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On commutative approximate identities
and cyclic vectors of induced representations

by
A, HULANICKI and T. PYTLIK (Wroclaw)

Abstract. It iz shown that overy locally compaet group has a commutative
approximato identity for Ly (6) which consists of contintons positive functions which
deereaso vory rapidly at infinity. This is applied to a construction of a eyclic vector
for a reprogentation of a loeally eompact first countable group induced by a cyelic
reprosentation.

The aim of this paper is-twofold. To show that every locally compact
group has a commutative approximate identity for I,(G) which consists
of continuous positive functions which decrease very rapidly at infinity
and apply this to a construction of a cyclic vector for a representation
of a locally compaet first countable group induced by a cyclic represen-
tation.

A congtruction of commutative approximate identity for a ¢*-algebra
was given by J. F. Aarnes and R. V. Kadison [1]. Their method uses
C*-algebras technique and does not apply to the group algebras. It would be
interesting to know whether there exigts an approximate identity for
Ly (@) consisting of commuting continuous functions with compact support.

The fact that for a first countable group representations induced by
cyclic representations are cyclic was first proved by F. Greenleaf
and M. Moskowitz [b] and [6] and a construction of a cyelic
vector for such representations was claimed by the authors [7]. Unfor-
tunately [7] makes use of a statement in. [2], p. 49, which is false, as it
has been recently discovered by R. Goodman. The construction presented.
lere avoids this difficalty and (for induced representations) improves the
construetion given in [7].

Very briefly the idew is the following., For a Lie group G the funda-
mental solution u(g, t) = p*(g)_of the heat equation is a one-parameter
semi-group of non-negative functions p%, that is p°xp’ = p*** for all
positive real s, . Moveover phf tends to f as t tends to zero, and for a fixed
t the function p' decreases fagter than exponentially at infinity. In ghort,
functions pf, te R*, form an approximate identity for L;(@) consisting
of commuting rapidly decreasing functions.
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On the other hand, the positive-definite measures u which define
representations induced by c‘ycho representations are of at most exponen-
tial growth, Thus functions ' can be used in the same way as functions
e, were used in [7] to construct a cyclie veetor for the representation 1%,

Another method of saving the construetion in [7] for Lic groups
has been recently developed by R. Goodman [4].

1. The space of very rapidly decreasing functions. Lot ¢ bo a locully
compact group. We say that o non-negative function ¢ on ¢ iy submulti-
plicative if

plgh) < p(g)p(h)  for all g,k in G.

Let @ denote the set of all submultiplicative continuous funetions on @,
It is clear that @ is closed under multiplication and that the modular
function dy is in D(F).

Let {@;}iey be the family of all compactly generated open subgroups
of @ directed by inclusion. For an 4 in I we define E(G,) to be the space
of continuous functions f such that supp fis contained in ¢; and for cach
@ in (@)

sup {[f (@) (D)l: ge @ =|fll, < oo.

The set of pseudo-norms | -||, define a locally convex topology in E(().
The space B(@) = U E(Gy) is topologiezed as the inductive limit of the
iel

spaces E(G). Tt is easy to see that E(G) is complete and that the functions
with compact support form & dense subset of E(G). E(G) is invariant
under left and right translations and both left and right regular represen-
tation of & on E (@) are jointly continuous.

PropOSITION 1.1. If G is compactly gémerated, there is a ¢, in D(G)
such that [p,(g)" dg < oo and for every @ in O(G) there is a constant M and
a positive integer kb such that

(1) e < Myolg)*

Proof. Let U be a precompact neighbourhood of the unit clement

in @ such that |J U™ = @& and F a finite set such that U? « F'U. Then,
n=1

of course, U” = P"*U. For a ¢ in G wo put
(g) = inf{n: ge U™}

for all g in G.

and

7o(g) = |UI™? fr(hg)dh.
o

Since 7, is left uniformly continuous on &, the function
o(g) = sup{lvo(gh) — 7(h)|: he G}
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is a non-negative function on ¢ continuous at the unity and
o(gh) < o(g) -+ o(h),
a(g) = 7(9) = v(g) —2.
The continuity of o at a point & in G follows from the inequalities
—a(g™) < algh) —o(h) < o(y).
The funetion ¢, is defined as follows
(1.2) polg) = ("ﬁuw):
‘We have

where 0 == card .

~

ot wag = > U'”"‘f"dgr:;;fj

i el pgn=1 n=1 U, -1

o2 2z()+4

dy

}‘1(#—"“-{2 U ll‘“\*oslvlzo—n(\ co.

nn-l Tyl

Now let ¢ be an arbitrary function in @ (@) and let M, =
ge Ul For an clement ¢ in ¢ we have g = g, ..
Hence

(1.3) @) <olgs) ... 0(g) <

= dlog, My and M = M,

CoroLLARY 1.2, B(G) is o *-subalgebra of L,(G).

CoROLLARY 1.8. If fe B (W), then for every ¢ in ®(G
belongs to L, (G).

COROLLARY 1.4. Suppose G is generated by o relatively compact neigh-
bowrhood U of the unit element of & If o set F in E(G) is bounded, 4.e.
||f||q:~ Oy Jor every fin X and ¢ in (G, then for every p in &(G) flg)p(g)
tends to zero uniformly on B as g tends to infinity.

Proof. Take ¢ in @(@) and &> 0. Let ¢, be the function defined in
(1.2) I)v means of U, Sincee K iy bounded, wo have

sup {p(9):
. g With gye U and v(g) == n.

MY = M9 < PO I gy,

where &

) the function fo

Vo @)l < Cpp,  Tor all f in F.
Hence, by (1.3),
I’((f)(/'((l) = (’r/vrp */"(TT

for all g¢ U™ and » lavge enough.

1
= () Py I << &y

2. Approximate identity for H(G). In this section we prove the
existence of a commutative approximate identity in E(@). For Lie groups
this is w consequence of several well-known properties of the fundamental
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solution of the heat equation. For other locally compact groups we obtain
the result by Yamabe approximation theorem.

Let G be a Lie group. We denote by BO(G) the space of bounded
infinitely differentiable functions whose all the derivatives are bounded.
Let L(G) be the algebra of linear operators on. BC*(G) which commute
with right translations on ¢. The Lie algebra LG of G viewed as right-
invariant differential operators of the first order on @ is contained in
L(G) and so is the envelopping algebra of LG.

Let ¢ be another Lie group and let

w: G- @

be a homomorphism of & onto ¢'. For a function f in BC*(G') we cor-
respond a function m*f in BC®(G) defined by =*f(g) = f(n(g)). Clearly,
since m is onto, =* is one-to-one and the subspace n*B(J""(G’) of BC™(@&)
iy stable under L(@).

For a function f on & which is constant on the eosets modulo ker =
let fbe the unique function on @ such that #*f = f. We have the algebra
homomorphism

my: L(@)>T — my T e L(G)
defined by
(e L) = (Tm*f)".
Clearly
s LG = LG

and . coincides with dm, if LG and LG are viewed as tangent spaces
at the unit elements of G and @', respectively.

Let pe L,(G) and let T,f = pkf, where f< BC®(G). Then T,e L(G)
and
(2.1) o Ty = Ty

where p’( f p(hg)dh.

kern

We say that a metric locally eompac‘u group G is a Yamabe group,

if there exists a sequence U, o U, o ... of relatively compact neighbour-

hoods of the unit element in G with. ﬂ U; =1 and a desconding sequenco

j=
Ny Ny, ... of normal subgroups of G such that N; = U; and Gy = G[N;
is a Lie group. (A discrete group is regarded as a 0- dunensmnznl Lu, group.)
Let G be a Yamabe group and let o/ and =, be the natural homomor-
phisms
al: @Gy,

Of course, n’~! = m;_.a’.

7yt Gy > Gy

icm®
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By an easy inductive procedure, for each j we select a basis
ity eoes Xpngyy

in the Lie algebra L@; of @, in such a way that

XJ‘—-lln for 70 (‘I.lmGi 13
71Xy, =
0 for & > dim@y_,
Then, if
n(f)
4y = inn
il
we have 4;e L(Gy) and, morcover,
(2.2) mywdy = 4, .

The following properties of the operator 4; were established by
L. Garding [3] and B. Nelson [9], cf. also [10]. .

(i) 4;1is a self-adjoint negative operator on L,(G),
(i1) for real positive ¢ the operator exp (¢4;) is of the form exp(¢4,)f
= pif, where pi(g) = 0 and fpj ydg =1, consequently
(i) exp(t4;)e L(Gy), G
(iv) for each ¢ in @(Gj) for every positive real s there is a constant
(2.3) ¢ such that f PP e(g)dg <O for all t<s, whence algo

f 125(9) (9 |ﬂdg < oo for all positive t,
(v) for every f in L,(G), 1<p < oo, %11101 Ipbef—Fl, =0 and

also, if f is uniformly continuous, lim|plf—fl. = 0.
=0

LeMMA 2.1, For all t« R* we have pie B(G).
The proof follows from the following evaluation and (2.3) iv

[ 291 (9) 85 (9) = [ Bi) D49 0 (9) 85 (g) dh
< [ p(Wypm)pi(h~g)p(h™"g) 86, (9™") dh
<([ i memyran)™ ([ 19)(h=g)p (=) 8, (g~ 2ah)
= ([ 1 (W p ) 2an)" ([ 12§ (h) o, (Wy12an) ™.
Lvma 2.2, If fe E(Gy), then for a ¢ in P (Gy) we have
lim [pjef —fl, = 0.

/2
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Proof. We take an f in E(G;) and a ¢ in @(@;) and we note that
for an ¢ > 0 there is a constant ¢ such that

(2.4) Ipbefl, < € for all 0 <t<s.
In fact,
@) ()l < [P g) o (R)g (W™ g) dh
< [ B0 () b supl S ) (72 9)
= [Bi(h) g (h)dh-|fl,,
whence (2.4) follows by (2.3) iv.

Now for an ¢ > 0, in virtue of (2.4), we apply Corollary 1.4 to select
a compact set A in Gj such that

wif@e@) <ef2  and  |f(9p(g) < &2

for all g outside A and ¢ < s. Then
[Df(9) —F(9)lo(9) <
for g in A and all teR™*, and
pi*f(9)—F(@lw(g) < e

‘whieh, in virtue of (2.3) v completes the proof of the lemma.

Now let m; be the normalized Haar measure on N, viewed as a Borel
measure on G. Since N, is a normal subgroup, then for all continuous
functions f on & we have

(2.5) mpxf = femy,

Moreover, for & < j, we have

supg (@5 f — Flleo

for g¢ A and t<s, ’

j=1,2...

My My, = My
For a positive tand a j = 1, 2, ... 'we write
B(g) =pila' (), 9.
In virtue of (2.2) we have
7y.e@XD (1) = exp(td;_,),
whenee, by (2.1),
Dialm(9) = [ pihg)dh,

kcr:rrJ -1

Phemy = 7, for all k< j.
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We also have

(2.7 PLeE(@) for all t and § =1,2, ...
In fact, let pe $(F). We put
(2.8) ' 7;(g) = sup{p(gh): hel,}.

Then, clearly, ¢,
Lemma 2.1,

sup {7 (9) o ()

is a submultiplicative function on & and, in view of
¢ ge G} <sup{pi(9)gy(g): ge @y} < oo.

Let
(2.9 2 =7

Now we are ready to prove o theorem on the existence of a commuta-
tive approximate identity in E(G). As above we deal only with the metric
groups, since this is the case in whieh we are going to apply the theorem.
It is clear how to generalize this to an arbitrary locally compact group
on the expense of more complicated notation.

TuroreM 2.1. Let G be a locally compact metric group. For every open
compactly generated group H there exists a sequence of functions {p;} j =1, 2,

. i B (G) with suppp; < H which has the following properties:
() p;(9) 0

(ii) P;‘ = Pj;

(ili) pp, = pyep, for all 4,§ =1, 2,.

(iv) for every @ in D(G) there is o constant O, such that |p*fl, < Cull fll,»
for all fin E(G) and j = 1,2, ...,

v) for every f in E(G) the sequence pxf is convergent to f im the
topology of E(G).

Proof. First we note that if H is an open subgroup of G and the
theorem is proved for H in place of &, then it holds for ¢. We verity (v)
only, the rest heing casy. Let fe I (@). Since suppf is contained in a com-
pactly generated subgroup, we seo that

f oo S}f’ll

for a sequence of elements gy, gy, ... of 6. By Corollary 1.4, for every ¢

in @(@) we then have |fl, >0 as % -» co. Consequently it is sufficient

to show that for every » lim ||p,* fo—Fulp = 0. For a fixed n we translate
o

J=1,2,...

with suppf, <= Hy,

the function f, from the Ilglm to get a function f, such that suppf, < H.
Ience, by agsumption, lxm % Jn—Fula = 0 and, since convolution from
g

the left commutes with m(mslm‘rlon from the right, and the latter is contln-
uwous in E(F), we got the result.
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Since every locally compact group contains an open Yamabe subgroup,
cf. [8], chapter IV, we may assume that G is Yamabe.

Now let p;, § = 1,2, ... be defined as in (2.7). We prove that they
satisty (i)—(v) of the theorem.

(i) and (ii) follow immediately form the definition. (iii) is an easy
consequence of (2.5) and (2.6). Thus only (iv) and (v) require any proving.
To this end we prove first

Luyvma 2.3. For every ¢ in D(G) there is a constant 0, such that

(2.10) [pi(9)e(9)dg < O,

Proof. Let pe &(G) and ¢(s) > 0 for all ge G and let ¢, be defined
as in (2.8) (for j = 1). Then, since all functiong ij, o and the measures
m; are non-negative, by (2.6), we have

[2i9)wlgrag=> [ Big)e(g)dg = [ Blrmy(9)p(9)dg
= [[ B0 g)amy (B p(hg) g () dg
= [[ B g)g (W g) dgep (k)™ dm, (B)

= [[ Bi(9)#(9) g ()~ dimy (B).

Hence

I P9)e9)dg < K [ pi(g)p.(g)dg < KO for all teR*
a,ndj = 1,4, --.y where K = ([¢(g)"dm,(¢))™* and € is the bound for
f 21(9)e.(9)dg stated in (2.3) iv. Thus, by (2.9), the lemma follows.

I‘rom Lemma 2.3 property (iv) follows almost immediately. Let
@< ®(@) and let U, be the constant established in Lemma 2.3. Then, for
an f in E(G), we have .
< [ (WIF(g)l g (g)dh

<[ Mg Bh-sup 5 (1 g)p (5~

[pxf(9)e(g)

'L Ol fle

To prove (v) we take a ¢ in &(@), an fin B(G), an & > 0 and wo select

a jo such that

(2.11) [mpxf —fll, < ¢/3C

where ¢ = max{C,, 1} Then by Lemma 2.2 we select a j; such that
D5l my % f —my xfll, < /3

Hence, in virtue of (2.6), we have

(2.12) 153" my % f —

for allj > j,,

for all4 > j,.

myxfly < ef3  for alli> j,.
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Now, by Lemma 2.3, from (2.11) we infer

Ipamy+f—pxfll, < efd3 for alli> gy,

which together with (2.12) and (2.11) again proves (v) and at the same
time completes the proof of Theorem 2.1.

3. Cyclic vectors of induced representations. Let ¢ be a locally compact
group. Let K(G) denote the space of continuous functions with compact
wupport on (. As we have noticed before, (@) is dense in B(G). The clas-
gical Blattner construction shows that a unitary representation of G induced
by a cyclic representation iy defined by a positive-definite measure
ue K(@), ¢b. eg. [2]. We shall prove later that u is bounded on E(®),
that is u# belongs to E (@' Let us first recall Blattner construction.

A Radon measure g on @ is bounded on E(G) i [|fldlul < oo, we
then write ue D((V)

Lot peB(@). T p is positive-definite, ie. (f*%f, u> =0 for all
fin E(G), it defines a unitary representation of & as follows. Let I =
{we B(G): {w**@, uy = 0}. Then H), = E(G)/I is a pre-Hilbert space
with a strietly positive-definite inner product (%, 7) = {y**a, u>, where
2 -7 is the natural mapping of E (@) onto E(G)/I. Moreover, if L,x(h)
= (g~ h), g, he @, then I is stable under L,, ge @, and so L, acts on
H’ and is unitary with respect to (-,-). As such it extends to the completion
H, and is denoted by Lj. The mapping g — L;; ig the required representa-
tion. For a function f in E(G) we write Lf f flg)Lydg. We then have
(8.1) = (frxx)”

Let H be an open compactly generated subgroup of G and let pj,
be the approximate identity in B (&) which satisfies (i)-(v) of
Theorem 2.1. and supp p; < H. Let a; be a sequence of positive numbers

such that the series
o
2 PPy
el

is convergent to o function £ in K(@). To see that such a; 5 =1,2,...
exist we take the function g, m @ (H) as defined in Proposition 1.2 in

=1,2,...

(3.2)

D(H) and select a; yuch that ), a2y j/ oo,

Tunorsem 3.1. If u is a 'posthe defzmte measure bounded on K (G),
then the vector E, where £ is defined by (3.1) is eydlic for the representation
Gag—> Li.

Proot Let P be an orthogonal projection in H* which commutes
with every L#, ge@, and P& = 0. Then P commutes with every L,
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fe B(®). For an arbitrary ¢ we have
<1 - -
(3.3) 0= (Pg’ (pstep)”) = Z“J (Py*D5) ™5 (Pe*Dy) )
i=1

But for all 4,j = 1,2, ..., by (3.1), we have

(P(psp;)™, (poxp)™) = (Lh, PPy, (p%0)7)
= (PP Ly (p40,)7) = (PBiy (0 p*p))7)
= (PPi, (0% p*p0)™) = (PF:, L (9% p)”)
( -Ppia (P p)7) = (P(PJ*Z%) ) (P 2)7).
Since a; > 0, (3.3) implies P(pp#p,)” =0 for all ¢,j =1,2,...
since p; is an approximate identity in E(@), P,
Finally, for arbitrary f, h in E(G)
(Pf, B) = (frp)™ B) =

‘Which shows that P is zero and so  is cyelic.

TurormM 3.2. If u is o non-negative positive-definite Radon measure
on @, then p is bounded on E(G).

Proof. It suffices to show that if H is an opon compactly generated.
subgroup of & then E(H) < Ly(p). Since u is positive definite, for every
non-negative continuous function f with compact support in H, fruxf"
is a non-negative positive-definite continuous function and as such it
is bounded. If ¢, is a function in @(H) as defined in Proposition 1.1, ¢;*
isintegrable.

Hence,
=0 for all j =1, 2,

lim (P

J—o0

lun(l—"p“ (feh)™) =

oo > ,f Frwsf (@) pol9) T ag = [ *or™f(g)dp(g)
Zs H

But, since ¢, is submultiplicative, there exists a positive constant I such
that

M3t (s) < F*o7'*f(g)  for all geH.
In fact,
Feerflg) = [ [ ©)e (s gh) f (Y dsah
= [7 e (s ds [F()gr (B) a7 ().
Consequently,

Joet(s)ap < M [ freqrsf(s)du(s)

_ff*‘u*f T1(s)ds < oo.
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But, for every fe E(H)
JeLy(p)
TrmoriM 3.3. A4 wunitary representation of a first countable, locally
compact group G induced by a eyclic representation of a subgroup H is eydclic.
Proof. The indueced representation is of the form g — I, where w
is the Radon measure defined as follows

[#@)auty) -

where o(h) is a normalized positive-definite continuous function on I
(ct. [2]). ,
‘We show that ue K(F)'.

| [Fo)aug)| <

) Iflgg < 0y hence |f] < Cey?, which shows that
, what we had to prove.

[ FORY SR (R 85 (h) o (R,
I

In fact,

(3.4) ] F(B)] 84 () 87 (h) dn

whenee, sinee 0} (h) 8;2*(h)dh is a positive, positive-definite measure,
by Theorem 3.2, the right hand side of (3.4) is finite for all fe E(@), so
we B(@) and the theorem follows from Theorem 3.2.
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