Correction to the paper " H^2 spaces of generalized half-planes" (Studia Math. 44 (1972), pp. 379-388)

by

A. KORÁNYI (New York) and F. M. STEIN (Jerusalem)

It has been pointed out to us by M. Vergne that the definition of B on p. 382 requires modification, since as it is defined there, it is not necessarily real-valued on $\mathbf{R}^{n_2} \times \mathbf{R}^{n_2}$.

One may proceed as follows. For fixed $\lambda \in \Omega^*$, let U_{λ} be a unitary matrix diagonalizing the Hermitian form $(z_2, w_2) \mapsto \langle \lambda, \Phi(z_2, w_2) \rangle$ on C^{n_2} . It is easy to see that U_{λ} can be chosen so as to depend measurably on λ .

Let $E_{\lambda} = U_{\lambda}^{-1}(\mathbf{R}^{n_2})$; this is a real form of C^{n_2} . In the definition of B_{λ} and throughout Section 4 let \overline{w}_2 (resp. \overline{z}_2) denote the complex conjugate of w_2 (resp. z_2) with respect to E_{λ} .

In the proof of Theorem 4.1, whenever we write $z_2 = x_2 + iy_2$, it should be replaced by $z_2 = x_2^{(\lambda)} + iy_2^{(\lambda)}$, with $x_2^{(\lambda)}$, $y_2^{(\lambda)} \in E_\lambda$. Integration on \mathbb{R}^{n_2} should everywhere be replaced by integration on E_λ ; in particular α should always be a point in E_λ . With these modifications the proof remains valid.

Received June 5, 1973

(688)