

- [3] N. Dunford, and J. Schwartz, Linear Operators Part I, New York 1958.
- [4] P. Lewis, Vector measures and topology, (submitted).
- [5] Characterization of a class of compact operators, (submitted).
- [6] W. Orlicz, Absolute continuity of set functions with respect to a finitely subadditive measure, Prace Mat. Annales Soc. Math. Pol. Serie I, 14, (1970), pp. 101-118.
- [7] M. Rao, Conditional measures and operators, (to be published).
- [8] H. H. Schaefer, Topological Vector Spaces, New York 1966.

INDIANA STATE UNIVERSITY TERRE HAUTE, INDIANA CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PENNSYLVANIA

Received May 27, 1972

(538)

Uniformly non-l(1) and B-convex Banach spaces*

by

D. P. GIESY (Kalamazoo, Mich.) and R. C. JAMES (Claremont, Calif.)

Abstract. Banach space is uniformly non- $l^{(1)}$ if and only if it is B-convex if and only if $l^{(1)}$ is not finitely representable in it. If all B-convex Banach spaces are reflexive, then B-convexity is equivalent to super-reflexivity. The non-reflexive space J which is isometrically isomorphic to J^{**} is not only not B-convex, but possesses a property which is sufficient but not necessary for non-B-convexity (c_0 is finitely representable in J).

It has long been known that a Banach space is reflexive if it is uniformly non-square. It is not known whether a Banach space is reflexive if it is uniformly non- $l^{(1)}$. It is shown that if this conjecture is correct, then a Banach space is super-reflexive if and only if it is uniformly non- $l^{(1)}$. The space J that is nonreflexive and isometric to J^{**} might have been a prime candidate for a counterexample to this conjecture, but it is shown that both c_0 and $l^{(1)}$ are finitely representable in J. It also is shown that, if $n \ge 2$ and every uniformly non- $l_n^{(1)}$ Banach space is reflexive, then every uniformly non- $l_n^{(1)}$ space is super-reflexive.

DEFINITION 1. For $n \ge 2$ and $\varepsilon > 0$, a normed linear space being (n, s)-convex means that there does not exist a subset $\{x_1, \ldots, x_n\}$ of the unit ball such that, for all choices of signs,

$$||x_1 \pm x_2 \pm \ldots \pm x_n|| > n(1-\varepsilon).$$

For $n \ge 2$, a uniformly non- $t_n^{(1)}$ normed linear space is a normed linear space that is (n, s)-convex for some s > 0. A *B-convex* normed linear space is a normed linear space that is uniformly non- $t_n^{(1)}$ for some $n \ge 2$.

A B-convex Banach space is known to be reflexive if it has an unconditional basis (see [3], Theorem III.6, p. 142 or [9], Theorem 2.2), or (in the real case) if it can be endowed with a partial order under which it becomes a normed Riesz space (equivalently, a normed linear vector lattice; see [5]). Beck proved that a Banach space is B-convex if and only if a certain law of large numbers is valid for random variables with ranges in the space [1], which implies that B-convexity is isomorphically

^{*} This research was supported in part by NSF Grant GP-28578.

invariant. Also, a normed linear space X is B-convex if and only if X^* is B-convex ([3], Corollary II.4, p. 129).

A normed linear space X being *finitely representable* in a normed linear space Y means that, for each finite-dimensional subspace X_n of X and each number $\lambda > 1$, there is an isomorphism L of X_n into Y for which

$$\lambda^{-1}||x|| \leqslant ||L(x)|| \leqslant \lambda ||x|| \quad \text{if } x \in X_n.$$

DEFINITION 2. A uniformly non- $l^{(1)}$ normed linear space is a normed linear space X which has the property that, for each positive number Δ , there is a positive integer n for which there does not exist a subset $\{x_1, \ldots, x_n\}$ of X such that, for all numbers $\{a_1, \ldots, a_n\}$,

$$\Delta \cdot \sum_{1}^{n} |a_{1}| \leqslant \left\| \sum_{1}^{n} a_{i} w_{i} \right\| \leqslant \sum_{1}^{n} |a_{i}|.$$

A space X is not uniformly non- $l^{(1)}$ if and only if there is a positive number Δ such that for each positive integer n there is a subset $\{x_1, \ldots, x_n\}$ of X such that

$$\Delta \cdot \sum_{1}^{n} |a_{i}| \leq \left\| \sum_{1}^{n} a_{i} x_{i} \right\| \leq \sum_{1}^{n} |a_{i}|$$

for all numbers $\{a_1, \ldots, a_n\}$. This property is isomorphically invariant. In fact, if L is an isomorphism of X onto Y, α and β are numbers for which

$$\alpha \|x\| \leqslant \|L(x)\| \leqslant \beta \|x\|$$
 if $x \in X$,

 $\{x_1, \ldots, x_n\}$ satisfies (2), and $y_i = \beta^{-1} L(x_i)$ for each i, then

$$\alpha \Delta \beta^{-1} \sum_{1}^{n} |a_{i}| \leqslant \left\| \sum_{1}^{n} a_{i} y_{i} \right\| \leqslant \sum_{1}^{n} |a_{i}|.$$

THEOREM 1. For a normed linear space X, the following are equivalent:

- (i) X is B-convex.
- (ii) X is uniformly non- $l^{(1)}$.
- (iii) t(1) is not finitely representable in X.

Proof. The proof that B-convexity of X implies (ii) is known (see [3], Lemma I. 4, p. 119 and [4]). To give an alternative proof, let us suppose X is not uniformly non- $l^{(1)}$. It then follows that there is a space Y which is isomorphic to $l^{(1)}$ and is finitely representable in X (see the proof of Lemma B in [10]). It follows from this that for each positive number δ there is an infinite-dimensional subspace Y_{δ} of Y which has a basis $\{u_i\}$ such that

$$(1-\delta)\sum|a_i|\leqslant \left\|\sum a_iu_i\right\|\leqslant \sum|a_i|$$

if $\sum |a_i| < \infty$ ([9], Lemma 2.1). This implies X is not B-convex.

Clearly $l^{(1)}$ is not finitely representable in X if X is uniformly non- $l^{(1)}$. The equivalence of B-convexity and (iii) follows from ([3], Lemma I. 6, p. 123). However, the following proof that (iii) implies B-convexity is much easier. Let us suppose X is not B-convex. That is, for each n, X is not uniformly non- $l_n^{(1)}$. Therefore, for each n and each positive number ε , there is a subset $\{x_1, \ldots, x_n\}$ of the unit ball such that

$$||x_1 \pm x_2 \pm \ldots \pm x_n|| > n(1-\varepsilon)$$

for all choices of signs. This implies that, for all numbers $\{a_i\}$, if k is chosen so that $|a_k| = \max\{|a_i|: 1 \le i \le n\}$, then

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i} x_{i} \right\| &= \left\| \sum_{i=1}^{n} \left[\operatorname{sign}(a_{i}) | a_{k} | \right] x_{i} - \sum_{i=1}^{n} \left[\operatorname{sign}(a_{i}) | a_{k} | - a_{i} \right] x_{i} \right\| \\ &\geqslant |a_{k}| \left\| \sum_{i=1}^{n} \operatorname{sign}(a_{i}) x_{i} \right\| - \sum_{i=1}^{n} \left| (|a_{k}| - |a_{i}|) \right| \|x_{i}\| \\ &\geqslant n |a_{k}| (1 - \varepsilon) + \sum_{i=1}^{n} (|a_{i}| - |a_{k}|) \\ &= \sum_{i=1}^{n} |a_{i}| - n\varepsilon |a_{k}| \geqslant (1 - n\varepsilon) \sum_{i=1}^{n} |a_{i}|, \end{split}$$

so that

$$(1-n\varepsilon)\sum_{i=1}^n|a_i|\leqslant \Big\|\sum_{i=1}^na_ix_i\Big\|\leqslant \sum_{i=1}^n|a_i|$$

and $l^{(1)}$ is finitely representable in X. This completes the proof of Theorem 1.

As we have noted, if normed linear spaces X and Y are isomorphic, then X is uniformly non- $l^{(1)}$ if and only if Y is also. Thus we obtain as a Corollary of Theorem 1 that B-convexity is isomorphically invariant ([3], Corollary II. 6, p. 130; [1], p. 33).

DEFINITION 3. A super-reflexive Banach space is a Banach space Y which has the property that no non-reflexive Banach space is finitely representable in Y.

There are many characterizations of super-reflexive spaces [11]. A Banach space is super-reflexive if and only if it is isomorphic to a space whose unit ball is uniformly convex [2]. We shall now give some relations between super-reflexivity and the uniformly non- $l^{(1)}$ property.

THEOREM 2. If every uniformly non-l⁽¹⁾ Banach space is reflexive, then a Banach space is super-reflexive if and only if it is uniformly non-l⁽¹⁾.

Proof. It follows from Theorem 1 that if a Banach space Y is not uniformly non- $l^{(1)}$, then $l^{(1)}$ is finitely representable in Y and Y is not super-reflexive. Now suppose Y is not super-reflexive, so that there is

a non-reflexive Banach space X that is finitely representable in Y. Also suppose every uniformly non- $l^{(1)}$ Banach space is reflexive, so that X is not uniformly non- $l^{(1)}$. That Y is not uniformly non- $l^{(1)}$ now follows from the facts that X is not uniformly non- $t^{(1)}$ and X is finitely representable in Y.

THEOREM 3. If $n \ge 2$, $\varepsilon > 0$, and each (n, ε) -convex Banach space is reflexive, then each (n, e)-convex Banach space is super-reflexive.

Proof. Suppose each (n, ε) -convex space is reflexive. Let Y be (n, ε) -convex and let X be finitely representable in Y. Then X is (n, ε) convex. Therefore X is reflexive and Y is super-reflexive.

COROLLARY. If $n \ge 2$ and each uniformly non- $l_n^{(1)}$ Banach space is reflexive, then each uniformly non- $l_n^{(1)}$ Banach space is super-reflexive.

It is known that all uniformly non-square Banach spaces are reflexive ([9]. Theorem 1.1). It has long been conjectured that a Banach space X is reflexive if there is an $n \ge 2$ for which X is uniformly non- $l_n^{(1)}$. A natural candidate for a counterexample is the space J described below.

We shall show J is not a counterexample. That is, there is no n for which J is uniformly non- $l_{\alpha}^{(1)}$. It then follows that a counterexample must be a non-reflexive space B that satisfies the conditions:

- (i) B has no subspace isomorphic to c_0 , $l^{(1)}$, J, or any other space that is not uniformly non- $l^{(1)}$.
- (ii) No non-reflexive subspace of B admits an equivalent norm and a partial ordering under which it is a normed Riesz space (normed linear vector lattice) [5]. This includes the following two cases.
- (iii) No non-reflexive subspace of B has an unconditional basis ([3], Theorem III. 6; [9] Theorem 2.2).
 - (iv) B is not an Orlicz space [11].

DEFINITION 4. If $x = \{x(0), x(1), ...\}$ is a sequence of real numbers, define the numbers ||x|| and |||x||| by

$$||x|| = \sup \left\{ \sum_{i=1}^{n-1} [x(p_i) - x(p_{i+1})]^2 \right\}^{\frac{1}{2}},$$

and

$$|||x||| = \sup \left\{ [x(p_n) - x(p_1)]^2 + \sum_{i=1}^{n-1} [x(p_i) - x(p_{i+1})]^2 \right\}^{\frac{1}{n}},$$

where in each case the supremum is for all $n \ge 2$ and all increasing sequences $\{p_i\}$ of n non-negative integers. Let J be the collection of all realvalued sequences x such that $\lim x(n) = 0$ and $|||x||| < \infty$.

It was shown in [7] and [8] that $(J, |||\cdot|||)$ is a non-reflexive Banach space with only conditional bases, that the canonical image of J in its

second dual has codimension 1, and that there is an isometric isomorphism of J onto its second dual. Moreover, it is easily verified that $|||\cdot|||$ and || · || are equivalent, with

65

$$||x|| \le |||x||| \le 2^{\frac{1}{2}} ||x||$$
 if $x \in J$.

It has long been known by both authors that $l^{(1)}$ is finitely representable in $(J, \|\cdot\|)$ — a lengthy argument is given in [6], with a brief outline in [3]. We will show that both c_0 and $t^{(1)}$ are finitely representable in both $(J, \|\cdot\|)$ and $(J, \|\cdot\|)$. This is an improvement over previous results. since c_0 is not finitely representable in $l^{(1)}$. Also, the present proof is much easier.

Note that we are letting sequences be functions on the non-negative integers. This is for notational convenience. In particular, z_{2k} is the sequence $\{0, (2k)^{-\frac{1}{2}}, 0, (2k)^{-\frac{1}{2}}, \dots, 0, (2k)^{-\frac{1}{2}}, 0, 0, \dots\}$ that has exactly k non-zero entries, each equal to $(2k)^{-\frac{1}{2}}$ and located at one of the positions 1, 3, ... \dots , 2k-1. If x is a sequence and n an integer, denote by $T_n x$ the sequence y for which y is linear on the interval $\lceil kn, (k+1)n \rceil$ and

$$y(kn) = x(k) \quad \text{if } k \geqslant 0.$$

LEMMA 1. Let m be a positive integer and γ , δ , ε_1 , ε_2 and N be positive numbers for which $\nu < \delta$ and

(3)
$$\gamma^{\frac{1}{4}}N^{-\frac{1}{4}} + \gamma^{\frac{1}{4}} < \delta^{\frac{1}{4}}, 2\varepsilon_1 + 4\gamma N^{-\frac{1}{4}} < \varepsilon_2.$$

If n > N, if $x \in J$ has the properties

(i)
$$x(i) = 0$$
 if $i \ge 2m$,

(ii)
$$||x||^2 < \sum_{i=0}^{2m-1} |x(i) - x(i+1)|^2 + \varepsilon_1$$
,

(iii)
$$|x(i)-x(i+1)|<\left(\frac{\gamma}{2m}\right)^{\frac{1}{4}} if \ i\geqslant 0,$$

and if $y = T_n x$, $z = y^{\dagger} z_{2mn}$, and w = y + z, then

$$(i') w(i) = 0 if i \geqslant 2mn,$$

(ii')
$$||w||^2 < \sum_{i=0}^{2mn-1} |w(i)-w(i+1)|^2 + \varepsilon_2,$$

Proof. Suppose n > N. Clearly (i') is satisfied. Also, it follows from (iii), the saw-tooth character of z, and (3) that

$$|w(i)-w(i+1)| \leqslant \frac{1}{n} \left(\frac{\gamma}{2m}\right)^{\frac{1}{4}} + \frac{\gamma^{\frac{1}{4}}}{(2mn)^{\frac{1}{4}}} = \frac{\gamma^{\frac{1}{4}}n^{-\frac{1}{4}} + \gamma^{\frac{1}{4}}}{(2mn)^{\frac{1}{4}}} < \left(\frac{\delta}{2mn}\right)^{\frac{1}{4}}$$

for every i, so (iii') is satisfied. If $\{p_i: 1 \le i \le k\}$ is an arbitrary increasing sequence of positive integers for which $p_k = 2mn$, then (iii) implies

$$|y(p_i) - y(p_{i+1})| < \frac{p_{i+1} - p_i}{n} \left(\frac{\gamma}{2m}\right)^{\frac{1}{n}},$$

and it follows from $z = \gamma^{\frac{1}{2}} z_{2mn}$ that

Now suppose $\{p_i\}$ also has the property that

$$\|w\|^2 = \sum_{i=1}^{k-1} |w(p_i) - w(p_{i+1})|^2.$$

Then it follows from (4) that

$$\|w\|^2 < \sum_{i=1}^{k-1} |y(p_i) - y(p_{i+1})|^2 + \sum_{i=1}^{k-1} |z(p_i) - z(p_{i+1})|^2 + 2\gamma N^{-\frac{1}{2}}.$$

For a particular i, suppose r_1, \ldots, r_{λ} are successive multiples of n and

$$r_1 \leqslant p_i < r_2 < \ldots < r_{\lambda-1} < p_{i+1} \leqslant r_{\lambda}.$$

If there is a j for which $2 \le j \le \lambda - 1$ and $y(r_j)$ is not between $y(p_i)$ and $y(p_{i+1})$, then the insertion of r_j into the sequence $\{p_i\}$ does not decrease the right member of (5). If there is no such r_j , there is no loss of generality if we assume

$$y(r_1) \leq y(p_i) < y(r_i) < y(p_{i+1}) \leq y(r_i)$$
 for $2 \leq i \leq \lambda - 1$.

Then the expression

(6)
$$\left[|y(p_{i}) - y(r_{2})|^{2} + \sum_{j=2}^{\lambda-2} |y(r_{j}) - y(r_{j+1})|^{2} + |y(r_{\lambda-1}) - y(p_{i+1})|^{2} - |y(p_{i}) - y(p_{i+1})|^{2} \right] - \left[\sum_{j=1}^{\lambda-1} |y(r_{j}) - y(r_{j+1})|^{2} - |y(r_{1}) - y(r_{\lambda})|^{2} \right]$$

is equal to twice

$$\left[y\left(r_{\lambda-1}\right)-y\left(r_{1}\right)\right]\left[y\left(r_{\lambda}\right)-y\left(r_{2}\right)\right]-\left[y\left(r_{\lambda-1}\right)-y\left(p_{i}\right)\right]\left[y\left(p_{i+1}\right)-y\left(r_{2}\right)\right]\geqslant0.$$

Also, let all pairs (p_i, p_{i+1}) for which there is at least one multiple of n between p_i and p_{i+1} be placed alternately in two sets. Then if (p_i, p_{i+1}) and (p_j, p_{j+1}) belong to the same set and $p_{i+1} < p_j$, there are integers $r_1, r_\lambda, s_1, s_\mu$ which are multiples of n and satisfy

$$r_1 \leqslant p_i < p_{i+1} \leqslant r_\lambda \leqslant s_1 \leqslant p_j < p_{j+1} \leqslant s_\mu$$

Thus it follows from (ii) that the sum over all pairs (p_i, p_{i+1}) of the second bracketed expression in (6) is greater than $-2\varepsilon_1$. Therefore if $\{q_i: 1 \le i \le n\}$ is $\{p_i\}$ with all multiples of n adjoined, then

$$(7) ||w||^{2} < \sum_{i=1}^{\kappa} |y(q_{i}) - y(q_{i+1})|^{2} + \sum_{i=1}^{\kappa} |z(q_{i}) - z(q_{i+1})|^{2} + 2\varepsilon_{1} + 2\gamma N^{-1/2}.$$

For each i, $q_{i+1}-q_i \le n$ and y is linear between q_i and q_{i+1} . Therefore,

$$\begin{split} |y\left(q_{i}\right)-y\left(q_{i+1}\right)|^{2}+|z\left(q_{i}\right)-z\left(q_{i+1}\right)|^{2}-\sum_{j=q_{i}}^{q_{i+1}-1}|y\left(j\right)-y\left(j+1\right)|^{2}+|z\left(j\right)-z\left(j+1\right)|^{2}]\\ \leqslant &\left[\left(\frac{q_{i+1}-q_{i}}{n}\right)^{2}-\frac{q_{i+1}-q_{i}}{n^{2}}\right]\left(\frac{\gamma}{2m}\right)+\left[1-(q_{i+1}-q_{i})\right]\left(\frac{\gamma}{2mn}\right)\\ \leqslant &\left[\left(q_{i+1}-q_{i}\right)^{2}-(n+1)\left(q_{i+1}-q_{i}\right)+n\right]\frac{\gamma}{2mn^{2}}\leqslant 0\,, \end{split}$$

so that (7) and another application of (4) give

$$\|w\|^2 < \sum_{i=1}^{2mn-1} |w(i)-w(i+1)|^2 + 2\varepsilon_1 + 4\gamma N^{-1/2}$$

This and (3) imply (ii').

The next lemma will be used several times, but its proof is relatively easy and will not be given.

LEMMA 2. For each n, T_n is an isometric isomorphism of $(J, \|\cdot\|)$ into itself. For each k, $\|z_{2k}\| = 1$.

LEMMA 3. For each $k \ge 1$ and $\varepsilon > 0$, there exist members ξ_1, \ldots, ξ_k of J for which $\|\xi_i\| = 1$ for every i and

$$\|\xi_1 \pm \xi_2 \pm \ldots \pm \xi_k\| < 1 + \varepsilon$$

for all choices of signs.

Proof. For arbitrary $k \ge 1$, suppose positive numbers $\{\gamma_i\}$ and $\{\varepsilon_i\}$ satisfy

$$\gamma_1 = 1 < \gamma_2 < \ldots < \gamma_k, \quad \varepsilon_1 < \frac{1}{2}\varepsilon_2 < \frac{1}{4}\varepsilon_3 < \ldots < 2^{-(k-1)}\varepsilon_k.$$

Choose N so that, if $1 \le i < k$, then

$$\gamma_i^{1/2} N^{-1/2} + \gamma_i^{1/2} < (\gamma_{i+1})^{1/2}, \ 2\varepsilon_i + 4\gamma_i N^{-1/2} < \varepsilon_{i+1}.$$

For n > N, let

$$x_i = T_{-k-i} \gamma_i^{1/2} z_{2n^{i-1}} \quad \text{if } 1 \leqslant i \leqslant k.$$

It follows from Lemma 2 that $||z_{2m}|| = 1$ for all m. Thus

$$||x_i|| = \gamma_i^{1/2}$$
 for $1 \leqslant i \leqslant k$.

69

Then it follows from Lemmas 1 and 2 that

$$\|x_1\pm x_2\pm\ldots\pm x_k\|< 2n^{k-1}\left(rac{\gamma_k}{2n^{k-1}}
ight)+arepsilon_k=\gamma_k+arepsilon_k.$$

Since $||x_i|| = \gamma_i^{1/2}$, for any $\varepsilon > 0$ we can choose ε_k small enough and γ_k near enough to 1 so that, if $\xi_i = x_i/||x_i||$, then

$$\|\xi_1 \pm \xi_2 \pm \ldots \pm \xi_k\| < 1 + \varepsilon$$

for all choices of signs.

THEOREM 4. The spaces c_0 and $t^{(1)}$ are finitely representable in $(J, ||\cdot||)$ and also in $(J, ||\cdot||)$.

Proof. Pick $\varepsilon > 0$ and a positive integer k. Let ξ_1, \ldots, ξ_k be the members of J given by Lemma 3, so that $\|\xi_i\| = 1$ for all i and

$$\|\xi_1 \pm \xi_2 \pm \ldots \pm \xi_k\| < 1 + \varepsilon$$

for all choices of signs. If $\sup_{k} \{|a_i|\} \leq 1$, then $\sum_{i=1}^{k} a_i \, \xi_i$ belongs to the convex span of elements of type $\sum_{i=1}^{k} \pm \xi_i$. Therefore

$$\left\|\sum_{i=1}^{k}a_{i}\xi_{i}\right\| \leqslant (1+\varepsilon)\sup\left\{\left|a_{i}\right|\right\}.$$

Since $\|\xi_i\| = 1$ for all i, it follows that if $\sup\{|a_i|\} = |a_i|$, then

$$2|a_j| \leq \left\| \sum_{1}^k a_i \xi_i \right\| + \left\| \sum_{1}^k a_i \xi_i - 2a_j \xi_j \right\| < \left\| \sum_{1}^k a_i \xi_i \right\| + (1+\varepsilon) \sup\left\{ |a_i| \right\},$$

so that $\left\|\sum_{1}^{k} a_{i} \xi_{i}\right\| > (1-\varepsilon) \sup\{|a_{i}|\}$. Thus c_{0} is finitely representable in $(J, \|\cdot\|)$. Since $(J, \|\cdot\|)$ is isomorphic to $(J, \|\cdot\|)$, an argument similar to the proof of Lemma B in [10] shows that there is a space isomorphic to c_{0} that is finitely representable in $(J, \|\cdot\|)$. This space can be as nearly isometric to c_{0} as desired ([9], Lemma 2.2). Therefore c_{0} is finitely representable in $(J, \|\cdot\|)$. Since $t^{(1)}$ is finitely representable in c_{0} , we conclude that $t^{(1)}$ is finitely representable in both $(J, \|\cdot\|)$ and $(J, \|\cdot\|)$.

References

- A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc., 13 (1962), pp. 329-334.
- [2] Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math., 13 (1972), pp. 281-288.
- [3] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc., 125 (1966), pp. 114-146.

- [4] Additions and corrections to "On a convexity condition in normed linear spaces", Trans. Amer. Math. Soc., 140 (1969), pp. 511-512.
- 5] The completion of a B-convex normed Riess space is reflexive, J. Func. Anal.
 12 (1973), pp. 188-198.
- [6] A study of convexity in normed linear spaces, Ph. D. thesis, Univ. of Wisconsin, Madison. 1964.
- [7] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math., 52 (1950), pp. 518-527.
- [8] A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), pp. 174-177.
- [9] Uniformly non-square Banach spaces, Ann. of Math., 80 (1964), pp. 542-550.
- [10] Some self-dual properties of normed linear spaces, Symposium on Infinite Dimensional Topology, Annals of Mathematics Studies, 69 (1971).
- [11] Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), pp. 896-904.
- [12] K. Sundaresan, Uniformly non-l⁽¹⁾ Orlics spaces, Israel J. Math., 3 (1965), pp. 139-146.

WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN CLAREMONT GRADUATE SCHOOL CLAREMONT, CALIFORNIA

Received June 17, 1972 (550)