig, Corollary 4.3. improves the result of Warren [13].

TumormM 4.5. If X has o basis and contains a complemenied subspace
isomorphio to b,, 1< p < oo, then X has a basis which is p'-Besselian for
ol p' > p.

Outline of the proof. Let (x)) be the sequence of coefficient
functionals of the basis in X and let (¢;) be the sequence of coefficient
functionals of the unit vector basig in lz,. We apply the construction unsed
in the proot of Theorem 4.1 to bases () and (}) in order to obtain a basis
(vs) in the space span{wj}--span{e,} which is ¢-Hilbertian for all
¢ <plp—1. It follows from the construction that the coefficient functio-
nals of this basis form. a basis in X +7,. Thus it is a basis in X which
is p'-Besselian for all " > p.

The dual version of Remark 4.2 is also true.

OOROLLARY 4.6. The space L,[0,1] has a basis which is p-Besselian
for all p>1,

Remark 4.7. Let (w,) be a bagis in L, [0, 1] given by Corollary 4.6.

This basis has the additional property that if 3 a,®, is unconditionally
el
convergent, then it is absolutly convergent. To see it let us consider an
operator T: L,[0, 1] — I, defined by T(3 a,a,)
N=1

is continmous and by the Grothendiesk inequality (cf. [6]) is absolutly
summing. But this means that T transforms unconditionally convergent
geries into absolutely convergent ones. So we have }|a,| < co.

Remark 4.8. Corollaries 4.3 and 4.6 answer the question of Pel-
czyniski [8] (cf. also [10] Problem 11.1).

= (a,). This operator
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5. This section is devoted to universal bases.

DeriviTIoN (cf. [9]). Let </ be a class of bages. A basis (x,) is said
to be universal for of iff every basis (y,)es/ is equivalent to a suitable
subbasis of (w,).

Let (@,) be a wey-basis in X. Denote by K. the closed unit ball in X*
equipped with the w*-topology. Kx. is a compact, metric space. The
sequence (#,) can be regarded as a sequence of elements of C(Kyx.), the
space of all continuous sealar-valued functions on Kx.. The gequence
(w,) is convergent to zero in the weak topology of C(Kx.).

Let us define the index n(m,) of a basis (w,)-

First, by transfinite induction, we define for ¢> 0 sets P, (e , (wn)}
as follows:

PO(Ey (mn)) = KX‘? .

P2, (@4)) = {@" e Kx.: there exists a sequence (2%), 2! - «" and
an increasing sequence of indices %, sueh that liminf lm,ﬂn(z:)] = &},

P.(s, (4,)) = ﬁﬂPﬁ(e, (#,)} when a is a limit ordinal number.

<a
The index #(z,) is defined by
(@) = supsup {a: Ple, (#,) # ).
>0

It was proved by Zalcwasser [15] and by Gillespie and Hurwitz 1]
that for each sequence of functions (,) weakly convergent to zero in
C(Q), (@-compact metric) we have 5 (z,) < w, where w, 18 the first uncoun-
table ordinal number. Thus we have

Levma 5.1. If (4,) is a wey-basis, then n(x,) < .
Modifying the proofs of Proposition 2.3 and Proposition 3.2 of [12]
by using the set {x,} instead of the unit ball of X we obtain the following:

Lemma 5.2, If (2,) is equivalent to a subbasis of a wey-basis (y,), then
7{(%) < 9 (Yn)-

LeMma 5.3. For each countable ordinal number a there exists a normal-
ised basis (wp)w., i a reflevive space such that 4(wf)> a. Since (@)

18 @ basis in a reflemive space, it is shrinking and boundedly complete.

Using Lemmas 5.1, 5.2, 5.3 one easily obtain (cf. [9] Th. 4 and [14]
Corollary 2) the following:

0
Pyl

THREOREM 5.4. There is no we,-basis which is universal Jor all wey-bases:
The same argument sghow

THROREM 5.5. If (,) is a basis universal for all normalised shrinking
bases, then (x,) is not a we,-basis.

This Theorem extends- Theorem 4 of [9].
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