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STUDIA MATHEMATICA, T. XLIX. (1973)

A theorem of Cesari on multiple Fourier series

by
JAU-D. CHEN* (Lafayette, Ind.)

Abstract. We extend an important result of L. Cesari on almost everywhere
convergence of multiple Fourier series from 3 dimensions to n dimensions and extend
the clags of functions from generalized bounded variation, GBV(T"), with variation
functions in Ly, p > 1, to variation functions in L (Log™+L)*—2 The work of Cesari
is rather inaccessible, difficult to read, and the extension to n variables is not obvious.

1. The primary purpose of this paper is to reacquaint the mathemat-
ical public with a little known but very interesting and important result
of L. Cesari [3] on the almost everywhere convergence of multiple Fourier
series. A secondary purpose is to extend Cesari’s theorem from 3 dimensions
to n dimensions and the class of functions from GBYV with variation func-
tions in Ly, p > 1, to variation functions in L(log"L)** where the
meaning of these classes is given in the sequel. The basic ideas are those
of Cesari. In several places certain adaptations are necessary in order
to obtain the extensions. The result of Cesari for » = 3 is remarkable
and his proof shows an appreciation of the various subtle possible pitfalls.
Nevertheless, the work iy rather inaccessible, difficult to read, and the
extension to # variables is not obvious. The result is sufficiently
important to warrant a separate treatment for » variables.

2. Congider the = torus 1™ =[0,2x)X ... X[0,2n) of points
@ = (4, ..., @,). The class V, consists of thoso real functions on 1™ whose
partial derivatives, in the distribution sense, are totally finite measures.
This class was introduced by Tonelli [7] for continuous functions and
by Cesari [1] for the general case. Tt was used by Tonelli in area theory
for nonparametric continuous surfaces (bwo variables) [7], and in double
Fourier series [8]. It was used by Cesari in arca theory for nonparametric
arbitrary surfaces (two variables) [1], in double Fourier series [2], and
triple Fourier sories [3]. Tonelli in [9], [10] re-elaborated part of Cesari’s
work. G. Torrigiani [117 and A. M. Romano [6] later treated particular
facets of the problem under discussion.

* The author is grateful to Professor Casper Goffman for his emcouragement
and invaluable help in making this paper possible.
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It is convenient to have the following notation: For each { =1, 2, ...
.3 M, We designate points in (n—1) space with coordinates (4, ..., #;_,,
) T,) a8 %;, and, for ¢ < j, points in (n—2) space with coordinates
(@1 eoes Byyy Bypqy eeny Bj_yy Brpay -y L) a8 By, Thus a point in » space
may be designated as (w;, %;), or (;, x;, Ty), for 4,5 =1,...,n. We also
write do = do,d%; = do;dw;d%;. For any interval I = R" we may write
I =LxI, = I;xI;xI;, where I; is an (n~1) interval and I, an (n—2)
interval.

Suppose that f is a measurable function on R® of period 2= in @,
"4 =1,...,n The clags V, of functions f(»), ze I", under consideration
(functions of generalized bounded wvariation) wag introduced by Cesari
in [1], [2], [3] by using suitably defined fotal variations Vo, (i, T;) of
f(@;, %;) as a function of »; alone. For the purpose of the present paper
the form of the definition proposed by C. Goffman in [4] is preferable.
Thus, we shall say that f(»), x< 1" is of generalized bounded variation
GBV(T™), if for each ¢ = 1, ..., n, there is an f; equivalent to f, which is
of bounded variation in @; for almost all %, and the variation function
Vi, ([0, 2n], @) = V(%) is summable in % on I"7% For (z;, B)e I™ we
designate by Vy,(m;, #;) the total variation in [0,2] of f; considered as
a function of #;, and by E; the set of which f # f; for some 7. It iz well
known that fe GBV(T™) implies fe L, (T™).

The notion pseudo uniform convergence, introduced by Oesari [2],
[8] refers to a sequence

(1) k@) (@) > (o) >

of measurable functions on an interval J < R" Let gr,s b6 the charac-
teristic function of the set for which %,.(2) > ¢, 2 > 0. Let

Digaye-e

=Zhx)=z...20

@) (@) =lmlim Hm —— fg”(a a)da,
o0 1200 00 27 3 62 '
fusl, ...,
@) rl = }f_mj, 75,6,..5, 52 fg“ a)da,
i=1,...,M

where wed and J, = [, — 6, B8, 1X ... X [@,— 8, B+ 8,] = J. We
say that k.(z) converges pseudo uniformly to 0 at x, with respect to &(w)
it x(z) = 0 and x' (@) = 0.

Lemma 1. If the sequence k.(z) in (1) converges to 0 a.e. in J and
k(z)e Llogt L)*1(J), then k.(z) converges pseudo uniformly to 0 . e.
with respect to k().

Proof. The proof is essentially the same as that of Cesari [2], [3].
We need only note that since k(z)e L(log* L)*~'(J), the indefinite integral
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of k() is strongly differentiable and the strong derivative is. equal to
k() a.e. ([12], D. 306).
From the above lemma, we have the following eorollary:
COROLLARY 1. If f(#)e GBV(I™) and V. (wi)eL(log’fL)”‘z(T?) for
each ¢ =1,2,...,m, then for a.e. m, = (a}, .. ,m,, vy e T
() T Vi (ah+0,3) = T 03— 0, 3) =0,
where the limit ewists with respect o a. ¢. T;. Hor a. e. T} (4) is pseudo uniformly
conwergent to O with respect to Vo, (%) ot 7.
LeMMA 2. If f(z)e GBV(I®) then for a.e. wmel”, the dlerated limit
lim lm f(@, o0y, @+ 0y) ewists at © and is equal to f(»), where a set

- o=+ o0+

of measure 0 may be ignored in taking the limits. Similarly, if I (m € GBV(T")
then for a.e. weT™ the 2"n! dterated limits exist and are equal to f(z).
Proof. We néed only consider f(w)e GBV (I%). Let

2

P(@) = [ Vo, (@1, 20) B0y
[}

Since y is increasing, it is continuous a.e. in #,, so that, for a.e. v, we have
Vay (@1 @) = Vo, (w1, @a+). So for a. e. @y, We have f(ay, y) = f(®y, a-+)
for a.e. @,. Similarly, for a.e. @y, we bave f(x,, ) = f(#;+,»s) for
a. 6. #;. By noting that these iterated limits are measurable functions
defined for a.e. we T% ([5], Lemma 2, p. 363), the conclusion holds for
a. e. xe "

3. In the remaining scctions, we ghall prove the following theorem :

THEOREM 1. Forn>2,le f(2)e GBV (I™) and Vwi(ﬁi)eL(Log““L)““"(T‘.?)
for each i =1,2,...,n. The n-tuple Fourier series of f(x) comverges to
f(®) a.e., using reclangular summation.

Remark. For n = 2, see [2] or [7]. We need only prove the theorem
for n = 3.

4. Lot f(x)e GBV(I™) and my = (@), ..., %3, ...y
8o that the following conditions hold:
(B) Al 27n! iterated limits of f(w), defined as in Lemma 2, cwist at ©, amd
are equal to  f(wy) == 1.
(6) For each 4 ==1,2,...,m,

al)e I™ be chosen

lim Vo, (@~ 0, ) — Vi (0 — 0, &) = 0 is
00~

pseudo uniformly convergent to 0 with respect to V. (%;) ot @y, where

the limit is defined as in Corollary 1.

PRrOPOSITION 1. If (B) and (6) hold for f(x) at o point mee 1™, then for
each o > 0, there ewists & = 0(c)> 0 such that for any positive integers
hyyoeey b,y
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8 8 n
sin b, u;
of...of[f(mo+2u)~Z]gmdu

In order to prove the proposition, we introduce some notation, defi-
nitions, and elementary lemmas.

Let *Z be the set of all non-negative integers and *Z™ the Cartesian
product of m copies of *Z. If v is any strictly increa;sing function from
{1, ..., k}into {1, .. ,m} and @ = (a;) = (ttg, ..., &,
<27, write (a,,, ..., a,) 28 6] [a, if j = T, (aq,..
and (ay, ..., &, _,, “'»1+1’ 3 Gyt By voey By o ) Op) B8 @ [a if § = k]
Also, 0 = (0, ..., 0) and 1= ..., 1), Thus, we may write (af, @) or
(0, @) a8 @, (ag,.. -y Oy) B8 (bv_,l a’j) and (@, ..

9 By-1y b, (R PR “,,—1; bv,: U1y = ony Gy v ey ay) as” (b, al) [(b,, ﬁv)
1f j =%, where b = (b;)etZ™

We need the trivial modifications for the above notions if j = % or
vy =1 0F v, = m.

Note that ofc *2/(a,e ¥2"), G, ¢ *Z™, @e *Z™ (@, *2™").

DerivizIioN 1. If B is a complex function defined on *Z™, we write
B(d) as B; for each de *Z™. Let a, b, v be defined as the above. We define
4 inductively as follows: Let

L] = <oc.

1 %: ten au,cy "-7am)
,aj_l, a,jm Ly Gy O “J

o By by a’vj+15 .

A0,)Be,5,) = Boya) —Poyinap)

agsuming that Ab,ﬂ(b, # hags been defined for each j =1,...,%k—1, let

AbZ“Ll‘B(bZ“ﬁf“) = Abz[A(bvj+1)ﬁ(bpj+1,3,,j+1)]7

where ¢ = (¢;)e *Z™, satistying (Boy Bjr) = (BI*+1, @itY).

DerviTioN 2. Let @ = (a;), b = (b;)e TZ™; we say that a<<(=)b
if and only if a; < (=)b; for each ¢ =1, ..., m. Obviously, 0 < & for any
aetZ™,

LevmA 3. Let a, 8 be complex fzmomo'ns defined on 7™, and ¢ = (g;),
@ = (@), p = (p)e *Z2™. Let

n
By = Zadﬂa;

a=0

4, = Zac and
c=0

then

1)1’

2 Ad dﬂd"‘ +2[2 A(ziv ,)Ad lg(p,,d,,)]‘[' +'Apﬂm

where the summation 3 is taken over those v satisfying 1 < << ym
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Proof. Simply apply the Abel-transformation for m = 1, and then
uge induction for the gencral case.

DErFINITION 3. Let d = (d;)e TZ2™; set

1 it d =0,
== . 1 otherwise
nmx {d:} [ Td; ’

where the maximum max and the product [ ] ] are taken over those 4 for
which d; = 0. t

Using the definitions A and 7, we immediately have the following
lemmas

LeMMA 4. Let a, be TZ™, and p any striclly increasing function from
{1, ..., B} dnto {1,..., m}. Then

Ab,‘ﬂ(b,‘.;m =0 if any component of b, is 0,

and - s

: I ’
1]].2:’11X{b¢} IJ by ” [b;--1] [ ] [%1 +1]

‘AEM "i(aM,EM)I <

where oll the components of B, are positive, and the mazimum max and the
product ] | ave taken over all the components of b, 4

We now prove Proposition 1.
Given o> 0, there exists 0 < & <1 such thab

g * R | .rn-v‘l
(7) nm[zf_g (n—1)+1]«n!{1-|-21-.‘—:—f—) }a<a.

re=l

From (5) we can pick 0, > 0 such that if of < @ < 22 0, for each ¢ =1, ...
..y M, then
for w.e. ;.

| (@l &) 1] < &
Let g,,,(®;) be the characteristic function of the set for which

Vg (0 -1- 0y Ty) = Vo (1, By) 2 8.

From (6) there cxists 6(¢) and 8(0,2) such that if 0< 0< 6(s) and

0< 8,5 8(0, 2), then

5 ( 0,0 (W) [ Vo, (%) + 2]+ 1]d%; < &
Lene ]

n
for each ¢ =1,...,n, where I = [][af, o]+ &1, and u = (ug)e I.
Gl


GUEST


74 o Jau-D, Chen

Choose & > 0 so that 36 < 1mn{60,_6(a),_6(6, ¢)} and the hyperplanes
#; = +28,4 =1,...,n, meet B, in sets of measure 0. For simplicity
we may assume z, = 0.

Let ¢; be the largest integers for which g;m/h; << 9.
n
Tet IF =[0,6]% ... x[0,6], and X, m”[di“ ,@_ﬂ)i] i

T Iy
@ = (d)e*2m
Set

n copies Te=1

. Dy = K nIb.

n
sinh;u,
ta= (w11 [ [ S au,
5 L1 siny,

Note that our integral may be written as

q
L= Dl
d=0
where g = (g,)e *Z"

) For m =3, Cesari [3] splits L into 3 different groups. 'L, IO
IO, 195 P, IP, and analyses each group

L =IP4+I0 .. +IY,
where L% is indicated as follows:
I{ is the sum of those 44, with components satistying d, < dy < dy,
I{) is the sum of those Ay, satistying d < d; < dy. Similarly, I{), I{)
L, LY are taken over those components satistying dy < dy < dz,zd;
<Ay < dyy dy < Ay < by, dy < dy < dy, vespectively, See Figure 1.

Designate

X3

Z ary)
P

(ITg) Xy

Figure 1
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Geometrically, L{ is the sum of all integrals over those rectangular paral-
d dome A d;+4-1 dy+1

lelepiped cuboids with vertices ST 2T D7) and (gj—)—n—,(—fi_———)Tr ,
hy ' hy " hg by he

fs+1)m . . .
E.L}l»)—) which meet tho tetrahedron (I,) with non-zero volume; L) is
i3
over those which are not in Z{) and meet the tetrahedron (Ip) with non-
zoro volumoe. We ean interpret LY, P, L and LY, similarly. For n > 3,
we extend Cesari’s method to split L into » differént groups as follows:

o, ..., P, ..., .L}“"”’,
where L}” is thoe sum of those A; with components satisfying

=12 ...,
(8) Ay g 5y S gy S e S ey < By

and each L is formed by a suitable permutation of the components
of d, ;4 in (8) with proper sign “<” or “<” betwoen them. We need the
obvious modifications in (8) for j == 1,2 or n.

We consider I in detail. Leb

(@) = f(m) ﬁ gﬂﬂ,s(:z_n) =0,
¢ i g (%) =1,
Whero @ == (i, ., @g)e Iy == [0, 281 % ... x [0, 26]. Write
F(@) = @)+ y (@)

"
. -1 sinh,u,;
Al e r[f”(zu),_ljllmn i Uy au,
j i=1

it we I35,

3 sin
a
n _
- =T 8inh;u;
Vg == f 1}1(2%)] ‘[—#- du .
§ Sina;
Dg feal

The decomposition f == f°y gives the decomposition

=1, ymoand cach b =1,..., (m—1)L

Let , .
e ‘
D) = [ oor [ Gusa(2) Vi (2T) - U] -+ 1 T,
o 0
(‘1175 dn-—-lw)
v o) e e
(/{Ln 1)( hl ’ h’n——l
0 ifd,=0
Ty = [/ o
n l Tj‘ﬁ‘:"iﬁol:i'. otherwise,

where & = (s7), % = (u;) and @ = (d).
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From arguments similar to those for the 2-dimensional case [2], we obtain
the following:

n

,‘_:211,—]'-—1 e
A < N o<
‘2 2% Fhd - N0 B gy
n
1 3™ hgeri By
Z?’a < 7 J‘ﬁ'—l“77(0,...,0)(—1)"_14'(0,...,u)'l’(o,...,u)7
b
& E I By 1
veihy,
Vol S o P 0,(4, 9),
A=y n-1Tn—2 u—j
where ¢=(0,...,0,d,), b=(b;)=(0,...,0,d,_;,...,d,) with d, ;,...,d,
>0, and 0, (4, ) = (— — 1) 5, 5, - "Noto that
1 Fn—g+1 In ‘
= D ... D) Mty
Qo= Ggg=0  dy=dy_y

Therefore, we have

4 In—j+1 1 B
) < = {H— D [...1[1+ D ][...][1+ ’m]}
n—1=1 " dpg=1 S Gyt &
n—2
2?1,{1+Z 1+10g7’ }8,
and
-1 dp—ji1
<) 3 . Y . 2% 72,
Bp1=0  dp.y=0  dy=0
37 Ry by g L
where Uy = Cy(hy; ooy hypy) = P and @ = (d;) e *2Z" Simi-

larly, we have

P2

(1 L 1no s\ 2
IL?(Ic)l < 72 {1 -+ Z (1 |"10;=7') }6

r=1

for each j =1,...,n and each %k =1, ..., (n—1)!.

Analogous inequalities hold for 1, ...,1(, ...,

(n—1)! 513 D
| > <o, ‘_Z 1, 43,73,| = Oa] D) 1o 4ot
k=1 Tpy=0 =0

where¢ = d,,p = g, 2"

1= gnd we obtain
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Note that if ¢ = (¢;)e 2", then

c—1
-

i 2 Ay
c'=0

From Lemma 3 and. the first part of Lemma 4, we now have

= P~

(n—1I)t p——jl
| 27 80 < O {| 3] porsdon + .. +
Jomal Ol
(p=1),
+ 21 2 P11, (6T0,) A2, Nipyoi)| T oo +(Pp+1’71:}5
Cy=1
where the summation 2 iy taken over those » satisfying 1 v, <... <

<n—1.
Using the second part of Lemma 4 and noting that |r,] < e for
1<e< p-+1, we have

e Ty T
‘*’n"’u 2, Pl+1,,@F,) 48, 0,,3)
Gyeal
, o1 (L+logr)™—i—*
< 21+l[ﬂ_(]'['1)]!{1+ 21/ ~—~;‘2———-——— e.
e

Hence, by direct computation, we obtain

(n—1)

iz z"ﬂ>f<-—_~(n 1) (n—1) {1+;E—%ﬂ——z}e.

(=131 .
Similarly, the above inequality holds for Y ¥Y. Hence, IZ l&")‘

kel

on 1 -+ Togry™=? s
< Z:_,,n!(n 1{ Z( 4 ogr) }8. Thus, || <7 {W(ﬂ——l)-l—
Pum]
T
+1}m{1 > 11,1‘1%_@_“} <o
Pexl

This completes the proof of Proposition 1.

Using the procedure of the preceding section, we obtain the
following corollary:

COROLLARY 2. If (B) and (8) hold for f(m) at wye I™, then for each ¢ > 0,
there ewists 6 > 0 such that for any positive integers Ty ...y i,

sin ke, i

f L (o - 20) — 2nl]l 1 siny,

by

¥ = ] <o,
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where B (wo-+2u) = f(xo+2u)+ ... + )__,’ Fl(®o—2u),, (@e+2u),)+ ... +

+f(®,—2u) and the summation Z is ta.ken over thoge » satisfying 1<y,

»
<9y < ... < ;< n Note that here we adapt obvious extensions of the
notions for integer coordinates.

5. We now finish the proof of the main theorem stated in § 3.

For fixed 4 and % such that 1<i<<n and 1<k <<n—2, and for
any strictly increasing funection » from {1, ..., &} into {1, ..., n} such that
v; %4 for any j =1, ..., &, designate

2m

Wi (&) = f

H ( iv )'i ) dmv )
(3 tlmss)

fV (#,, 7,) dw, = f fv,i

where we recall that e RY, 7,c R** and (,);e R" %L,
Remark 1. Wi(z,) = Wiz, (& (%)) is non-decreasing in w;, and

27 am

W, (@) f fV m,,,(w )i) @, = f foi ;) da, .

Remark 2. Let V,.()eL(Log™L)"(I™") and consider g(u)
= w(logtu)"* (n>3). Then g(u) is convex and increasing on [0, co)
and for each s 5 vy, ¢ we have

27
W) o< r (uf T’wi@)dwv)d
ofy( e Jans [ o\ o

™
(]

21 2m
1 —
<%ofbf g(vxi(xi))dw,,dws,

by Jensen’s inequality. .

This implies that W} (%,)e L(Log* L)"*(T""*). Hence W, (2w, (3,))
¢ L(Log™ L)**(T™%). Sunllarly, W%, (27, (7,);)e L(Log™ Ly"%~* (1'”—’“— ) by
induction.

Remark 3. For a.e. ye I by using Fubini’s theorem, we can con-
clude that f(z,, B,) considered as a function of , on 1" is integrable for
any p and r, where w is a strictly increasing function from {1, ..., r} into
{a,..,n} and 1<r<n—1.

Levmma 5. If f(z G‘rBV(T“) and V(% ) e L(Logt Ly"=2(T™Y), then
for a.e. my = (a2, .. ,mi,. o ah) = (ad, af, (% ;) e T for amy »

Lim [ng({vg'l" 6: (av)v‘.) _Wﬁi(wi - 03 (%:)1)] =0
[
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for a.e. ( ,)1 "% and the convergence is pseudo-uniform with respect
to Wi, (2m, (3.)) ot (% ).

Proof. From Remark 2, it is an immediate consequence of Lemma 1.

THmOREM 2. Suppose that f (@) e GBV(L™) and V ,, (%;) e L (Liog ™ L)"*(T™)
for each © == 1, ..., n. If conditions 5, 6, Remark 3 and Lemma B for any
1<k<n—2, hold at @y, then the n-tuple Fourier series of f(z) comverges
to f(x) at @y by using rectangular summation.

Proof. It ig enough to show that

é Sm/2 /2

9) f...fdf...af—w

R
ad leagt two

and
8 3 nf2
(10) foif [ =0
0 08
as by, ..., by = oo, where the integrands in (9) and (10) are [f(z,+22) —
h
—Z]M Let

sina,;

=

ot

(@) = [ [+ 20) -1 2%
3

sin hi @;
A,

(1

Denote by Wm (25, &) the total variation of 4, (%;) considered as a function
of ;4 5 j.
Obsgerve that
Way(af, Byg) — Wy (@), By) <

[W:Ic (wg y Ty) — W;j(w;, Zy)]

and ij(@,.) = W,aj(zn, Fy) < W;j(zre, y) for & , oj(#; > «j) in [0, 2]

1
sin &
2

Algo, note that the iterated limits of Ay, (%;) are equal to f [f((wo-l—
[

sinh,w,
F2a);, (o)) — 1| ——— sno, —t ;.

For (9): we use induction.

For (10): the conditions of Proposition 1 hold for Ay, (%) and n—1
in place of f and n, respectively. The conelusion (10) followrs immediately.

Proof of Theorem 1. Since for a.e. we I, Lemmas 1, 2, Corollary
1, Remark 3, and Lemma 5 hold, then by Theorem 2, for a.e. we %,
the m-tuple Fourier series of f(z) converges to f(#). By periodicity of
f(@), we complete the proof of our main theorem.
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STUDIA MATHEMATICA, T. XLIX. (1973)

On the continuity property of Gaussian random fields
by
HISAO WATANABE (Fukuoka, Japan)

Absteact. The conditions for sample paths to be continuous arve considered
for Gaussian random ficlds, Especially, the necessary conditions are described.

§ 1. Yntroduction. Let X = {X(}), f« R% be a zero mean, real, sta-
tionary, separable, mean continuous, Gaussian random field with a d-
dimensional Euclidean parameter space. Then, the covariance function
o(f) = B(X (I-+®) X (3)) is expressed byﬁfd cos (£, 1)dF (1), where (,) denotes

the inner product, £, 3¢ R® and F(-) (*) is a bounded positive measure.

The purpose of this paper is to desceribe the continuity condtitions
of path functions (which are known for the 1-dimensional parameter
case) for random fields. Most sufficient conditions for sample functions
to be continuous are already described for random fields. Thus, we shall
be concerned mainly with sufficient conditions for sample functions to
be discontinuous.

Tn the case of the l-dimensional parameter space, the conditions
in terms of the spectral measure F(-) were given by Kahane [4] and
Nigio [7]. The corresponding results for random fields are the following.
Let s, = F(Tec Sps1)—F(ie 8p), where  Smu = {4; 12| <2",
n=0,1,2,... -

Trmonum 1. If X (B) 48 continuous, then 3 sh< oo,

feml

Tymormm 2. If there ewists a docrensing sequence { M} such that &, < M,

and f MY < oo, then X has continuous paths.

Neml,

As is shown by Maxeuns [5] and Marcus and Shepp [6], these conditions
are neither t0o strong, nor necessary and sufficient. Howoever, they give
a simple criterion for some cases. In § 2 and § 3, we shall give the proof
of the above theorems.

A result borresponding to theorem of Marcus and Shepp ([61, p. 380)
is as follows.

() F.ig oceasionally used as a measure or as a point funetion.
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