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1. Introduction. Let (&, X) be an abstract geometric object [10],
[13]. A real valued function ¢: X — R is called an invariant (a scalar
invariant) if o(z) = o(gr) for every ge@,xzeX, [2], [8], [12]. Denote
by A4 (G, X) the set of invariants of the object (G, X).

We introduce two classes of subsets of #7(G, X), [2], [8], [12].

- DEFINITION 1. A set Z <« #°(G, X) will be called a complete set of
invariants of the object (G, X) iff from the equalities

o(x) = o(y) for every oceZ,

it follows, that the pointls x, ¥ belong to the same transitive fiber of (@G, X)
(i.e. there exists geG such that y = gz).

Consider the space of transitive fibers X, of the object (G, X). Let
II: X - X; be the quotient transformation. Thus I7(x) = [#] is the
transitive fiber of point xe¢X. Every invariant ¢ of (G, X) determines
a real valued function ¢,: X; — R by the formula

¢.([#])) = o(x).

Conversely, a function ¢: X, — I determines an invariant of (G, X) by
the formula ¢ = ¢oll.

From the definition of a complele set of invariants it follows that
the family Z distinguishes points of the space X, i.e. if [#] # [y], then
there exists o<Z such that o(z) # o(y).

Suppose F < 4 (G, X). Let RY be the Cartesian product of F' copies
of the set of real numbers R (for I’ a finite or infinite set). Denote by
Ap the diagonal transformation, 4,: X — R¥, of family of invariants F.
It follows, that

(p,odp)(x) = a(x) for celk,

where p,: R — R is the projection on to the o-coordinate of RF.
DEFINITION 2. A set F' c #7(@, X) is called a functionally complete
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set of scalar invariants if, for every invariant ae 4" (G, X), there exists
a function a: RY — R such that a(z) = (20 4,) ().

In Section 3 we shall prove the following

LEMMA 1. A subset Z <« A (G, X) is complete iff Z is functionally
complete. )
~ According to Lemma 1, complete sets of invariants dre identical
to functionally complete sets of invariants. However, if we restrict our-
selves to continuous mappings and topological spaces, then the above
property is false in general [4]. ‘

In this paper we consider the gcometric objects determined by tensors,
i.e. (GL(n, R), R"), where GL(#n, R) denotes the full linear group of the
n-dimensional vector space, m = n”*9 with the transformation law

i = Al Aiz;AZ; e Ay,
We shall prove, that polynomial invariants with respect to compact
groups determine the complete set of invariants (concerning the vector
invariants sce [14], p. 441). These results will be applied to the study
of the scalar differential invariants of a positive metric tensor. In Section 2
we shall give the main results of this paper (Theorems 1-3). Proofs of
these theorems are presented in Sections 3-5.

2. Results. Let a,, ..., a, be a finite set of tensors. The tensor a; is
an object the form (GL(n;, R), R™). Let 1;: G - GL(n;, R) be a repre-
sentation of compact group @,<¢ =1,..., M. Denote by (@, X) the
cartesian product of the objects (1,(@), R™, [12], p. 40.

Let oy, ..., 0, be a set of basic polynomial invariants ({2], p. 138,
[12], p. 49-50 and 567) of the object (G, X) i.e. o; are polynomials of
the components of tensors a,,...,a,; and every polynomial invariant
of (¢, X) is a polynomial of the invariants o,,..., g,.

The principal properties of the basic polynomial invariants arc given
in the following theorems.

THEOREM 1. Every continuous invariant o of the object (G, X) deter-
mined by tensors ay,...,a, and a compact group G has the form

a(r) = E(Gl(w)y ) Uh(w)) "

where o is a real valued function of b variables, continuous on R°.
Concerning the completencss of the basie polynomial invariants o; we
have the foliowing
TurortM 2. The sef of basic polynomial invariants o; of the object
(@, X) determined by tensors a,, ..., ay and a compact group G is a complete
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and functionally complete set of invariants. The mapping A: X, — R® of
the space X of transitive fibers of (G, X), given by the formula

.’1([40]) = (01($)7 vy O'b(m))r
is a closed embedding of X, into RP.
Now we shall consider scalar differential invariants of a positive
metric tensor.
Denote by

(1) 9"y Ry Vo, Ryary -5 V, R

Pp—Qseraa¥] ‘orri Y

the metric contravariant tensor, the Riemann curvature tensor and its
covariant derivatives determined by the Christoffel symbols belonging
to the tensor g,,, respectively. In Section 4 we shall prove the following

THEOREM 3. Polynomial invariants with respect to the full linear
group GL(n, R), [2], of the tensors (1) constitutes a complete set of scalar
differential invariants of order p of a positive metric tensor.

First we shall deal with the scalar differential invariants of second
order of a positive metric tensor.

Denote by (v, ...,v)>II the Young symmetrization ([12], p. 166)
applied to a set of ! indices. We have the following

THEOREM 4. The invariants

I __ Ay or10) Aoty o 0> 1
gy = Vg g g TR e e R"ﬂ“p"p%)"’

where II runs over the Youny symmetrizations with property
ghragne | gduoteget £ 0, p < n,

form a complete sel of invariants of g™, R,...

Thus the problem of finding all differential invariants of second
order of a positive metric tensor is reduced by Theorem 4 to finding
a Young symmetrizations with the above property.

THEOREM 5. A bgse of polynomial invariants of tensors ¢**, R,
contarns at last
n*(n* —1) n(n—1)

12 2

invariants. The derivative of the mapping A: x — (0y(2), ..., 0,(x)} has
rank dA(z) < v, where o; are basic polynomial invariants of g, R,,,; .

3. The proofs of Theorems 1-3 will be preceded by lemmas.

Proof of Lemma 1. Suppose that Z is a complete set of invariants
of (G, X). Then the diagonal transformation 4,: X — R? of the family
Z is a (1-1) function on the space X4. Let ¢ be an invariant of (G, X).
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Then we define o: RZ —> R as follows:
a(z) for p = 4,(x),

WP =1y i pdd,(X),

consequently we have o(x) = (00 4;)(®). Thus Z is functionally complete.

Conversely, let F be a functionally complete set of invariants of
(@, X). Suppose that there exist points z,,y,¢X such that [x,] # [y,]
and

(3.1) a(xy) = a(y,) for every ocel'.

Choose an invariant a of (G, X) such that a(z,) # a(¥,).
By the definition of a complete set of invariants there exists a function
a: RY - R with property

a(@) = (@o Ap)(@).

According to (3.1) we have A,(z,) = 4x(y,). Consequently we obtain
a(zy) = (ao Ag)(zy) = (a0 4g)(¥,) = a(¥,). A contradiction.

LEMMA 2. Every continuous invariant o of the tensors a,, ..., @y 18
the limit of a sequence of polynomial invarianis w,,

o(r) = limo, (),

where the convergence is almost uniform on X.

Before we pass to the proof of Lemma 2, we recall the fundamental
properties of the invariant integral m defined by the Haar integral over
a compact group @, [3], p. 367-368 and [12], p. 230-236. The invariant
integral is a functional on the space of continuous real-valued functions
defined on the space X, which fulfils the following conditions:

1° m(1) = (1), m(s) =0, if ¢ is an invariant of (G, X),

2° m(f) is an invariant of (@, X) for each real-valued function con-
tinuous on X,

- 3° m(w) is a polynomial invariant of (G, X) if w is a polynomial
of the components {a,}.

Our further considerations depend upon the following Theorem,
which follows from Theorem (VIII, 14.A), [12], p. 364.

(*) THEOREM. For every object (G, X) defined by tensors ay,...,ay
and compact group G there exists a finite set of polynomial invariants oy, ..., oy,
Invariants o; fulfil a finite system of polynomial equations. Every polynomial
invariant of (G, X) i8 a polynomial of basic invariants ;.

Proof of Lemma 2. Let ¢ be a continuous invariant of (¢, X).
By the Weierstrass approximation theorem, ¢ is the limit

o(x) = limw,(x), =X,



Polynomial invariants of compact groups 251

of an almost uniformly covergent sequences of polynomials w, . Accord-
ing to 1° and 3° we have ¢ = m(s) and m(w,) = w,, where w, are poly-
nomial invariants of (@, X). Since the integration is performed over
a compact set G, we obtain

(3.2) o(2) = limw,(z), =zX,

where w,, is a sequence of polynomial invariants, almost uniformly cover-
gent to o. This proves Lemma 2.

4. Proof of Theorem 1. Denote by 4: X — R’ the mapping
@ —> (o1(), ..., ().

The coordinates of the mapping 4 are polynomials. Consequently A
is a closed mapping. The image A(A) of a subset 4 « X is compact iff
A is a compact subset of X. Let ¢ be a continuous invariant of (@, X).
From Lemma 2 it follows that ¢ is the limit of an almost uniformly cover-
gent sequence of polynomial invariants,

o(z) = limw,(x).
According to (*) Theorem we have
(4.1) 0 () = Op(01(2), ...y 0p(2)),
where 0, are polynomials of b variables (£, ..., £)eR’ Thus we have
(4.2) o(®) = lim0,(oy(2), ..., o (@)).

We shall prove that the sequence 6, is almost uniformly covergent
on the image A(X) < R° Indeed, let K = A(X) be a compact subset.
Then A~'(K) is a compact subset of X. Consequently, for e > 0 there
exists n, such that |w,(z)—w,(x)] < ¢ for every zeA™'(K) and every
k,1> n,. Hence the inequality |0,(&)— 6,(&)] < ¢ is valid for every feK
and every k,l> n,. This proves our assumption. Thus 6 = lim#8, is
a continuous function on the closed subspace 4(X) c R’ By the Tietze
theorem, there exists an extension ¢: R’ — R of the mapping 6. From
equality (4.2) we obtain o(2) = o(oy(2), ..., 0;(2)) for zeX. This com)
pletes the proof of Theorem 1.

Proof of Theorem 2. Let /T be the quotient mapping, I1: X — X,
where X, is the space of transitive fibers of (G, X).

Every transitive fiber of (@, X) is a compact subset of X as the
image of the compact group G under the mapping ¢ — gx.

The space X is a normal topological space. Indeed, X is the countable
union of closed balls B, with center at the origin and radius k. Write
B, =\ {gz: ge@, x<B,}; the sets B, form a family of compact subsets



252 - G. Lubezonok

of X. Consequently, the sets 4, = {{#]: xeB,;} are compact subsets of
X, and X4 = 4. Thercfore ([0], p. 203) the space X, is normal.
Suppose that there exist points x, yeX such that [x] # [y] and

(4.3) o;(®) = o,(y) for i =1,...,0b.
Hence
(4.4) a(x) = a(y)

for cvery continuous invariant of (G, X).
Denote by A: X,; — R’ the mapping induced by A on the quotient
space X,

A([2]) = (@) = (01(#), ..., 0, ().

According to equality (4.4), cvery recal-valued continuous function has
equal values at [#] and [y], contrary to thc Tietze Theorem. Indecd,
for the mapping ¢: {[z], [y¥]} — B with ¢([z]) # ¢([y]) there exist no
extension to the space X,.

Thus the mapping A is a (1-1) function. The mapping 4 and con-
sequently also A is a closed mapping. Hence A is a closed embedding
X, into E’. This proves Theorem 2.

Remark. Theorems 2 and 3 are valid for every closed G-invariant
subset of X (a set H <« X is G-invariant if greH for each ge G, zeH).

5. Now we are going to prove the following

LEMMA 3. Let (G, X) be a transitive geometric object ([10], [13]). Then
to cvery invariant of the product (G, X X Y) of the objects (G, X), (G, Y)
there corresponds an invariant of the object (8, , Y), where S, is the stability
group ([10], [13]) of a fized point x,e X, and vice versa.

Proof of Lemma 3. Let 0: X XY — R be an invariant of (¢, X x Y)
(ic. o(gx, gy) = a(xz,y) for (r,y)eX xY,geG@). Then the restriction
Olzx v 18 an invariant of (8, , Y).

Conversely, suppose that a: ¥ — R is an invariant of (§;, Y). Then
wo put

(5.1) o(x,y) = a(g™'y) for z = gx,.

Let © = hwy. Then @, = ™' gx, and consequently h™' geS, . Hence we
get a(h™'y) = a(h™'gg™'y) = a(¢'y). Thus o(z,y) is well defined. The
function o(x, y) is an invariant of (¢, X xY). Indeed, suppose o(gx, gy)
= o(ghx,y, gy), where hx, = z. From (5.1) we obtain o(gz, gy) = o(ghxz,,qy)
= a((gh)"'gy) = a(h™'y) = o(x, y). This completes the proof of Lemma 3.
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Proof of Theorem 3. According to Lemma 3, the problem of
finding invariants of the system

(5.2) 7, Rors Vs, Ry ooy V R

Py greea¥l (JET S

is equivalent to that of finding invariants of the tensors

(5.3) Bouis Vo Ryry oy Vo, R

Yp—2i- opri

with respect to the orthogonal group O(n, R), i.e. the stability group
of the canonical form of the positive metric g,,.. We say: orthogonal
invariants.

From Theorem 2 it follows that a finite set of basic polynomial
orthogonal invariants determines a complete set of invariants of the
system (5.3).

Further considerations will be divided into two steps.

Step I. Every polynomial orthogonal invariant of the system (5.3)
is a restriction of a polynomial invariant, with respect to GL(»n, R), of
the system (5.2). This fact follows from the theory of orthogonal inva-
riants [12], p. 79-81 and p. 108-112. According to Theorem (II.9.A),
p. 80, [12], every orthogonal invariant is a polynomial of the scalar product
of covariant vectors (#,v) = Y u,v;. By means of the metric tensor we

A

get the invariant expression for the product (u,v) as follows
(u, v) = g™ wy0,.

After substitution the above formula to (5.1) we get an polynomial in-
variant of tensors (5.2) with respect to GIL(n, E). This proves our state-
ment.

Step IL. Let 0¢g be a differential prolongation of rank p of the
positive metric tensor g,,. By Theorem 2 the basic polynomial invariants
of (5.2) determine a complete set of invariants.

Let g;, and 7,, denote positive metric tensors. Denote by 0” and
0%§ their differential prolongations.

Let 07§ be obtained from 0”¢g by a coordinate transformation. Con-
sequently, they have the same normal coordinates of rank p, [7]. According
to Theorem 5, cf. [7], they have the same system of tensors (5.2).

Let the tensors 3, B, 7, Rwl, s Vo _prony Bows be obtained
by a coordinate transformation of g Ro,,,,“ Vo By -+ l7,,1n_2,._,,,1 R,
According to Theorem 1, c¢f. [7], the norma.l coordinates of 0”7 are obtained
from the normal coordinates of 8¢ by a transformation of group L2 of
the form (B%,0,...,0). Thus 9’ and °g are contained in the same

transitive fiber. Consequently, 6’ and 0”¢g are contained in the same
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transitive fiber iff the tensors ¢, Ry, Vo Ry ooy Vo, o Bz and
9 Bounrs Vo, Ropiy -3 Vo o0y Bowa have equa,l ba,sw polynomial in-
variants. This together with Lemma 1 completes the proof of Theorem 3,

Proof of Theorem 4. According to Theorem (a), [2], p. 180, every
basic polynomial invariant ¢ is a homogeneous polynomial of the com-
ponents ¢*, R,,,;, formula (17.16), cf. [2], p. 181. Then

(5.4) ¢ = Z‘c,,B?l{ e,
p=1l
where ¢, are constant numbers, {lyy ..., L.}p is a permutation of indices

1y ++0y%,. The tensor B, ’Z‘f’ 18 obta,med by means of tensor multipli-
ca,tion and contraction of indices. Any permutation of indices i,, ..., 1,
with ¢, components splits into Young symmetrizations [12]. Consequently
formula (5.4) can be written as follows,

l prrey
(5.5) o= ) B0,
IIe8S,
where 8, denotes the set of Young symmetrizations of » indices.

We recall the fundamental propertics of the Young symmetrizations
S,., [12], p. 174:

(i) mmi = 11,
(ii) I’ =0 for IT' = const-II,
(i) 1= )1,

IeS,

where 1 denotes the identity permutation.
Thus we obtain

r Ayl
o = cnt(ll,...,t,.>n'-

0T ¢S,

The contraction of indices with different Young symmetries is by (ii)
equal zero.
Hence we obtain

(ll....,l )"
(5-6) 6 = 2 GHB(II,.u.l:-)H’

11eS,

We thus come to the following formula

» A, b4
(5.7) op =ghmgn . g'r'rg o TR L e B ey 11

for the basic polynomial invariants of ¢**, R,,,;. According to [12], p. 188,
we conclude that p < n. This proves Theorem 4.
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Proof of Theorem 5. Denote by (O(n, R), %) the object defined
by the curvature tensor R,,, and the orthogonal group. The number
N = dim# = n%(n?—1)/12 is the number of the essential components
of the. curvature tensor R,,,. Consider the transformation RE,,; — R,
a = (ou), b = (vA), into the bivector space V with dimV = n(n—1)/2 ([9],
p. 114). From the equality R,,,, = R,,,, it follows that E,, = R,,.

To this transformation there corresponds the homomorphism [1],
p. 30,

h2:0(n,R)—>0(”—(”2_—1),R).

According to [6], ker h, c {E,, —E,}, where E, is the n xn unity matrix.
Consequently the scalar product of x = (R,,,.),Z = (K,,,:), defined by

(5°8) (-’E, E) = ZReuvlﬁgﬂﬂ. = E-RabRab’

ouva a,b
is invariant with respect to O(n, R), i.e. (gz, gx) = (=, Z) for geO(n, R).
Denote by |z—y| =V (#—y, ®—y) the metric induced by (5.8).
Let d([z], [y]) be the Hausdorff distance on the space of transitive

fibers 2, determined by the metric |z —y|. Since the group O(n(n—1) /2)
does not change the distance between points of #, we conclude that

(5.9) d([z], y)) < le—yl for z,yeA.

Consequently the topology induced by Hausdorff metric on the space
2, is compatible to the quotient topology.

Consider the open dense subset D = # of points with different char-
acteristic roots of the mixed Riecci tensor.

The stability group of points xeD is a discrete subgroup of O(n, R).
Indeed, in view of the well-known facts of elementary linear algebra
the orthogonal matrix commmuting to

i
(Rz)=( -0 )
0 " A

where 2; # 4; for ¢ # j, has the form

31. 0
. ’
0 -
where ¢ =1, 1 =1,...,7n

The stability group of the curvature tensor is contained in the stability
group of its Ricei mixed tensor. Consequently it is discrete. We have an
isomorphism [z] ~ O(n, R)/S;, where §, is the stability group of «.
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Consequently we obtain

(5.10) dim[#] = Gim O (n, R)—dim 8§, = 73-("1) 1)

=4

for every zeD.

Now we apply the Hurcwicz dimcunsion theorem, cf. [4], p. 124,
to the space #,. Thus we obtain,

(5.11) dim®, = N — 17'_(—”2__1_)

By Theorem 2 invariants (5.7) determine a closed embedding of %, into R®.
Consequently we obtain b > dim#%,. Denote by A4: # — R the mapping
z — (0,(%), ..., 6,(x)), where o; are a basic polynomial invariants of
(O(n, R), #). According to the above considerations we have for zeD.
dim ker dA(x) = n(n—1)/2. This completes the proof of Theorem 4.
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