CONCERNING IRREDUCIBLE CONTINUA OF HIGHER DIMENSION

 \mathbf{BY}

J. W. HINRICHSEN (AUBURN, ALABAMA)

Let \mathscr{K} denote the class of all compact metric continua K such that there exists an upper semi-continuous decomposition G of a compact metric irreducible continuum M with each element of G homeomorphic to K and with decomposition space M/G an arc. Knaster [2] showed that an arc is in \mathscr{K} . In [4] it is shown that the arc is the only connected finite 1-polyhedron in \mathscr{K} . Also in that paper, the question is raised of whether the 2-cell is in \mathscr{K} . In [1] it is shown that if n is a positive integer, there exists an n-dimensional continuum in \mathscr{K} and that the Hilbert cube is in \mathscr{K} . In this paper it is shown that if n is a positive integer, then the n-cell is in \mathscr{K} .

THEOREM 1. There exists a compact metric continuum M such that

- (1) M is irreducible;
- (2) there exists an upper semi-continuous collection G of arcs filling up M such that M/G is an arc; and
 - (3) there exists a countable subcollection H of G such that
- (a) if h is in H, h contains an arc Z_h such that each point of Z_h is a separating point of M and Z_h contains every separating point of M in h,
- (b) if S denotes the set of all points P such that P is an end-point of Z_h , for some h in H, then S is dense in $M \bigcup_{i \in \mathcal{I}} Z_h$,
- (c) if $\varepsilon>0$, then only finitely many members h of H have $d(Z_h)>\varepsilon$ and
 - (d) $\bigcup_{h\in H} Z_h$ contains all separating points of M.
 - . Proof. Let

$$g_1(x) = egin{cases} \sinrac{1}{x} & ext{for } 0 < x \leqslant rac{1}{\pi}, \ & \sinrac{1}{x-2/\pi} & ext{for } rac{1}{\pi} \leqslant x < rac{2}{\pi}, \end{cases}$$

and

$$g_2(x) = g_1(x) - \frac{1}{4}.$$

Denote by g_1 and g_2 the graphs of the functions defined above. Let A denote the vertical interval from (0, -5/4) to (0, 1) and B denote the vertical interval from $(2/\pi, -5/4)$ to $(2/\pi, 1)$. Let H_1 denote $A \cup B \cup g_1 \cup g_2$ and I_1 denote the interior of $A \cup B \cup g_1 \cup g_2$. Let a_1 denote a countable sequence of mutually exclusive arcs such that if u is in a_1 , then

- (1) u lies in $H_1 \cup I_1$,
- (2) the endpoints of u both lie on g_1 or g_2 ,
- (3) u intersects g_1 and g_2 and $u \cap (g_1 \cup g_2)$ is the set consisting of the endpoints of u together with an arc Z_u ,
- (4) the diameter of each component of $u-u\cap(g_1\cup g_2)$ is greater than 1,
- (5) if $d(Z_u)$ denotes the diameter of Z_u for each u in a_1 , then $\sum_{u \in a_1} d(Z_u)$ $\leq \frac{1}{2}$,
- (6) if S_1 denotes the set of all points P such that P is an endpoint of Z_u for some u in a_1 , then the limiting set of S_1 is $A \cup B$.

If u is an element of a_1 , let D_u denote the component of $(H_1 \cup I_1) - u$ that does not contain A or B. Let L_1 denote $(H_1 \cup I_1) - \bigcup_{u \in a_1} D_u$. Let C_1 denote the family of the components of $L_1 - (a_1^* \cup A \cup B)$. Let $c_{11}, c_{12}, c_{13}, \ldots$ denote the elements of C_1 . If c is an element of C_1 , let A_c and B_c denote the components of $\overline{c} \cap (a_1^*)$ and let g_{1c} and g_{2c} denote the components of $\overline{c} \cap (g_1 \cup g_2)$. Let x and y denote the intervals $[(0, 1), (2/\pi, 1)]$ and $[(0, -5/4), (2/\pi, -5/4)]$, respectively.

Let $f_{c_{11}}, f_{c_{12}}, \ldots$ denote a sequence such that for each $i, f_{c_{1i}}$ denotes a homeomorphism from the square disc bounded by $A \cup B \cup x \cup y$ onto \bar{c}_{1i} such that

- $(1) \ f_{c_{1i}}(A \cup B) = A_{c_{1i}} \cup B_{c_{1i}},$
- $(2) \ f_{c_{1i}}(x \cup y) = g_{1c_{1i}} \cup g_{2c_{1i}},$
- (3) if u is in a_1 , the diameter of each component of $f_{c_{1i}}[u-u \cap (g_1 \cup g_2)]$ is greater than 1,
- (4) the area of $L_2 = A \cup B \cup \alpha_1^* \cup \bigcup_{i>0} f_{c_{1i}}(L_1)$ is less than one half the area of L_1 , and
 - $(5) \sum_{i>0} \sum_{u \in a_1} d\left[f_{c_{1i}}(Z_u)\right] \leqslant \frac{1}{4}.$

Continuing inductively let a_n denote the collection of arcs to which v belongs if and only if for some element $c_{n-1,i}$ of C_{n-1} , v is $f_{c_{n-1,i}}(u)$ for some element u of a_1 . Let C_n denote the family of the components of $L_n - (a_1^* \cup a_2^* \cup \ldots a_n^* \cup A \cup B)$. If c is an element of C_n , let A_c and B_c denote the components of $\bar{c} \cap a_n^*$ and g_{1c} and g_{2c} denote the closures of the components of $B(\bar{c}) - (A_c \cup B_c)$, where $B(\bar{c})$ is the boundary of \bar{c} . Let $f_{c_{n1}}, f_{c_{n2}}, \ldots$

denote a sequence such that for each $i, f_{c_{ni}}$ denotes a homeomorphism from the square disc bounded by $A \cup B \cup x \cup y$ onto \bar{c}_{ni} such that

- $(1) \ f_{c_{ni}}(A \cup B) = A_{c_{ni}} \cup B_{c_{ni}},$
- (2) $f_{c_{ni}}^{ni}(x \cup y) = g_{1c_{ni}} \cup g_{2c_{ni}}$, (3) if u is in a_1 , the diameter of each component of $f_{c_{n,i}}(u u \cap (g_1 \cup g_2))$ is greater than 1,
- (4) the area of $L_{n+1}=A\cup B\cup \bigcup_{i>0}f_{c_{ni}}(L_1)\cup a_1^*\cup a_2^*\cup\ldots\cup a_n^*$ is less than $A(L_1)/(n+1)$, where $A(L_1)$ is the area of L_1 , and $(5) \sum_{i>0} \sum_{u \in a_1} d[f_{c_{ni}}(Z_u)] \leqslant 1/2^n.$

 L_1, L_2, L_3, \ldots is a monotone sequence of compact continua and the common part L of all of them is an irreducible continuum, since the set of all points of L which separate A from B in L is dense in L. The collection to which h belongs if and only if for some u of a_1 , some n, and some i, h is $f_{c_{ni}}(Z_u)$ is a countable collection of mutually exclusive arcs satisfying the condition of the conclusion of the Theorem.

Let K denote the collection to which g belongs if and only if (1) g is a point of $(A \cup B \cup a_1^* \cup a_2^* \cup ...)$ or (2) for some component c of L— $-(A \cup B \cup \bigcup_{n=1}^{\infty} a_n^*)$ and some horizontal line l intersecting c, g is the set of all points of c on l. K is an upper semicontinuous collection of mutually exclusive closed point sets filling up L. Let M denote L/K. Let G denote the collection to which g belongs if and only if (1) g is A, B, or an element of a_n for some n, or (2) g is a component of $M - (A \cup B \cup \bigcup_{n=1}^{\infty} a_n^*)$. M is an irreducible continuum from A to B, and M/G is an arc. Furthermore, each element of G is an arc. Also, M is chainable and therefore embeddable in the plane. It can be seen that M satisfies all the conditions of the conclusion of the Theorem by letting $H=\bigcup_{n=1}^{\infty} a_n$ and if h is in $a_n, Z_h=f_{c_{n-1,i}}(Z_u)$, where u is in a_1 and i is a positive integer such that $h = f_{c_n}$, (u).

THEOREM 2. The 2-cell is in \mathcal{K} .

Proof. Let *M* denote a compact continuum in the plane that satisfies the conditions of Theorem 1 and let $G, H = \{h_1, h_2, h_3, \ldots\}$ and $Z_{h_1}, Z_{h_2}, Z_{h_3}, \dots$ be as described in Theorem 1.

Let K denote the collection to which k belongs if and only if for some positive integer i, k is the closure of a component of $h_i - Z_{h_i}$. Now

$$(G-H)^* \cup K^* = \overbrace{M-\bigcup_{i=1}^{\infty} Z_{h_i}}^{\infty}$$

and $(G-H) \cup K$ is an upper semi-continuous collection of mutually exclusive arcs filling up $M - \bigcup_{i=1}^{n} Z_{h_i}$.

Let g_1, g_2, g_3, \ldots denote a countable collection of subintervals of [0, 1] such that

- $(1) \lim d(g_i) = 0,$

$$(2) \bigcup_{i=1}^{i \to \infty} g_i \times Z_{h_i} \text{ is dense in}$$

$$M' = \{ \bigcup_{i=1}^{\infty} g_i \times Z_{h_i} \} \cup \{ [0, 1] \times [(G - H) \cup K]^* \}.$$

This is clearly possible since $\bigcup_{i=1}^{\infty} Z_{h_i}$ is dense in M. Let U denote the collection to which u belongs if and only if U is a point of $M' - \bigcup_{i=1}^{\infty} g_i \times Z_{h_i}$ or, for some positive integer n and some point P of g_n , u is $P \times Z_n$. U is an upper semi-continuous decomosition of M' since $\lim d(g_i \times Z_{h_i}) = 0$.

Let A and B denote the end elements of M/G. M'/U is an irreducible continuum from $([0,1]\times A)/U$ to $([0,1]\times B)/U$, since if P is a point of M'/U and R is a domain containing P, then there exists a positive integer i such that R contains $(g_i \times Z_{h_i})/U$. Let U' denote the collection to which u' belongs if and only if

- (1) for some element g of G-H, u' is $[[0,1]\times g]/U$ or
- (2) for some i, u' is $\{[0, 1] \times (h_i Z_{h_i}) \cup (g_i \times Z_{h_i})\}/U$.

U' is an upper semi-continuous collection of mutually exclusive 2-cells filling up M'/U such that U' is an arc with respect to its elements.

THEOREM 3. If n is a positive integer, the n-cell is in \mathcal{K} .

Proof. Since two n-cells identified on (n-1)-cells of faces yield an n-cell, an inductive argument entirely analogous to that of Theorem 2 suffices for the proof.

Remarks. Since by [4] the simple closed curve does not belong to \mathcal{X} , one might wonder if the boundary of a 3-cell belongs to \mathcal{K} (**P 865**). Also, does every member of \mathcal{K} contain disjoint copies of itself? (**P 866**)

REFERENCES

- [1] J. W. Hinrichsen, Irreducible continua of higher dimension, to appear.
- B. Knaster, Un continu irréductible à décomposition continue en tranches, Fundamenta Mathematicae 25 (1935), p. 568-577.
- W. S. Mahavier, Atomic mappings on irreducible Hausdorff continua, ibidem 69 (1970), p. 147-151.
- W. R. R. Transue, Ben Fitzpatrick, Jr., and J. W. Hinrichsen, Concerning upper semi-continuous decompositions of irreducible continua, Proceedings of the American Mathematical Society 30 (1971), p. 157-163.

Reçu par la Rédaction le 13. 6. 1972