maximal ideal space \mathfrak{M} . If there exist two real functions f_1, f_2 in B and a positive non-zero Borel measure r on \mathfrak{M} , with compact support, such that

(4.1)
$$\int_{\mathbf{R}^2} (u^2 + v^2) \| \nu \operatorname{Exp} \left[i (u f_1 + v f_2) \right] \|_{B^*} du dv < \infty$$

then B contains a closed ideal which is not generated by a single function.

COROLLARY. Let $A_p(G)$ be the Banach algebras defined as in [6]. If $1 and G is not discrete, <math>A_p(G)$ contains a closed ideal which is not singly generated.

Proof. It follows from Lemma 2.2 that condition (4.1) is satisfied for $A_n(G)$.

References

- A. Atzmon, Nonfinitely generated closed ideals in group algebras, J. Functional Anal. 11 (1972), pp. 231-249.
- [2] V. A. Ditkin, Study of the structure of ideals in certain normed rings, Učenye Zapiski Moscov. Gos. Univ. Matematika 30 (1939), pp. 83-130.
- [3] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. II, 1970.
- [4] J. P. Kahane and R. Salem, Ensemble parfait et séries trigonométriques, 1963.
- [5] Y. Katznelson, An introduction to harmonic analysis, 1968.
- [6] N. Lohoué, Ensemble de non-synthèse uniform dans les algèbres $A_p(G)$, Studia Math. 36 (1970), pp. 125–129.
- [7] P. Malliavin, Sur l'impossibilité de la synthèse spectrale dans les groupes abéliens localement compacts, Publications I. H. E. S. (1959), pp. 61-68.
- [8] W. Rudin, Fourier analysis on groups, 1962.
- [9] L. Schwartz, Théorie générale des fonctions moyenne périodiques, Ann. of Math. 48 (1947), pp. 857-929.
- [10] Théorie des distributions, Paris 1966.
- [11] I. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), pp. 69-105.

UNIVERSITY OF CALIFORNIA, LOS ANGELES FACULTÉ DES SCIENCES, MATHÉMATIQUE ORSAY, FRANCE

Received September 12, 1972 (582)

A remark on the d-characteristic and the d_s-characteristic of linear operators in a Banach space

by

STEFAN SCHWABIK (Praha)

Abstract. Let X be a Banach space, and $\mathcal E$ a total space of continuous linear functionals on X which is also a Banach space. It is proved that I+T is a $\Phi_{\mathcal E}$ -operator provided $T\colon X\to X$ is compact and $\mathcal E$ is preserved by the conjugate operator T'. The paper is closely related to the work of D. Przeworska-Rolewicz and S. Rolewicz.

Let X be a linear space (over the field of real or complex numbers) and let A be a linear operator mapping X into itself and such that Ax is defined for all $x \in X$ ($D_A = X$). Let the set of all such operators be denoted by $L_0(X)$.

We denote by

$$N(A) = \{x \in X; Ax = 0\}$$

the kernel of the operator A, and by

$$R(A) = \{ y \in X; \ y = Ax, \ x \in X \}$$

the range of the operator A, and define

$$\alpha_A = \dim N(A), \quad \beta_A = \dim X/R(A)$$

(dim denotes the dimension of a linear set and X/R(A) means the quotient space). The ordered pair (α_A, β_A) is called the *d-characteristic* of the operator A. The index of the operator A is the number

$$\operatorname{ind} A = \beta_A - \alpha_A.$$

By X' the space of all linear functionals on X is denoted. Let $E \subset X'$ be a total space of linear functionals on X, i.e. if $\xi(x) = 0$ for all $\xi \in E$ then x = 0. We write

$$N_{\Xi}(A') = \{ \xi \in \Xi; \ \xi(Ax) = 0 \quad \text{for all } x \in X \}$$

and define

$$\beta_A^{\Xi} = \dim N_{\Xi}(A').$$

The ordered pair (α_A, β_A^E) is called the d_E -characteristic of A.

For a given total space $\mathcal{Z} \subset X'$ and $A \in L_0(X)$ we define the conjugate operator $A' \colon \mathcal{Z} \rightarrow X'$ by the relation

$$A'\xi(x) = \xi(Ax)$$
 for all $\xi \in \Xi$, $x \in X$.

We have evidently

$$N(A)=\{\xi \in \Xi;\ A'\xi=0\}=\{\xi \in \Xi;\ A'\xi(x)=0\ \text{for all}\ x \in X\}=N_{\Xi}(A')$$
 and therefore also

$$\alpha_{A'} = \beta_A^{\Xi}.$$

For a given total space $\mathcal{Z} \subset X'$ and $A \in L_0(X)$ the inclusion $R(A') \subset \mathcal{Z}$ does not always hold. We say that the space \mathcal{Z} is preserved by the conjugate operator A' if $R(A') \subset \mathcal{Z}$.

LEMMA 1 (cf. Theorem 1.2 from A III, § 1 in [3]). If $A \in L_0(X)$ and the total space $\Xi \subset X'$ is preserved by A' then

$$(2) a_{A'} \leqslant \beta_A$$

and also

$$\beta_A^z \leqslant \beta_A.$$

It is evident that the d-characteristic and $d_{\mathbb{Z}}$ -characteristic of an operator $A \in L_0(X)$ are not equal in general (cf. the examples in [1]). For a comparison of the given concepts of the dimensional characteristic of A it is sufficient to study the numbers β_A and $\beta_A^{\mathbb{Z}}$. Operators for which the d-characteristic equals the $d_{\mathbb{Z}}$ -characteristic are called $\Phi_{\mathbb{Z}}$ -operators (cf. [1], [3]).

THEOREM 1. Let X be a linear space, and $\mathcal{Z} \subset X'$ a total space of linear functionals on X, $A \in L_0(X)$ such that \mathcal{Z} is preserved by the conjugate operator A'.

If ind
$$A = 0$$
 and $\alpha_A \leq \alpha_{A'}$ then $\beta_A = \beta_A^z$, i.e. A is a Φ_Z -operator.

Proof. The assumption ind A=0 implies $\alpha_A=\beta_A$. Hence the inequality $\alpha_A \leq \alpha_{A'}$ can be written in the form $\beta_A \leq \alpha_{A'}$. Using (1) we obtain $\beta_A \leq \beta_A^{\mathcal{S}}$. This inequality together with (3) yields our assertion.

LEMMA 2. Let X be a linear space, $\Xi \subset X'$ a total space, Θ a linear set in X' such that $\Xi \subset \Theta$. Let $A \in L_0(X)$ and A', \tilde{A} are the conjugate operators with respect to Ξ , Θ respectively (Θ is evidently also a total space of linear functionals on X). Then

$$a_{A'} \leqslant a_{\tilde{A}}.$$

Proof. If $\xi \in \mathcal{Z} \subset \mathcal{O}$, then we have by definition $A'\xi = \tilde{A}\xi$. Hence $N(A') = N(\tilde{A}) \cap \mathcal{Z}$ and therefore $\dim N(A') \leq \dim N(\tilde{A})$.

If X is a linear space and $\mathcal{Z} \subset X'$ a total space, then for a given $x \in X$ the relation $F_x(\xi) = \xi(x)$ evidently defines a linear functional on \mathcal{Z} , i.e. for any $x \in X$ we have an element $xx = F_x \in \mathcal{Z}'$. The map $x \colon X \to \mathcal{Z}'$

is called the *natural embedding of* X *into* E' and is a monomorphism. The image $\varkappa X$ of X in E' is a total space of linear functionals on E. (For these facts see [3], A III, § 1.)

Since $\varkappa X \subset \Xi'$ is a total space, we can define for a given operator $A' \in L_0(\Xi)$ the conjugate operator $A'' : \varkappa X \to \Xi'$ by the relation

$$A'' \varkappa x(\xi) = \varkappa x(A'\xi) = (A'\xi)(x)$$
 for $x \in X$, $\xi \in \Xi$.

If, moreover, for $A \in L_0(X)$ the total space $\Xi \subset X'$ is preserved by A', then also $\varkappa X$ is preserved by A'' because we have $A'' \varkappa x = \varkappa A x \in \varkappa X$ for any $x \in X$. Hence it follows that in this case the operator A'' conjugate to A' is (up to the natural embedding \varkappa) identical with the operator A.

In the sequel let X be a Banach space, and X^+ the space of all continuous linear functionals on X. X^+ is also a Banach space. Further, let $\mathcal{Z} \subset X^+$ be a total space of continuous linear functionals on X. Then we have

$$|\xi(x)| \leqslant \|\xi\|_{X^+} \|x\|_X$$

for $\xi \in \mathcal{Z}$, $x \in X$ (norms in X, X^+ respectively). For $\xi \in \mathcal{Z}$ we write $\|\xi\|_{\mathcal{Z}} = \|\xi\|_{X^+}$. \mathcal{Z} with the norm $\|\cdot\|_{\mathcal{Z}}$ forms a normed space and we have

$$|\xi(x)| \leqslant ||\xi||_{\mathcal{E}} ||x||_{X}$$

for all $\xi \in \Xi$, $x \in X$.

For any $x \in X$ the natural embedding \varkappa described above defines a linear functional on $\mathcal{E}(\varkappa w(\xi) = \xi(x))$. By (5), $\varkappa w \in \mathcal{E}'$ is for any $w \in X$ a continuous linear functional, i.e., we have $\varkappa w \in \mathcal{E}^+$ for any $w \in X$, \varkappa : $X \to \mathcal{E}^+$. The image $\varkappa X$ of X in \mathcal{E}^+ is a total space and the map \varkappa : $X \to \mathcal{E}^+$ is a monomorphism.

For a given continuous $A \in L_0(X)$ we define $A^+ \in L_0(X^+)$ by the relation

$$A^+f(x) = f(Ax)$$
 for $f \in X^+$, $x \in X$,

and similarly $A'^+ \epsilon L_0(\Xi^+)$ can be defined for a continuous $A' \epsilon L_0(\Xi)$ as follows:

$$A'^+ \varphi(\xi) = \varphi(A'\xi)$$
 for $\varphi \in \Xi^+$, $\xi \in \Xi$.

If $A' \in L_0(\Xi)$ is continuous, then it is possible to define the conjugate operator $A'' : \varkappa X \to \Xi'$ as in the above case of a general linear space X. In the case under consideration $A'' \varkappa x$ is a continuous linear functional for every $x \in X$, i.e. $A'' : \varkappa X \to \Xi^+$.

ILEMMA 3. Let X be a Banach space, and let $E \subset X^+$ be a total space of continuous linear functionals on X. If $A \in L_0(X)$ is a continuous operator such that E is preserved by the conjugate operator A', then

(6)
$$a_{\mathcal{A}''} = \dim N(A'') \leqslant \dim N(A'^+) = a_{\mathcal{A}'^+}$$
 holds.

Proof. The natural embedding $\varkappa X$ of X into \varSigma^+ is a total space of continuous linear functionals on \varSigma ($\varkappa X \subset \varSigma^+$). The operators A'', A'^+

255

are the conjugates to $A' \epsilon L_0(\Xi)$ with respect to the total spaces κX , Ξ^+ respectively. The assertion of our Lemma follows directly from Lemma 2.

Using the fact that the operator A'' is (up to the monomorphism \varkappa) identical with the operator A, we obtain $\alpha_{A''} = \alpha_A$, and Lemma 3 can be reformulated as follows:

LEMMA 4. If the assumptions of Lemma 3 are fulfilled, then

$$a_A \leqslant a_{A'+}.$$

THEOREM 2. Let X be a Banach space, and $\Xi \subset X^+$ a total space of continuous linear functionals on X. Let $A \in L_0(X)$ be a continuous operator and let Ξ be preserved by the conjugate operator A'.

If $\operatorname{ind} A=0$ and $a_{A'}+\leqslant a_{A'}$ then the d-characteristic of A is equal to the d_π -characteristic of A.

Proof. By the assumption $a_{A'+} \leq a_{A'}$ and by Lemma 4 we obtain $a_A \leq a_{A'}$. This inequality together with ind A=0 gives by Theorem 1 the equality $\beta_A = \beta_A^{\sharp}$ and our Theorem is proved.

THEOREM 3. Let X be a Banach space, and let $\mathcal{Z} \subset X^+$ be a total space of continuous linear functionals on X. Let $A \in L_0(X)$ be continuous and let \mathcal{Z} be preserved by A'.

If $\operatorname{ind} A = \operatorname{ind} A' = 0$, then the d-characteristic of A is equal to the d_σ -characteristic of A.

Proof. By (1) we have $a_{A'+} = \beta_{A'}^{\Xi^+}$. Then inequality (3) from Lemma 1 assumes in our case the form $\beta_{A'}^{\Xi^+} \leq \beta_{A'}$ and hence we obtain

$$\alpha_{A'+} \leq \beta_{A'}$$
.

Since $\operatorname{ind} A' = 0$, we have $a_{A'} = \beta_{A'}$ and the last inequality has the form $a_{A'+} \leqslant a_{A'}$. Hence all the assumptions of the previous Theorem 2 are fulfilled and our assertion is a consequence of this theorem.

THEOREM 4. Let X be a Banach space, and $\mathcal{B} \subset X^+$ a total space of continuous linear functionals on X which is also a Banach space. Let $T \in L_0(X)$ be a compact (completely continuous) operator such that \mathcal{B} is preserved by the conjugate operator T'. Then the d-characteristic of the operator A = I + T is equal to its $d_{\mathcal{B}}$ -characteristic (I is the identical operator in X).

Proof. The operator $A = I + T \epsilon L_0(X)$ is continuous. It is well known that if T is compact then $\operatorname{ind} A = 0$. We recall that the operator $T' \epsilon L_0(\mathcal{E})$ is also compact (see Theorem 7.4 in C III from [3]). Hence we have $\operatorname{ind} A' = 0$ and the theorem follows from Theorem 3.

Remark 1. In paper [1] a theorem which is similar to our Theorem 4 is established under the additional assumption that the compact operator $T \in L_0(X)$ is approximable by finite-dimensional operators. This theorem is followed in [1] by the authors' remark (cf. page 121, line 3 from below) which gives the impression that this result without the assumption of

approximability of T by a finite-dimensional operator would also be of interest.

P. Enflo has recently shown that the answer to the approximation problem (approximation of compact operators by finite-dimensional ones) is negative. Hence our Theorem 4 cannot be simply derived from the above-quoted Theorem of D. Przeworska-Rolewicz and S. Rolewicz.

Remark 2. If we use the terminology of § 7, C III in [3] then, provided the assumptions of Theorem 4 are fulfilled, we can state that if T is an element of the ideal of compact operators in the algebra $B_0(X, \Xi)$ of continuous linear operators on X with conjugates preserving Ξ then A = I + T is a Φ_{Ξ} -operator. This gives also the answer to the question formulated in Remark on p. 247 in [2] and in Remark on p. 297 in [3].

Finally let us mention that the assumption that \mathcal{Z} is also a Banach space in Theorem 4 seems to be necessary since without this assumption the equation ind A'=0 is not satisfied in general.

References

- D. Przeworska Rolewicz, S. Rolewicz, On d characteristic and d_E characteristic of linear operators, Ann. Polon. Math. 19 (1967), pp. 117-121.
- [2] -, On operators preserving the conjugate space, Studia Math. 25 (1965), pp. 245-249.
- [3] -, Equations in linear spaces, Warszawa 1968.

Received September 29, 1972 (589)