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Abstract. It is shown that function algebras are never weakly sequentially
complete (unless finite dimensional) and then sections induced from maps from weakly
sequentially complote spaces onto function algebras are studied. As a result, it is
ghown that for an infinite Helson set F the restriction map g of the Fourier algebra
A(G) (that is, T2 (G)* L2 (G)) of a locally compact (not necessaxily abelian) group onto
the spaco O (1) of continuous functions on B never admits & section z, (that is, a con-
tinuous linear map m: O(B) ~ A () with gom =id). A set B = @ is called a Helson
set provided A (G)|7 = O(B). A similar application to Sidon sets in the dual of
a compact group is algo given. .

TraworEM 1. Let A be a weakly sequentially complete commutative
Banach algebra. If A is isomorphic to a closed subalgebra A of Cy(8), the
continuous complex-valued functions vanishing at infinity on a locally
compact Hausdorff space, then A is finite-dimensional.

Proof. If A iy infinite-dimensional, then there exists an infinite-
dimensional separable subalgebra which is weakly sequentially complete.
Thus we may assume that 4 is separable.

It 4 does not separate the points of §, we embed A instead into
0o(8/~), where for s,te S, s ~ 1t if and only if f(s) = F(t) for all fe 4.
Thus we may assume that 4 separates the points in § and hence in the
Shilov boundary 84 (since 84. = 8). Thus 04 = § is & metrizable locally
compact space.

Tet P < 04 < § denote the set of peak points of A. The set P is
dense in A4, (Bishop’s theorem ([6], p. 56) since A iy metrizable. It will
thus suttice to ghow that P it finite: for then 8.4 will be finite (and equal
to P), and 4 iy isomorphic to A|a4.

By the Lebesgue dominated convergence theorem, given a sequence
{fu} = A with | lle =<1 and f, >z, (the characteristic function of the
set {p}, peP) pointwise on 8, it follows that {f.} is weakly Cauchy in
A (= 4). Tence, by the weak sequential completeness of 4, xpe 4.
Thus P congists of isolated points.

* This research was supported in part by NSF contract GP-31483X.
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Once again by the weak sequential completeness of 4 and the Lebesgue
dominated convergence theorem, if P is not finite, we would have a count-
able subset P’ = P with yp € A  0y(8). But P’ would then be a compact
. infinite discrete set, a contradiction. B

Remark. This result was previously announced by the authors
in [3].

The fact that (,(S) is weakly sequentially complete if and only if §
is finite is used by R. Bdwards [4] to show that the Fourier—Sticltjes
transform. of the measure algebra M (G) of a locally compact abelian
group is not onto unless G is finite (see also [1], p. 30).

Examnples of weakly sequentially complete spaces include convolution
meagure algebras, reflexive spaces, and the predual of a W¥-algebra,
(Sakai, [8)); thus the Fourier algebra A(G) (that is, L2(G)*I2(G)) of
% locally compact group is weakly sequentially complete (Eymard, [5]).
For @ compact, a direct argument can be given to show 4(¢) is weakly
sequentially complete [2].

TunoREM 2. Let o be o continuous linear map of a weakly sequentially
complete space A onto an infinite dimensional function algebra B. There
does mot ewist a section mw: B— A; that 48, a continuous linear map 7 for
which gom = id.
~ Proof. By way of contradiction, suppose that = exists. Let m*: 4™
— B* be the adjoint of m. If {f,} < B is a weak Cauchy sequence, then
{nf,} is weak Cauchy in A: for pe A*, note that <{af,, ¢d = (fn, w*ed.

Since A4 is weakly sequentially complete, there exists ge A for which’

af, =g weakly in 4. Now ¢: 4 — B is strongly continuous, and hence
weakly continuous. Thus f, = g(nf,) 5 og weakly in B. Hence B is also
weakly sequentially complete, a contradiction by Theorem 1. [ ]

CorROLLARY 3. For @ a locally compact group, let ¢ denote the restriction
map from the Fourier algebra A(G) onto the fumction algebra O(X), where
F is am infinite Helson set in @. There does not exist a contimuous linear
map n: O(B) - A(G) such that nf|H = gonf = f.

Remark. Corollary 3, for locally compact abelian groups, appears
in Grabham, [7].

In the sequel, ¢ will be a compact group and G its dual, (we use the
notation of our book [1]). A subset # < @ is a Sidon set provided LY (@)" | B
= ¥,(E), the subset of £°(@F) consisting of those ¢ for which the set
{a€ B: |lplle == &} is finite for ¢ > 0 and ¢, = 0 for a¢ B.
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COROLIARY 4. For T < G an infinite Sidon set, there does not ewist
o (bounded, linear) section m from €o(H) — L (G) for which (ng); = @, ae B.
Similarly, there does not cwist o section = from L« (H) - M(G) for which
(p)a = Pay a€ L.

Lot B < G We say that H is a wm,ml Sidon. set provided given

any (pe.%".,f“’( , (the center of J""(G)) there exists p e M (@) such that
Po == gy @€ B, LZJ
CorOLLARY 5. Tor I <= G an infinite aemml Sidon set, there does

not cxist @ seclion m from XE,(H) - ILNG) for which (mp), = @, .
Similarly, there docs not ewist a seclion m from LL*(H) - M(G) for
which (zp), = @y el

Remark., The space .Y"”((;), (@ infinite) is an infinite-dimensional
0*-algebra, and is thus not weakly sequentially complete (Sakai, [8]).
One, howwor, can. get this result quickly for =f‘”((}), since ity center
ﬂ’!ﬁ“’((w‘) o2 l°°(G) ig an infinite-dimensional function algebra.
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