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Received May 27, 1972 (538) Abstract, Bonseh gpace ia uniformly non< if and only if it is B-convex if
and only if # () is not finitely representable in it If all B-convex Banach spaces are
reflexive, thon B-convexity 18 oquivalent to supoer-reflexivity. The non-reflexive
space J which i isomotrically isomorphie to J' ** {5 not only not B-convex, but posseses
a property which is sufficient but not nocossary for non-B-convexity (e, is finitely
represontablo in J).

It has long been known. that a Banach space is reflexive if it is uni-
formly non-square. It is not known whether a Banach space is reflexive
if it is uniformly non-I®. It is shown that if this conjecture iz correct,
then o Banach space is super-roflexive if and only if it is uniformly non-#,
The sgpace J that is nonreflexive and isometric to J* might have been
a prime candidato for o counterexample to this conjecture, butb it is shown
that both ¢ and I are finitely representable in J. It also is shown that,
it 2 and every uniformly non-lf) Banach space iy reflexive, then
every uniformly non-i{ space is super-reflexive.

DEFNITIoN L. For n 2 and &> 0, a normed linear space being
(n, &)-convew means that there does not exist a subset {w, ..., w,} of the
unit ball such that, for all choices of signs,

leﬂ:maﬁ-"ﬂ:wn” > n(l~—e).

For n3> 2, a uniformly non-t{ normed linear space iy & normed lineax
space that is (n, s)-convex for some & > 0. A B-convew normed linear space
is a normed linear space that is uniformly nond{) for some » = 2.

A B-convex Banach pace is known to bereflexive if it has an unoondi-
tional basis (seo [37, Theorem IIT.6, p. 142 or [9], Theorem 2.2), or
(in the resl case) if it can be endowed with & partial order under which
it becomes a normod Riesz space (equivalently, a normed linear vector
lattice; seo [B]), Beck proved that a Banach gpace is B-convex it and
only if a certain law of large numbers is valid for random variables with
ranges in the space [1], which implies that B-convexity is igomorphically

* This research was supported in part by NSI' Grant GP —28678
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invariant. Also, a normed linear space X is B-convex if and only if X* ig
B-convex ([3], Corollary IT.4, p. 129).

A normed linear space X being finitely represemtable in a normed
linear space Y means that, for each finite-dimensional subspace X, of X
and each number 4 > 1, there is an isomorphism I of X' » into Y for which

Al < (@) < Al if 2eX,.

DEFINITION 2. A uniformly non-t") normed linear space is o normed
linear space X which has the property that, for each positive number 4,
there is a positive integer » for which there doos not oxist a subset
{#, ..., @,} of X such that, for all numbers {5, ..., 0.},

(1) 4 ﬁ laq] < ”Zn?dﬂh‘
1 1

A 'space X is not uniformly non-t® it and only if there it a positive
number 4 sueh that for each positive integer # there is a subgsot {@y, ..., 0}
of X such that

< Z lag]

@ ~ A-fiaﬁuﬁ’aiwi
. 1 1 1

for all numbers {ay, <o+y @}, This property is isomorphically invariant.
In fact, if L iy an isomorphism of X onto Y, a and g are numbers for which
elol <IL@)) < Bllafl i weX, -

{&, ..., ,} satisties (2), and Y: = 7 L(w,;) for each i, then

n n W
- - '\
adp™ Miad<|| Y aw]< Y la.
1 1 1

TemorEM 1. For a normed linear space X, the following are equivalent:
(i) X is B-comves.

(i) X is uniformly non-t0,

(iii) ¥V ds mot finitely represemtable in X. -

Proof. The proof that B-convexity of X implies (ii) is known (see [3],
Lemma I. 4, p. 119 and [4]). To give an alternative proof, let us suppose X
is not uniformly non-#. It then follows that there is & gpace ¥ which
is isomorphic to ¥ and is finitely representable in X {(see the proof of
Lemma B in [10]). It follows from this that for each positive number 8
there is an infinite-dimensional subspace Y, of ¥ which hag'a basis {ug}

such that
W= Ylad < | 3 o< 3 1
if 3'la, <.00-([9], Lemma 2.1). Thig implies X i not B-convex.

n
<) la.
1

n
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Olearly I is not finitely representable in X if X is uniformly non-#%.

The equivalence of B-convexity and (iii) follqws' frorp ([81, Lemme.m I. §,
p. 123). However, the following proof that (iii) nnpl'les B-convexity Is
much easier. Let us suppose X is not B-convex. That is, fo.r each n, X i8
not uniformly non-£. Therefore, for each n and each positive number e,
there is a subset {®,, ..., x,} of the unit ball such that

lwy b g o= oo = y|| > n(L —g)

for all choices of signs. This implies that, for all numbers {a,}, if & is chosen
so that |ay = max{|a;|: L% n}, then

|| é agy|) = | ,}j [ivign (o) a1, - 2 [sien (@) agl — a;a |

= Ia’]ul

=~ ) (las ~laal) ]

n
2 sign (a;)
fm=]

= nlal (L) + D) (1ol — o)

Fae ],
n "fj
= o] —nelay] > (L—ne) D'layl,
qwa] ]

so that

n £ “1
% . \1 >
(L --mne) 2 |a,] = ”)_/ [N H:Z il
[ dem] q=al

and 1 is finitely representable in X. This completes the proof of Theo-
rem 1. ‘ . o
As we have noted, if normed linear spaces X and Y are 1somor.phlc,
then X is uniformly non-I*) if and only if ¥ is also. Thus We obtain as
a Qorollary of Theorem 1 that B-convexity is isomorphically invariant ([3],
Corollary IL. 6, p, 1303 [1], p. 33). ‘
DEFINITION 3. A super-reflexive Banach space is o 'Bmmeh‘ space Y
which has the property that no mon-reflexive Banach space is finitely
representable in Y. ‘ . ]
There are many characterizations of super-reflexive s_;puues [11].
A Buanach gpace is super-roflexive if and only if it iy isomorphie to & KpiLeo
whose unit ball is uniformly convex [2], We shall now give some relations
between super-reflexivity and the uniformly non-t® property. ‘
TugoreM 2. If cvery wniformly non-i Banach space is 1"eflamm(fg,
thew o Banach space is super-reflexive if and only &f it is uniformly non-¥ "
Proof. It follows from Theorem 1 that if a Banach space ¥ js 1nob
uniformly non-#”, then ¥ is finitely representable in ¥ and ¥ is nob
super-reflexive. Now suppose Y is not super-reflexive, so that there is
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a non-reflexive Banach space X that is finitely representable in ¥. Also
guppose every uniformly non-i™ Banach space is reflexive, so that X
is not uniformly non-I®. That ¥ is not uniformly non-t") now follows
from the facts that X is not uniformly non-i") and X is finitely represent-
able in Y.

TaEOREM 8. If # 2= 2, ¢ > 0, and each (n, e)-convew Banach space is
reflewive, then each (n, &)-convex Bamnach space is super-reflexive.

Proof. Suppose each (#, s)-convex space is reflexive.. Let ¥ be
(m, e)-convex and let X be finitely representable in ¥, Then X is (n, s)-
convex. Therefore X is reflexive and Y is super-reflexive.

COROLLARY. If 32 and each uniformly non-I Bamach space is
refloaive, then each uniformly mon-t> Bamach space is super-reflemive.

It is known that all uniformly non-square Banach spaces are reflex-
ive ([9],  Theorem 1.1). It has long been conjectured that a Banach
space X is reflexive if there is an n > 2 for which X is uniformly non-t{.
A natural candidate for a counterexample i the space J described below.

We shall show J is not a counterexample. That is, there is no » for
which J is uniformly non-#{). It then follows that a counterexample
must be a non-reflexive space B that satisfies the conditions:

(i) B has no subspace isomorphic to ¢, 30, J, or any other space
that is not uniformly non-t®,

(ii) No non-reflexive subgpace of B admits an equivalent norm and
a partial ordering under which it is a normed Riesz space (normed linear
vector lattice) [5]. This includes the following two cases.

(iii) No non-reflexive subspace of B has an unconditional basis ([3],
Theorem III. 6; [9] Theorem 2.2).

(iv) B is not an Orlicz space [11].

DEFINITION 4. If ® = {8(0), #(1), ...} s a sequence of real numbers,
define the numbers |o| and |||2||| by

loll = sup{ Y [o(p) —0(pes ) T,

{=1
and

n—1
lall| = sup {[o(p,) —@@)I+ 3 [#(0) —0(pes) Pf
i=1
where in each case the supremum is for all # > 2 and all increasing sequen-
ces {p;} of n non-negative integers. Let J be the collection of all real-
valued sequences « such that limz(n) =0 and ]||#[|| < oo.

N—>00
; It was shown in [7] and [8] that (7, |[|-]]]) is a non-veflexive Banach
space with only conditional bases, that the canonical image of J in its
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second dual has codimension 1, and that there is an isometric isomorphism
of J onto its second dual. Moreover, it is easily verified that [||-]|] and
II-]| are equivalent, with

o]l < llioll] < 24jol] it wed.

It has long been known by both authors that ¥ ig finitely representable
in (4, (') — a lengthy argument is given in [6], with a brief outline
in [3]. We will show that both ¢, and ¥ are finitely reprosentable in both
(T 1) and (J, [I[-I). This is an improvement over previous rosults,
since ¢, iy not finitely representable in 1M, Also, the present proof is much
eagier.

Note that we are letting sequences be functions on the non-negative
integers. This is for notational convenience. In particular, 2y, is the sequence
{0, (2k)"4 0, (28)"%, ..., 0, (2k)", 0,0, ...} that has exactly k non-zero
entries, each equal to (2k)~* and located at one of the positions 1, 3,...
-oy 2k —1. If » is & sequence and » an integer, denote by 7, the sequence
y for which y is linear on the interval [kn, (k-+1)n] and

Y (k) = w(k) if k0.

Lemma 1. Let m be a positive integer and p, 8, &y, &, and N be positive
numbers for whioh v < § and

(8) PN gt < 8, 90, 4 dp N < 5.

If n> N, if wed has the properties

() w(@) =0 if i3 2m,
am-1

(@) ot < 2 lo(6)—o(i+1)A+e,
(i) [0(6)— (i +1)| < (.23%@_)* i i,

and ’if Y = Tnmi R == V*zzmm ond w == Y+ thon
(1) w(@) =0 4f i 2mm,
. Mty
(i) Joolt < 3

e ()

[00 (%) == 10 (% ~4-1) |2 +}- &g,

2mmn

Proof. Suppose n > N. Clearly (I') is satistied. Also, it follows from
(iii), the saw-tooth character of 2, and (3) that

. iy P i s\
o (d) ~w(i-+1)| < (é-;,;) TGy = @yt <(2mn)

(1) [0 (4) ~10 (4-4+1)| < (-wﬁm)* if i3 0.

§ — Studla Mathematlea XLVIILL
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for every 1, so (iil’) is satisfied. If {p,;: 1< i<
sequence of positive integers for which p, =

k} is an arbitrary increasing
2mm, then (iil) implies

) ¥
Iy (0~ (e)] < 2L (Ef;;)

and it follows from z = piey,, that

) k-1 . k-1 i
@ Do) =(pillste) —stoca < 3z s Ve (5]

omm [y \F[ p \}
bl P4 Nk
< n (ZM) (2mn) <7 ‘

Now suppose {p;} also has the property that

lhell* = le (Pe) = (Dey) .

=l
Then it follows from (4) ’ﬁhat
k-1 -1 .
) it < 3 w(e) —y (Bl + D) 1#() el 2N,
=1 Li=1

For a particular i, suppose 7y, ..., 7, are successive multiples of » and

NP <T< . . <Na<P SN

If there is a j for which 2 <j < A—1 and y(r;) is not between y(p;) and
9(P;41), then the insertion of r; into the sequence {p;} does not decrease
the right member of (5). If there is no such 7y, there is no loss of genemlwy
if we assume

Y(r) <¥(p) < y(n) <Y(Pipr) S Y (1)
Then the expression

for 2<j\<_.l_—l.

A-2
(©) [ly‘tpowmn% S‘lym Y ) Py () =9 (el —

— @)~y @e)l]— [2 Iy () =9 ()P Iy () =y ()]
is equal to twice -
(i) —y )1y () =y () 1= [y (73-0) =9 ()] [Y (Pi1) — 9 ()] 2 0.

Algo, let all pairs (p;, py,;) for which there is at least one multiple of %
between p, and p,, be placed alternately in two sets. Then if (p;, D4p1)
and (p;, p;.1) belong to the same set and p,,, < p;, there are integers
T1y %1, 81, 8, Which are multiples of » and satisfy

NP <P SHOS<HKP <P <8,

icm®

Unwiformly non-1) and B-convex Banach spaces 67

Thus it follows from (ii) that the sum over all pairs (p;, p,,,) of the second

" pracketed expression in (6) is greater than —2e,. Therefore if {g,;: 1 <4

< w} 18 {p;} with all multiples of # adjoined, then

(1) Il < ) w(g) —9(gea) P+ 2 12 (2:) — # Q)| +26, +2y NP2,

4=l
For each 4, g;.,~¢g; < n and y is linear between ¢, and g;,,. Therefore,
@11

1y (¢) =¥ (esd)* + 12(2) — 2 (@i )I* Z [y (9)—y (J-+-1)+ e () —2 (§ +1)11]

J=qy

N Gt 2__ G — G |{ ¥ N
\z[( " ) o ](2'}%) + L= (41— )](27’”%)
L [@ipr~ 4)* ~ (0 +1) (ig1 — %) ‘I"n] <0,

so that (7) and another application of (4) give

2mn~—1

fol?< D' o

gom]

This and (3) imply (ii').
The next lemma will be used several times, but its proof is relatively
eagy and will not be given.

LzmvA 2. For each n, T, is an isomelric isomorphism of (J
itself. Tor each Tk, ||y = 1.

LevmA 3. For each k=1 and &> 0, there exist members &y, ..., &k
of Jfor which ||&)] = 1 for every i and

Ny ok LGl <14e

w (1) 2, +dp N2,

y 1101 embo

for all choices of signs.

Proof. For arbitrary & >
satisfy

> 1, suppose positive nwmbers {y;} and {e}

Pl <y <Ly s < fa < da <. <27 g
Choose N go that, it 154 < %, then
1/2N 1/z+y1/z

For o > N, let

(yep)'?y ey, N2 < gy

By = Tnk‘-w%’azﬂ,,nt-x i 1<ish.
It follows from Lemma 2 that |2yl = L for all m. Thus

ol = y3*  for 1< i< k.
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Then it follows from Lemmas 1 and 2 that

. o e y
”wliwzﬂ:--':‘:mk” < 20 ! ('_2'%%_1') +8Ic = 7Ic'|‘ € e

Since ||| = yi?, for any ¢> 0 we can choose &, small enough and y,
near enough to 1 so that, if & == /||, then

Ner b &l <1-+e

for all choices of signs.

TEEOREM 4. The spaces o, and Y are finitely representable in (J, ||+[|)
and also in (J, ||| ||]).

Proof. Pick &> 0 and a positive integer %. Let &,..., & be the
members of J given by Lemma 3, so that [|&] =1 for all ¢ and

€2k acbvve i il < 1o

k
for all choices of signs. If sup{|a;l} < 1, then 20&4 £, belongs to the convex
I 1

span of elements of type » = &;. Therefore
1

k
H;’amﬂs (L + o)sup {|asl} -

Since [|&]| =1 for all ¢, it follows that if sup {|a;|} = |, then

2|ajl<H2k‘a¢£¢H +H2kai£¢—2a,§,)\<{j_§a¢s¢
. 1 1 1

+ (1 + ¢) sup {la},

k
so that || Ya;&| > (1—e)sup{la;/}. Thus ¢, is finitely representable in
1

(|- })- Sinee (J, [|]) is isomorphie to (7, |||-{|), an argument similar
to the proof of Lemma B in [10] shows that there is a space isomorphic
to ¢, that is finitely representable in (J, |||-|||). This space can be as nearly
isometrie to ¢, as desired ([9], Lemma 2.2). Therefore ¢, is finitely repre-
sentable in (J, |||-(I|). Since ¥ is finitely representable in ¢,, we conclude
that t® ig finitely representable in both (J, |-|) and (7, |[|-]||).
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