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Spaces of continuous functions into a Banach space

by
K. SUNDARESAN (Pittsburgh, Penn.)

Abstract. Let X be a compact Hausdorff space and B be a real Banach space.
Let (X, B) denote the Banach space of evalued continuous functions with the usual
supremum norm. The Banach~Stone theorem asserts that if X, ¥ are compact Haus-
dorff spaces then X is homeomorphic with ¥ if and only if there is a linear isometry
on 0(X,R) onto O(¥,R). The corresponding theorem for Banach space-valued
continuous functions is not true even when X is the two dimensional Banach space
R* with supremum norm and X, ¥ are compact metric spaces. However, an analogue
of the Banach—Stone theorem is obtained for Banach spaces F with a cylindrical
unit cell of which the base is strictly convex and smooth. ‘ '

§ 1. Introduction. Let X be a compact Hausdorff space and Z be
a real Banach space. Let O(X, F) denote the Banach space of E-valued
continuous functions equipped with the usual supremum norm. The
Banach-Stone theorem, Day [2], asserts that if X, ¥ are compact Hausdorff
spaces then X is homeomorphic with ¥ if and only if there is a linear
isometry on ¢(X, R) onto C(¥, R) where R is the real line. Subgequently
Jerison [B], investigated the problem of extending Banach—Stone theorem
with R replaced by an arbitrary Banach space. In [6] it is proved that
the theorem remaing true if (*) any two T-sets in H are discrepant. It is
further shown that the Banach—Stone theorem is mnot true if F is the
infinite dimensional space O(I, R) where I is the unit interval. The results
in this paper were obtained in an attempt to extend Banach—Stone theo-
rem to the case of finite dimensional . Surprisingly enough, as shown
in the last section of this paper, it is found that the theorem is not true
even when ¥ is the two dimensional Banach space E? with the supremum
norm and X, ¥ are compact metric spaces.

The plan of the paper is as follows. We recall few useful known theo-
rems and other preliminaries in Section 2. In Section 3 we obtain an
analogue of Banach-Stone theorem for Banach spaces B with a cylin-
drical unit cell of which the base is strictly eonvex and smooth. The two
dimensional Banach gpace mentioned in the preceeding paragraph is
one such. Lastly we discuss a counter example thus justifying the theorem
in Section 3.

§ 2. Preliminaries. Throughout the paper, H is a fixed real Banach
space of dimension at least 2. If B is a Banach space we denote the dual
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gpace of B by B*. The norms of the various Banach spaces that enter
our digscussgion are all denoted by the same symbol (| ag there is
no occasion for confusion. The wunit cell of B(B*) is denoted by
Up(U%) and 8p(8%) is the boundary of Ugx(Uf). I X is o compact
Hausdorff space the unit cells of O(X, I) and O (X, B) are denoted by
Ux and U% respectively. The set of extreme points of a sot K is denoted
by Ext K.

We recall few geome‘r,rie or opertios of & ]unwch smm It ]? Is u ‘mewh

= l(w) The cell Uy is said to be smooih M, o if thero in only one hypoxu
plane of support at . A Banach space B is said to bo smooth if U, is
smooth at all points we 8. An M-get in a Banach gpace B is & maximal
convex subset of Sp. A T-geb is & half-cone of nonnegative multiploy of
vectors in a JM-set. For a discussion of these sety wo refer to [9} Two
T-gets Ty, T'; in B are said to be discrepant if either 7', N1, = {0} or
there exists a T-set T such that Ty nT; =T, NT, = {0}. It is verified
by applying Zorn's lemma if 2« S5 then there is an M-set M, containing .
Further if #¢ Sz and {o} is an M-set then any two T-sets are discrepant.
Thus in a strictly convex Banach space B any two T-sets are discropant,
‘We summairize few properties of M-gety in the accompanying romark.

. Remark 1. If M is a M-set in & Banach space B then it follows
from ‘the separation theorem that there exists an fe BY, |f|| =1 such
that mf Jf(z) > sup f(»). Hence if I is the hyperplane f~*(1), then

@Up

Me H TFurther since H N8z = H N Ugzis a convex set and M is a maximal
convex set it follows that H NSz = M. We refer to H as a hyperplane
supporting Uy along M. Further we note that if there is a smooth point »
in M then the hyperplane supporting Uy along I is unique.

We conclude this section with a definition of S-cylinders and few
known results useful in the subsequent discussion.

DrFinirion 1. The unit cell of a Banach space (B, | ||) is said to
be S-cylindrical it there exists a closed subspace L of B of codimension, 1.
such that (L, || |)) is smooth and strictly convex and there is a point
P, 2l = 1 such that Up = [—p,p]+ UpnL. The Banach space B is
said to be S-cylindrical if the unit cell of B iy S-cylindrical.

The two dimensional Banach space R* with supremumn. norm iy S-cy-
lindrical. More generally if B is a smooth Banach space with a strietly
convex norm and I is a closed subspace of codimension 1 such that & trans-
late of L supports Ug at o then let V = [ —au, x]+ Ug L. It is verified
that if p is the gauge of V then (B, p) is a S—eyhndmcml Banach space
linearly homeomorphic with B. In passing we note that if the unit cell
of a Banach space B iz S-cylindrical then the 7-gets in B need mnot be
digerepant. In this connection we refer to example 4.5 in [5].
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TFor convenience of reference we state three useful theorems.

TeRoREM 1. (Jerison). Let X, ¥ be compact Hausdorff spaces and E
be a real Bamach space such that any two T-sels in B are discrepani. Then X
is homeomorphic with Y if and only if there 4s an isometry on C(X,H)
onto C(Y, H).

For a proof of this theorem we refer to 5.2 in [5]. Before proceeding
to the statement of the next theorem let us note that there is a natural
map ¢ on F*xX into O(X,B)" defined by (1, p) (f) = I(f(p)). Tt is
verified that [le(l, )| = ||I]] and for a fixed peX, ¢(-,p) is a linear iso-
metry on B into 0(X, B)*.

TaEorREM 2. (Singer). Let X be a compact Hausdorff space and E be
o Banach space. Then

Bxt(U%) = e(Bxt U} x X)
where ¢ is the map defined earlier.

For a proof of this theorem we refer to Singer [8].

TuEorEM 3. (Sundaresan). If X is a compact Hausdorff space and
feO(X, B), |Ifl =1 then the unit cell of C(X, H) is smooth at f if and only
if thew: %8 a point geX such that 1 = ”f(q)” > |If(@)] for all ¢’ #q and
Uy is smooth at f(q).

A proof of this theorem is provided in [8].

In this context we recall a theoremn of Mazur [6] stating
that if Uy is smooth at » and fis the supporting functional at % then
N
=0
preceeding limit exists for all ye B then Uy is smooth at 2.

exists for all ¥y« B and is equal to f(y). Further if the

§ 3. Banach-Stone theorem for spaces (X, ). We proceed to the
main theorem of the paper after stating few lemmas.

Lmvwa 1. If X is a compact Hausdorff space and f is an extreme point
of the unit cell of C(X, B) then |f(t)| = L for all teX.

Proof. Let fe Bxt Uy. If for some t,eX ||f(%,)||. % L then there exists
a d,0< 6 <1, a compact neighborhood N of t, such that ||f(#)|< <1
for all t¢ N. Since X is a compact Hausdorff there exists a continuous
function. ¢: X — [0, 1— 6] such that ¢(4) = 1—6 and ¢(t) = 0-if t¢ N.
Let a be a vector in B such that ||a| = 1. Let g be the function on X — B
defined by ¢(t) = ¢(#)a. Then ge C(X, H), |f£gl <1 and g 5% 0. Thus
f¢EBxtUy. This completes the proof of the lemma.

LevmmaA 2. If M 48 an M-set in o Banach space E then BxtM
< Ext UE"

Lumma 3. Let B be o Banach space with a S-cylindrical unit cell Ug.
Let Ug =[—p,p]+ UgnNL where Qfﬂn{ll are as in Definition 1. Then
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(1) Bxt Uy =
= —p-+Uzn.

(2) M is an M-set in B if and onlj if M =M, ¢t=1,2, or M
= [p+ &, p—&] for some £eSyNL.

(8) If P,, P, are distinct M-scts in B then card (PyNPy)
rior M, relative to Sy s M, ~ BxtM,.
and 3 are rather straightforward and the

ExtM, VExtM, where Ml =p+ Uyl and M,

< 1. (4) Inte-

The proofs of Lemmas 2
details are omitted.

Remark 2. We make o nofie of some implications of Lemma 3.

(a) Bxt Uy is a closed subget of Sz. Further from (2) of the lemma
it follows that if M is an M-set in %, c‘»rdM = 2. Thus M ND @ for
every M-set (D is the set of points of smoothness of S;), I in H. Xence
the hyperplane supporting Uy along a fixed M-set is unique. Fuorther
if e 8g ~ (M, VM, then from (2) it is verified that there exist a unique
pair of extreme points e}, 2 with ¢ie M;, ¢ =1, 2 and e —e2 = 2p.

(b) The property (4) implies that if I is an S-cylindrical Banach
space and M, ¢ =1, 2 are as in the preceeding lemma then if ge lxt U
then g(p)¢ (M, ~ExtM,) U(M, ~BxtM,). If possible let peX guch
that ¢(p)e (M; ~ExtM,). From Lemma 1 it follows that |g(t)| =1
for all e X. Since ¢ is a continuous function, from (4) it follows that there
is a compact neighborhood € of p such that g(C) « M, ~ BxtIM,. Since
0 is compact, with f as in the proof of (4), it is found that there exists
a d > 0 such that ||A|| < 6, f(h) = 0 imply ¢g(=)+ he M, for all ze C. Let &
be such a fixed non-zero vector. Since X is a compact Hausdorff space
there exists a continuous function @: X —[0,1] such that ¢(p) =1
and (X ~ IntC) = {0}. Let ¢y, g, be the functions on X to F defined
by ¢:.(8) = f(@)+ )k and g,(t) = f(t) —p@)h. It is verified that g,, g,
«0(X, B), |lgJl =1,7 =1,2and g = (g,+g.)/2. Since g, + gy, g¢ Bxt Uy.
Thus the proof is completed.

LemMA 4. Let B be & Bonach space with o S-cylindrical unit cell.
Then if fe O(X, B) is an extreme point of Ug then f(p)e Bxt Uy for all
peX.

Proof. Let fe Ext Ux. As noted in Lemma 1, range f < S. From
the preceeding remarlk it is further seen that range, f < [8p ~ (M, UM )] U
U(Bxt M, VExtM,). Thus if for some peX, f(p)¢BxtU; then since
M, UM, is a closed subset of 8y, there exists a compact neighborhood. ¢
of p such that f(C) c 8y ~ (M, UIL,). Trom the preceeding remaurk it
follows that for each pomt te O, there is a umque pair of points e}, ¢ = 1, 2
such that ete Bxt M, f(t)< [e}, 6}] and e —6; = 2p. Since f(t)¢ My i =1,2
there exists a function 4: 0 — 10, 1[ such that f(¢) = A(t)e} + (L — A(3)) .
Further if 1e B |l =1 is such that 1"*(0) = I,1(p) =1 then Hf@)
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= 2A(t)—1. Thus A is a continuous function. Since C is a compact set
there exists an a4 > 0 such that ¢ < A(f) < 1 —a for te 0. Let @ = Int(
and ¢: X —[0,1] be a continuous function such that ¢(p) =1 and
(X ~ @) = {0}. Let g;, g, be the functions on X — E defined by g,(t)
=f(t)+pt)ale} — 6] and gu(t) = F(t) —p(t)a[e} —&}]. Since &} —d} = 2,
g1, s are in C(X, 1), and it is further verified that |gf| =1, ¢ =1, 2,
f = 1(9.+92)/2 and g, # g,. Thus f¢ Bxt Uy contradicting the hypothesis.
Thus the proof of the lemma is complete.

LeMMA 5. A set P = O(X, B)is an M-set if and only if there is an M-set
M < B and a point p<X such that

={fI feC(X, B), |f| =1 and f(p)e M}.

Thus each M-set P in C(X, B) could be represented as P = (M, p) where
M and p are chosen as above, and two M-sets Py, P, where Py = (M, p,),
Py = (My, py) are equal if and only if M, = M, and p, = p,.

This lemma is an immediate consequence of Theorem 4.1 and Lemma
4.3 in [9]. Hence the details of a proof are omitted.

Before proceeding to the main theorem we note that if X, ¥ are
compact Hausdorff spaces and 7: X — ¥ is a homeomorphism then the
operator T': O(Y, B) — C(X, B) defined by T(f) (p) = f(Tp) is a linear
isometry onto C(X, F). Thus in the subsequent discussion we consider
only the converse question.

Remark 3. If ze B let K, be the function in C(X, ¥) with range
= {#}. In § 2 we defined the function ¢: F* xX — O0(X, B)*. We note
that ¢] (B* ~ {0}) x X — O(X, B)* is a 1—1 map. For let I, me B* ~ {0}
and p,qeX. Suppose ¢(l,p) =e(m,q). For each 2z¢H, e(l,p) (K,
= ¢(m, ¢) (K;). Thus I(z) = m(2) for all se¢ E. Hence | = m. Now if
p # q let < E such that I(2) % 0. Since X is a compact space there is
a function fe C(X 17) such that f(p) = 2 and f(¢) = 0. For guch a func-
tion f, e(l, p) f # e(m, ¢)f. Hence a contradiction. Thus p = ¢ justifying
the claam

We denote the map corresponding to the map e, defined on B* x ¥
into O(Y, B)* also by the same symbol e.

TurorEM. Let B be o Banach space with a S-cylindrical unit oell and
X, X be compact first countable Hausdorff spaces. Let T be o lincar isometry
on C(X, H) onto C(X, ) such that corresponding to each point teX there
are at Least two points @y, wye Wxt My for which TI, (1) # TR, (¢). Then X
18 homeomorphic with Y.

Proof. Let B be a S-cylindrical Banach space and 7' be a linear
isometry satisfying the hypothesis in the theorem. Let p, L, M,, M,
be ag in the Lemma 4. Let I,(I, = —1,) be the functionals in #* supporting:
Uy along M, (M,). From the uniqueness of I, it is verified that I, Bxt U:
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We note that since T is an 1s0m0try, T*, the adjoint of T, is an isometry
on O(¥, BY* onto O(X, B)*. For each point teX consider the functional
¢(ly,1). From Singer’s theorem (see § 2), ¢(ly,t)e Bxt U%. Since linear
isometries preserve extreme points there exists a point o(%, r(t))e Bxt U}
such that T*e(T}, v(t)) = e(ly, 1). From Remark 3 it follows that = is a Iunc
tion on X - ¥. We proceed to verify that = is a homeomorphism on X
onto Y.

L (X)) = Y: As an initial step we verify that if ¢'¢¥ then there
exist two points y, 2, such that 7K, (¢'), TI,(t') are in the same M-gob
in H. For consider the mapping f: B — H defined by f(s) = TH, (4. It is
verified that f is a continuous mapping. Further from Lemma 4 aftor
noting that for each ze BxtM,, K, (hence TI,) is an oxtreme point of
Ux(Uyp) it follows that A(BxtM,) < Ext Uy Thus f(BxtM,) M, or
f(ExtM,) = M,. In either case the assertion iy verified gince card Bxt .M,
= 2. Next, if dim¥ = 2, then since Uy is a parallelogram, using Lemma 4
and enu_meratmg posmble positions of TH,(¢') for w< BxtM,, the assertion
is verified.

Let y, 2 be two. points in ExtM, with the property in the precee(hm
paragraph. Let M, be an M-set in B such that M, o {TK, ('), TIK,( 1}
Congider the M-set (M,,t') in the space C(¥, ). For the deflnibion of
(M,, %) see Lemma 5. Since 7' is a linear isometry 7 (M, ¢') is an M-seb
in 0(X, B). Thus from Lemma 5 it follows that there exists exactly one
M-set L in B and a unique point ¢eX such that T1(M,,¢ Y = (L, ¥).
We claim that L = M,. For, since T((X, +Kz)/2) (') = TK g0 (8) € My it
follows that K, , ., (f) e L. Since (y +2)/2 is a smooth point of 8 it follows
that I = M,. Thus T(M,,t) = (M,, ). Let m, bethe functional support-
ing Ug along M,. It WIH be shown that T%e(my, t') = e(ly, t). Since X
is a first countable compact space with v = (y+# )/2, there exists a furiction
fie O(X, B) such that fi(f) = v and [F()ll < 1 for all geX, q % 1. Since v
is a smooth point of Sy, it follows from Theorem 3 thatb fiis a smooth
point of Ug. Since T' is an isometry it is readily wverified from Mazur’s
theorem (see comments following Theorem 8 in § 2) that T4} is & smooth
point of Uy. Sinee f(¢)eM, and T(My,t) = (M,y,t') it is ver]fxecl that
TfE(¥')eM,. Thus the linear functionals e(ly,t) and e(m,, I') support U
and Uy along M, and M, respectively. Thus

”f17+7'f|! ”fv“ g(l1 t) (f)

1—»0

i L1201 127

70

and
= ¢(my, V') (If).

Since T i3 a linear igometry, ¢(,, ?) (f) = e(mq, t')

(Tf). Thus T*e(my, ¢’
= ¢(l,, t). Hence () =1 and 7(X) = Y. (rar )
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2. The map v is injective: Let ¢, . X be such that v(¥;) = v(5,) = ¥
From the definition of the map 7 it follows that there exist two functionals
my, my in Bxt U} such that (+) T*e(my,t) =e(ly,t,) and T e(m,,t)
= e(ly, t,). Let T(M,, 1) = (N, %) and T(Ml,tz) (N,, t,). Let y be
a smooth point in I, . Consider & function fi1e € (X, B) such ‘nhat fag) =y
and ||fi(s)| < 1 for all seX ~ {#;}. As already noted in the proof of (1)
such a function fj exists and further since f2 (¢,) e M, fire (M, t,). Hence
from Theorem 3 it is concluded that ¢, is the only point in ¥ such that
| Tfa )] = 1. Thus ] = ¢’ since from equations () it follows thati 1, (i (27))
= ml(T 1(2')) = 1 and the last equatlon 1mp11es that |Tfa()] = 1. Fur-
ther from Theorem 3 it follows that Tf ) is a smooth pomt of Uy and
since Tfi(t)e Ny, m; is the only functloml supporting Uy along N,.
Similarly it is verified that m, is the only functional supporting Uy along
N,. From the additional hypothesis on T there are two points x,, 2,
«BxtM; sueh that TK, (¢') # TK, (). Since K, e(My,4) N (My,1t,),
from our choice of Ny, N,, 1t follows thatb TK%(t e _Z\T1 NN,. Thus Ny, NN,
o {ITK, ("), TK,, (")} since t, = t'. Hence card (N, NN,) > 2. Hence from
the property (8) m Lemma 3 it follows that N, = N,. Sinee my, m, are
the unique supperting functionals along N,, N, respectively we conclude
that m; = m,. Thus T*e(my,t') = e(l;, 1) as seen from equations (*).
Since e| (B* ~{0}) xX is 1—1 it follows that #, =1,. Thus ¢ is
injective.

3. The map v is continuous: Since X, ¥ are first countable Hausdorft
spaces it is enough to verify that if {f,},», I8 a sequence converging fo
teX then z(t,) — z(f) m Y. Let us denote for convenience =(%,) = #, and
1(8) =1t'. Let T"e¢(l,, t,) = e(l;,t,) where I, is as in the first paragraph
of the proof. We note that I, Bxt Uy for » > 1. If ¢, —{ since Y ig first
countable compact space there exists a convergent subsequence {t, } in
{t}. Let &’ — ¢. Tet @, be a smooth point in M. Consider the function
fae C(X, E) such that f4 (1) = @, and ||f; (9)]] < 1if g + t. Sinee ||fs, (t,,) —

— f,a(t || =0 it follows that 1 e (tw)) —>l «(fs, (). Thus T, (szu (tn,)) >1
as readlly seen from our choice of {¢(l,, t, } Since ”wao (tni) ——foo (o I =0
and ||Tfm (o)l < 1 it is verified that []Tf, (6)| = 1. Let T"e(ly,t") = e(ly, ?).
Thus 14 0) = 1 = BT () = [ = |Tf. Hence |Tfi ()] = 1.
From Theorem 3 it follows that fw,, is a smooth point of Ux. IIenee Tf,o
is & smooth point of Uy . Further fo,,” “-[Ifa:o“ = 1. Since [\Tf%(f =1
once again appealing to Theorem 3 we conclude that i’ = ¢. Thuy every
convergent subsequence of {r(f,)} converges to z(t). Since Y is a first
countable compact Hausdorff space z(f,) — 7 (¢). Since X, ¥ are compact
gpaces it follows that = is a homeomorphism.

A counter example. We discuss an example to justify the additional
hypothesis on the isometry T in the preceeding theorem. In what follows
R" is the n-dimengional real Banach space with supremum norm. For
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a definition of topological sum of two topological gpaced, we refer to
Dugundji [3].

Levwa 6. If X, Y are compact Hausdorff spaces then ¢ (X, B™ s
tsomairio with C(Y, R") if and only if the sum of n copies of X is homeo-
morphic with the sum of n copies of Y.

Proof. It is verified that O(X, R™ is isometric with ¢ (¥, R" if
and only if C{X Xn, R) is isometric with C(Y¥ xn , R). Hence from Ba-
nach-Stone theorem X X# is homeomorphic with ¥ xn i.e. the topolo-
gical sum of » copies of X is homeomorphic with the topological sum
of » copies of Y.

It is known that for each integer m > 2, there are non-homeomorphic
compact metric spaces X, ¥ such that X x # is homeomorphic with ¥ x 7y
Hanf [4]. A concrete description of such spaces X, Y, n =2 is provided
in Sundaresan [10]. More generally there exist compact metric spaces
X, Y such that X x% # ¥ Xkiork = L2,..,n—-1,and X xn = ¥ xn
Kroonenberg [6]. ’

It follows from Lemma 6 and preceeding remarks that there are nomn-
homeomorphic compact metrie spaces X, Y such that O(X, R") is iso-
metric with 0(Y, R") for n £ 2. This justifies the additional hypothesis
on the isometry in the preceeding theorem. ;

Bibliography

11 8. Banach, Théorie des Opérations Lineaires, Warsaw 1032.

[2] M. M. Day, Normed Linear Spaces, Berlin 1962.

[3] J. Dugundji, Topology, Boston 1966.

[4] W. Hanf, On some fundamenial problems concerning isomorphism of Boolean
algebras, Math. Scand. 5 (1957), pp. -205-2117.

[8] M. Jerison, The space of bounded maps into a Banach space, A

> , Ann. of Math. 52

(1950), pp. 309-327. i

[6] N. Kroonenberg, On an example of Hanf, Research Report, Mathematisch
Centrum, Amsterdam 1970,

[7] 8. Mazur, Uber konvewe Mengen in linearen normierten Rdumen, Studia Math
4 (1938), pp. 70-84. : '

[8] 1. Binger, Sur la meilleure approzimation des fomctions absiractes comtinues
d valeurs dans un espace de Banach, Revue Do Mathématiques Pures Bt Appli-
quées, Tome 11, 1957, pp. 245-262, .

[9] g.lfuxdzre;an, Some geometric properties of the unit cell in spaces O(X, B),

ull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. XIX )7

pp. 1007-1012. v (H)-aom

[10] — BSpaces of continuous fumctions into R?, Research Roport, Department of
Mathematics, Carnegie—~Mellon University, 1971. )

»

Received March 1, 1972 . (496)

H ©
Im STUDIA MATHEMATICA T. XLVIII. (1973)

Decompositions of set functions

by

L. DREWNOWSKI (Poznan)

Abstract. Let # be a ring of sets. With each set He # a collection of classes
9 < &, consisting of disjoint sets, is associated in such a way that the set & of all
resulting pairs (#, 2) satisfies certain very natural conditions. The & is then called
an additivity on # (Section 2). Notions of S-additive and G-singular group valued
seb functions are next introduced and investigated to some degree; when specifying &
one obtaing, e.g., notions of c-additive and purely finitely additive or n-continuous
and 7-singular funetions. For a very important class of the so called exhaustive
(= strongly bounded) set functions a decomposition theorem (3.11) is proved, whose
special cases are the Hewitt—~Yosida and Lebesgue decompositions for group valued
functions. Analogons of general and special decompositions are established also for
gome nonadditive functions (sumbeasures) and for Fréchet-Nikodym topologies
on # (Section 4). By the way a theorem is given (2.14") which contains the Vitali-
Hahn-Saks, Nikodym and Brooks-Jewett theorems. '

Introduction. Let # be a ring of sets and let u,  be additive real-
valued set functions on # with u bounded and 5 = 0. We say that u is
n-continuous and write u < 5 if, given ¢> 0, there is 6> 0 such that
ju(B)| < e whenever 5(H) < 6, BeZ. At first sight it is not seen at all
that the properties “u is countably additive” and “u is 7-continuous”
have much in common. However, it can be proved ([10]; [7], II) that
u <9 iff p(B,) ~ 0 provided E, M and n(E,) — 0,(H,) = #Z. The latter
condition can be equivalently formulated as follows: if (#,) is a disjoint

o0 n
sequence of sety in #, Be#, | J B, F and 7;(E\7UE,C)—->O, then
fe==1

M=l

p(B) = > u(B,); the resemblance with the definition of countably
A=l

" additivity is striking. Thiz observation was first made and employed by

W. Orlicz in his study of absolute continuity of vector valued set fune-
tions [10]; it motivates the general notion of S-additivity introduced
in Section 2. Also, it had suggested a quite natural conjecture that it
should been possible to obtain the well known Hewitt—Yosida and Lebesgue
decompositions of additive set function in o unified faghion. This is realized
in the present paper for exhaustive additive set functions with values
in an arbitrary abelian complete topological group &. The method we
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