Dirac operators and Spin structures

Paul Baum

notes taken by: Paweł Witkowski

March 15, 2006

Contents

\mathbf{Dir}	ac operators and Spin structures	2
1.1	The Dirac operator of \mathbb{R}^n	2
	1.1.1 Dirac operator	3
	1.1.2 Bott generator vector bundle	5
1.2	Spin representation and Spin^c	6
	1.2.1 Clifford algebras and spinor systems	10
	1.1	1.1.2Bott generator vector bundle \dots 1.2Spin representation and Spin^c \dots

Chapter 1

Dirac operators and Spin structures

1.1 The Dirac operator of \mathbb{R}^n

First we consider n even. We shall construct matrices

$$E_1, E_2, \dots, E_n, \ n = 2r$$

each E_j being $2^r \times 2^r$ matrix of complex numbers. In fact each entry will be in $\{0, 1, -1, i, -i\}$. Properties of E_j

- 1. $E_j^* = -E_j$,
- 2. each E_j is block anti-diagonal

$$E_j = \left[\begin{array}{cc} 0 & * \\ * & 0 \end{array} \right]$$

and each block has size $2^{r-1} \times 2^{r-1}$,

- 3. $E_j^2 = I_{2^r}$,
- 4. $E_j E_k + E_k E_j = 0$ for $j \neq k$,
- 5.

$$i^{r}E_{1}E_{2}\dots E_{n} = \begin{bmatrix} I_{2^{r-1}} & 0\\ 0 & -I_{2^{r-1}} \end{bmatrix}$$

We will proceed by induction on n even. For n = 2 we take

$$E_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

Suppose we have E_1, E_2, \ldots, E_n of size $2^r \times 2^r$. Then we put first *n* matrices of size $2^{r+1} \times 2^{r+1}$ as

$$\begin{bmatrix} 0 & E_1 \\ E_1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & E_2 \\ E_2 & 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 & E_n \\ E_n & 0 \end{bmatrix}$$

and two additional matrices

$$\begin{bmatrix} 0 & -I_{2^{r}} \\ I_{2^{r}} & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & iI_{2^{r-1}} & 0 \\ 0 & 0 & 0 & iI_{2^{r-1}} \\ iI_{2^{r-1}} & 0 & 0 & 0 \\ 0 & iI_{2^{r-1}} & 0 & 0 \end{bmatrix}.$$

Example 1.1. For n = 4 we have

$$E_{1} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad E_{2} = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ i & 0 & 0 \\ i & 0 & 0 \end{bmatrix},$$
$$E_{3} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad E_{4} = \begin{bmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{bmatrix}$$

For n odd, n = 2r + 1, we define matrices E_1, E_2, \ldots, E_r satisfying

- $1. \ E_j^* = -E_j,$
- 2. $E_j^2 = I_{2^r},$
- 3. $E_j E_k + E_k E_j = 0$ for $j \neq k$,
- 4. $i^{r+1}E_1E_2...E_n = I_{2^r}.$

First if n = 1 we set

$$E_1 = [-i].$$

Then for n = 2r + 1 we use 2r matrices $E_1, E_2, \ldots, E_{n-1}$ as for the even case and as the last one we put

$$\begin{bmatrix} -iI_{2^{r-1}} & 0\\ 0 & iI_{2^{r-1}} \end{bmatrix}.$$

From E_1, E_2, \ldots, E_n we obtain:

- 1. The Dirac operator of \mathbb{R}^n (described above)
- 2. The Bott generator vector bundle on S^n (*n* even)
- 3. The spin representation of $\operatorname{Spin}^{c}(n)$

1.1.1 Dirac operator

Now we can define **Dirac operator of** \mathbb{R}^n . For each n we set

$$D := \sum_{j=1}^{n} E_j \frac{\partial}{\partial x_j}$$

Example 1.2. For n = 1 we have Dirac operator of \mathbb{R}

$$D = -i\frac{\partial}{\partial x}.$$

For n = 2

.

$$D = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \frac{\partial}{\partial x_1} + \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \frac{\partial}{\partial x_2}$$

For n = 2r and n = 2r + 1 D is an unbounded operator on the Hilbert space

$$\underbrace{L^2(\mathbb{R}^n)\oplus L^2(\mathbb{R}^n)}_{2^r}\oplus\ldots\oplus L^2(\mathbb{R}^n)}_{2^r}.$$

D is a first order elliptic differential operator on

$$\underbrace{C_c^{\infty}(\mathbb{R}^n) \oplus C_c^{\infty}(\mathbb{R}^n) \oplus \ldots \oplus C_c^{\infty}(\mathbb{R}^n)}_{2^r}}_{2^r}$$

With this domain D is symmetric (that is D is formally self-adjoint) and D is essentially self-adjoint (that is D has unique self-adjoint extension). For n even

$$D = \left[\begin{array}{cc} 0 & D_- \\ D_+ & 0 \end{array} \right]$$

where D_{-} is the formal adjoint of D_{+} .

We will descirbe these notions in a general context. Let \mathcal{H} be Hilbert space. An **un-bounded operator** on \mathcal{H} is a pair (\mathcal{D}, T) such that

- 1. $\mathcal{D} \subset \mathcal{H}$ is a vector subspace of \mathcal{H} ,
- 2. \mathcal{D} is dense in \mathcal{H} ,
- 3. $T: \mathcal{D} \to \mathcal{H}$ is a \mathbb{C} -linear map,
- 4. (\mathcal{D}, T) is closeable, i.e. the closure of graph(T) in $\mathcal{H} \oplus \mathcal{H}$ is the graph of a \mathbb{C} -linear map

$$P(\overline{\operatorname{graph}(T)}) \to \mathcal{H}$$

 $P(u, v) = u.$

An unbounded operator (\mathcal{D}, T) is symmetric if and only if

$$\langle Tu, v \rangle = \langle u, Tv \rangle \ \forall u, v \in \mathcal{D}$$

For an unbounded operator (\mathcal{D}, T) on \mathcal{H} let

$$\mathcal{D}(T^*) := \left\{ u \in \mathcal{H} \mid v \mapsto \langle u, Tv \rangle \text{ extends from } \mathcal{D} \text{ to } \mathcal{H} \text{ extends} \right.$$

to be a bounded linear functional on \mathcal{H}

For $u \in \mathcal{D}(T^*)$ and $v \in \mathcal{H}$ there exists

$$T^* \colon \mathcal{D}(T^*) \to \mathcal{H}$$

such that

$$\langle u, Tv \rangle = \langle T^*u, v \rangle.$$

Now (\mathcal{D}, T) is **self-adjoint** if and only if

$$(\mathcal{D}, T) = (\mathcal{D}(T^*), T^*).$$

Remark 1.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint operator is symmetric.

Example 1.4. Take $C_c^{\infty}(\mathbb{R}) \subset L^2(\mathbb{R})$ and

$$\mathcal{D} = \left\{ u \in L^2(\mathbb{R}) \mid -i\frac{du}{dx} \in L^2(\mathbb{R}) \text{ in the distribution sense} \right\}$$
$$= \left\{ u \in L^2(\mathbb{R}) \mid x\hat{u} \in L^2(\mathbb{R}) \right\},$$

where \hat{u} is the Fourier transform of u and

$$x \colon \mathbb{R} \to \mathbb{R}, \ x(t) = t, \ \forall \ t \in \mathbb{R}$$

Then $(C_c^{\infty}(\mathbb{R}), -i\frac{d}{dx})$ has unique self-adjoint extension $(\mathcal{D}, -i\frac{d}{dx})$.

Let D be Dirac operator of \mathbb{R}^n , n = 2r or 2r + 1.

$$\Omega^1(\mathbb{R}^n) = \{C^\infty \text{ 1-forms on } \mathbb{R}^n\}$$

$$= \{ f_1 dx_1 + f_2 dx_2 + \ldots + f_n dx_n \mid f_j \colon \mathbb{R}^n \to \mathbb{C}, \ j = 1, 2, \ldots, n \}$$

 $\Omega^1(\mathbb{R}^n)$ acts on

$$\underbrace{C_c^{\infty}(\mathbb{R}^n) \oplus C_c^{\infty}(\mathbb{R}^n) \oplus \ldots \oplus C_c^{\infty}(\mathbb{R}^n)}_{2^r}}_{2^r}$$

in the following way. Let

$$\omega = f_1 dx_1 + f_2 dx_2 + \ldots + f_n dx_n,$$

$$s = (s_1, s_2, \ldots, s_{2^r}), \quad s_l \colon \mathbb{R}^n \to \mathbb{C}, \quad l = 1, 2, \ldots, 2^r$$

Then

$$\omega s = \sum_{j=1}^{n} f_j E_j s.$$

There is following Leibniz rule for D

$$D(fs) = (df)s + f(Ds),$$
$$f \colon \mathbb{R}^n \to \mathbb{C}, \ f \in C^{\infty}(\mathbb{R}^n), \ df = \sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j$$

If M is C^{∞} -manifold, compact or non-compact, with or without boundary, dim M = M, then the **Dirac operator of** M is an elliptic operator which is locally like the Dirac operator of \mathbb{R}^n .

1.1.2 Bott generator vector bundle

Let W be finite dimensional \mathbb{C} -vector space,

$$T \in \operatorname{Hom}_{\mathbb{C}}(W, W), \ T^2 = -I.$$

Then eigenvalues of T are $\pm i$ and there is decomposition

$$W = W_i \oplus W_{-i},$$
$$W_i = \{v \in W \mid Tv = iv\}$$
$$W_{-i} = \{v \in W \mid Tv = -iv\}$$

Assume that *n* is even, $S^n \subset \mathbb{R}^{n+1}$

$$S^n = \{(a_1, a_2, \dots, a_{n+1}) \in \mathbb{R}^n \mid a_1^2 + a_2^2 + \dots + a_{n+1}^2 = 1\}.$$

We have a map

$$S^n \to M(2^r, \mathbb{C})$$

$$(a_1, a_2, \dots, a_{n+1}) \mapsto a_1 E_1 + a_2 E_2 + \dots + a_{n+1} E_{n+1} =: F.$$

From the properties of E_j we obtain

$$F^{2} = (a_{1}E_{1} + a_{2}E_{2} + \dots + a_{n+1}E_{n+1})^{2}$$
$$= (-a_{1}^{2} - a_{2}^{2} - \dots - a_{n+1}^{2})I$$
$$= -I$$

so the eigenvalues of F are $\pm i$.

The Bott generator vector bundle β on S^n is given by

$$\beta_{(a_1, a_2, \dots, a_{n+1})}$$
 := i-eigenspace of F

$$= \{ v \in \mathbb{C}^{2^r} \mid F(v) = iv \}$$

For n even and $S^n \subset \mathbb{R}^{n+1}$ there is an isomorphism

$$\mathbf{K}^{0}(S^{n}) = \mathbb{Z} \oplus \mathbb{Z}$$
$$\mathbf{1} \qquad \beta$$

where $1 = S^n \times \mathbb{C}$.

1.2 Spin representation and Spin^c

Let G be a topological group, Hausdorff and paracompact, X topological space Hausdorff and paracompact. A **principal** G-bundle on X is a pair (P, π) where

1. P is a Hausdorff and paracompact topological space with given continuous (right) action of G

$$P \times G \to P$$

 $(p,g) \mapsto pg$

2. $\pi: P \to X$ is a continuous map, mapping P onto X

such that given any $x \in X$, there exists an open subset U of X with $x \in U$ and a homeomorphism

$$\varphi \colon U \times G \to \pi^{-1}(U)$$

with

$$\pi\varphi(u,g) = u \qquad \qquad \forall \ (u,g) \in U \times G$$

$$\varphi(u, g_1g_2) = \varphi(u, g_1)g_2 \quad \forall \ (u, g_1, g_2) \in U \times G \times G$$

Such $\varphi \colon U \times G \to \pi^{-1}(U)$ is referred to as a local trivialization.

Two principal G-bundles (P, π) and (Q, θ) are isomorphic if there exists a G-equivariant homeomorphism $f: P \to Q$ with commutativity in the diagram

Let G, H be two topological groups and let (P, π) , (G, θ) be a principal G-bundle and Hbundle on X. A homomorphism of principal bundles from (P, π) to (Q, θ) is a pair (η, ρ) such that

- 1. ρ is a homomorphism of topological groups $\rho: G \to H$
- 2. $P \rightarrow Q$ is a continuous map with commutativity in the diagrams

A homomorphism of principal bundles on X will be denoted $\eta: P \to Q$ and $\rho: G \to H$ will be referred to as homomorphism of topological groups underlying η .

Lemma 1.5. Let $\eta: P \to Q$ be a homomorphism of principal bundles on X with underlying homomorphism of topological groups $\rho: G \to H$. Then for any $x \in X$ there exists an open subset U of X with $x \in U$ and local trivializations

$$\varphi \colon U \times G \to \pi^{-1}(U)$$

 $\psi \colon U \times H \to \theta^{-1}(U)$

such that the diagram

$$\begin{array}{ccc} U \times G & \stackrel{\varphi}{\longrightarrow} \pi^{-1}(U) \\ \mathrm{Id}_U \times \eta \Big| & & & & & & \\ U \times H & \stackrel{\psi}{\longrightarrow} \theta^{-1}(U) \end{array}$$

commutes.

Example 1.6. Let E be \mathbb{R} -vector bundle on X, $\dim_{\mathbb{R}}(E_p) = n$ for all $p \in X$. Denote

 $\Delta(E) := \{ (p, v_1, v_2, \dots, v_n) \mid p \in X, v_1, v_2, \dots, v_n \text{ form a vector space basis for } E_p \}$

 $\Delta(E)$ is topologized by

$$\Delta(E) \subset \underbrace{E \oplus E \oplus \ldots \oplus E}_{n}.$$

Define an action

$$\Delta(E) \times \operatorname{GL}(n, \mathbb{R}) \to \Delta(E)$$

$$((p, v_1, v_2, \dots, v_n), [a_{ij}]) \mapsto (p, w_1, w_2, \dots, w_n),$$
$$w_j = \sum_{i=1}^n a_{ij} v_i, \ [a_{ij}] \in \mathrm{GL}(n, \mathbb{R})$$

and a map

$$\theta \colon \Delta(E) \to X,$$

 $\theta(p, v_1, v_2, \dots, v_n) = p.$

....

Then $(\Delta(E), \theta)$ is a principal $\operatorname{GL}(n, \mathbb{R})$ -bundle on X.

For $n \ge 3$

$$\pi_1(\mathrm{SO}(n)) = \mathbb{Z}/2\mathbb{Z}$$

and $\operatorname{Spin}(n)$ is the unique non-trivial 2-fold cover of $\operatorname{SO}(n)$. It is a compact connected Lie group.

$$Spin(n)$$

$$\downarrow$$

$$SO(n) \subset GL(n, \mathbb{R})$$

There is an exact sequence

$$1 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1$$

The group $\mathbb{Z}/2\mathbb{Z}$ embeds in the Spin(n) and S^1 as the $\{1, -1\}$. We define

 $\operatorname{Spin}^{c}(n) := S^{1} \times_{\mathbb{Z}/2\mathbb{Z}} \operatorname{Spin}(n).$

Then there is an exact sequence

$$1 \to S^1 \to \operatorname{Spin}^c(n) \to \operatorname{SO}(n) \to 1$$

 $\operatorname{Spin}^{c}(n)$ is a compact connected Lie group

$$\begin{array}{c}
\operatorname{Spin}(n) \\
\downarrow \\
\operatorname{Spin}^{c}(n) \\
\downarrow \\
\operatorname{SO}(n) \subset \operatorname{GL}(n,\mathbb{R})
\end{array}$$

Example 1.7. For n = 1

$$Spin(1) = \mathbb{Z}/2\mathbb{Z}, SO(1) = 1$$
$$Spin^{c}(1) = S^{1}$$
$$\rho \colon S^{1} \to pt.$$

For n = 2

$$Spin(2) = S^{1} = SO(2)$$
$$Spin(2) \rightarrow SO(2)$$
$$\zeta \mapsto \zeta^{2}$$

and

$$\operatorname{Spin}^{c}(2) = S^{1} \times_{\mathbb{Z}/2\mathbb{Z}} \operatorname{Spin}(2)$$
$$\rho(\lambda, \zeta) = \zeta^{2}.$$

Remark 1.8. Since $SO(n) \subset GL(n, \mathbb{R})$ we can view the standard map $Spin^{c}(n) \to SO(n)$ as $Spin^{c}(n) \to GL(n, \mathbb{R})$.

Definition 1.9. A Spin^c datum for an \mathbb{R} -vector bundle $E \to X$ is a homomorphism of principal bundles

$$\eta \colon P \to \Delta(E),$$

where P is a principal $\operatorname{Spin}^{c}(n)$ -bundle on X $(n = \dim_{\mathbb{R}}(E_p))$ and the homomorphism of topological groups underlying η is the standard map

$$\rho \colon \operatorname{Spin}^{c}(n) \to \operatorname{GL}(n, \mathbb{R}).$$

Two Spin^c data $\eta: P \to \Delta(E), \eta': P' \to \Delta(E)$ are isomorphic if there exists an isomorphism $f: P \to P'$ of principal Spin^c(n)-bundles on X with commutativity in the diagram

Two Spin^c data $\eta: P \to \Delta(E), \eta': P' \to \Delta(E)$ are homotopic if there exists a principal Spin^c(n)-bundle Q on X and a continuous map

$$\Phi \colon Q \times [0,1] \to \Delta(E)$$

such that

1. For $t \in [0, 1]$ each

 $\Phi_t = \Phi(-,t) \colon Q \to \Delta(E)$

is a Spin^c data.

2.

$$\Phi_0: Q \to \Delta(E)$$
 is isomorphic to $\eta: P \to \Delta(E)$
 $\Phi_1: Q \to \Delta(E)$ is isomorphic to $\eta': P \to \Delta(E)$

Definition 1.10. A $\operatorname{Spin}^{c}(n)$ -structure for E is an equivalence class of $\operatorname{Spin}^{c}(n)$ data, where the equivalence relation is homotopy.

A Spin^c structure for an \mathbb{R} -bundle E determines an orientation of E. Let $w_1(E), w_2(E), \ldots$ be the Stiefel-Whitney classes of $E, w_j(E) \operatorname{H}^j(X; \mathbb{Z}/2\mathbb{Z})$ -Cech cohomology. Then E is orientable if and only if $w_1(E) = 0$.

A spin manifold is a C^{∞} manifold M, dim M = n, for which the structure group of the tangent bundle TM has been lifted from $GL(n, \mathbb{R})$ to Spin(n). Such lifting is possible if and only if

$$w_1(M) = 0, \quad w_1(M) \in \mathrm{H}^1(M; \mathbb{Z}/2\mathbb{Z})$$

and
 $w_2(M) = 0, \quad w_2(M) \in \mathrm{H}^2(M; \mathbb{Z}/2\mathbb{Z}).$

A Spin^c manifold is a C^{∞} manifold M, dim M = n, for which the structure group of the tangent bundle TM has been lifted from $\operatorname{GL}(n,\mathbb{R})$ to $\operatorname{Spin}^{c}(n)$. Such lifting is possible if and only if

$$w_1(M) = 0,$$
 $w_1(M) \in \mathrm{H}^1(M; \mathbb{Z}/2\mathbb{Z})$
and
 $w_2(M)$ is in the image of $\mathrm{H}^2(M; \mathbb{Z}) \to \mathrm{H}^2(M; \mathbb{Z}/2\mathbb{Z}).$

Various well known structures on a manifold M make M into Spin^{c} manifold

A Spin^c manifold can be thought of as an oriented manifold with a slight extra bit of structure. Most of the oriented manifolds which occur in practice are Spin^c manifolds. Spin^c structures behave very much like orientations. For example, an orientation on two of three \mathbb{R} vector bundles in a short exact sequence determine an orientation on the third vector bundle. Analogous assertions are true for Spin^c structures.

Lemma 1.11 (Two out of three lemma). Let

 $0 \to E' \to E \to E'' \to 0$

be an exact sequence of \mathbb{R} vector bundles on X. If Spin^c structures are given for any two of E', E, E'' then a Spin^c structure is determined for the third.

Corollary 1.12. If M is a Spin^c manifold with boundary ∂M , then ∂M is in canonocal way a Spin^c manifold.

Proof. There is an exact sequence

$$0 \to T\partial M \to TM|_{\partial M} \to \partial M \times \mathbb{R} \to 0$$

Remark 1.13. If E is orientable $(w_1(E) = 0)$, then the set of all possible orientations of E is in 1-1 correspondence with $\mathrm{H}^0(X;\mathbb{Z}/2\mathbb{Z})$. If E is Spin^c -able $(w_1(E) = 0 \text{ and } w_2(E) \in \mathrm{im}(\mathrm{H}^2(X;\mathbb{Z}) \to \mathrm{H}^2(X;\mathbb{Z}/2\mathbb{Z})))$, then the set of all possible Spin^c -structures for E is then in 1-1 correspondence with $\mathrm{H}^0(X;\mathbb{Z}/2\mathbb{Z}) \times \mathrm{H}^2(X;\mathbb{Z})$.

1.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional \mathbb{R} -vector space, $\langle -, - \rangle$ a positive definite, symmetric, bilinear \mathbb{R} -valued inner product on V. We can form a tensor algebra

$$\mathcal{T}V := \mathbb{R} \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \dots$$

with multiplication given by composing the tensors, and then define Clifford algebra

$$\operatorname{Cliff}(V) := \mathcal{T}V/(v \otimes v + \langle v, v \rangle \cdot 1)$$

where $(v \otimes v + \langle v, v \rangle \cdot 1)$ denotes the two-sided ideal in $\mathcal{T}V$ generated by all elements of the form

$$v \otimes v + \langle v, v \rangle \cdot 1, \ v \in V, \ 1 \in \mathbb{R}.$$

As a vector space over \mathbb{R} Cliff(V) is canonically isomorphic to the exterior algebra

$$\Lambda^* V = \mathbb{R} \oplus V \oplus \Lambda^2 V \oplus \dots \Lambda^n V, \quad n = \dim_{\mathbb{R}} V.$$

Let e_1, e_2, \ldots, e_n be an orthonormal basis of V. The monomials

 $e_1^{\epsilon_1} e_2^{\epsilon_2} \dots e_n^{\epsilon_n}, \ \epsilon_j \in \{0,1\}$

form a vector space basis of $\operatorname{Cliff}(V)$. The canonical isomorphism of \mathbb{R} -vector spaces

 $\operatorname{Cliff}(V) \to \Lambda^* V$

is given by

$$e_1^{\epsilon_1} e_2^{\epsilon_2} \dots e_n^{\epsilon_n} \mapsto e_1^{\epsilon_1} \wedge e_2^{\epsilon_2} \wedge \dots \wedge e_n^{\epsilon_n}$$

This isomorphism does not depend on the choice of orthonormal basis of V.

$$\dim_{\mathbb{R}}(\operatorname{Cliff}(V)) = 2^n, \ n = \dim_{\mathbb{R}} V.$$

In $\operatorname{Cliff}(V)$ we have following identities

$$e_j^2 = -1, \ j = 1, 2, \dots, n,$$

 $e_i e_i + e_j e_i = 0, \ i \neq j.$

We can introduce $\mathbb{Z}/2\mathbb{Z}$ -grading on $\operatorname{Cliff}(V)$ in the following way

$$\operatorname{Cliff}(V) = (\operatorname{Cliff}(V))_0 \oplus (\operatorname{Cliff}(V))_1$$

where $(\operatorname{Cliff}(V))_0$ is an \mathbb{R} -vector space spanned by $e_1^{\epsilon_1} e_2^{\epsilon_2} \dots e_n^{\epsilon_n}$ with $\epsilon_1 + \epsilon_2 + \dots + \epsilon_n$ even, and $(\operatorname{Cliff}(V))_1$ is an \mathbb{R} -vector space spanned by $e_1^{\epsilon_1} e_2^{\epsilon_2} \dots e_n^{\epsilon_n}$ with $\epsilon_1 + \epsilon_2 + \dots + \epsilon_n$ odd. This $\mathbb{Z}/2\mathbb{Z}$ -grading does not depend on the choice of orthonormal basis of V.

Take \mathbb{R}^n with the usual inner product

$$S^{n-1} \subset \mathbb{R}^n \subset \text{Cliff}(\mathbb{R}^n).$$

The elements of S^{n-1} are invertible in $\text{Cliff}(\mathbb{R}^n)$. Let Pin(n) be the subgroup of the invertible elements of $\text{Cliff}(\mathbb{R}^n)$ generated by S^{n-1} . Then

$$Spin(n) = Pin(n) \cap (Cliff(\mathbb{R}^n))_0$$
$$\rho: Spin(n) \to SO(n)$$
$$(\rho g)(x) = gxg^{-1}, \ g \in S^{n-1}, \ x \in \mathbb{R}^n.$$

For $n \ge 3$ this is the unique non-trivial 2-fold covering space of SO(n).

Consider complexification

$$\operatorname{Cliff}_{\mathbb{C}}(V) := \mathbb{C} \otimes_{\mathbb{R}} \operatorname{Cliff}(V).$$

Then $\operatorname{Cliff}_{\mathbb{C}}(V)$ is a C^* -algebra with

 $v^* = -v$

$$v \in V \subset \operatorname{Cliff}(V) \subset \operatorname{Cliff}_{\mathbb{C}}(V).$$

Let

for

$$\operatorname{Cliff}_{\mathbb{C}}(\mathbb{R}^n) := \mathbb{C}_{\mathbb{R}} \operatorname{Cliff}(\mathbb{R}^n),$$
$$\operatorname{Spin}^c(n) = S^1 \times_{\mathbb{Z}/2\mathbb{Z}} \operatorname{Spin}(n) \subset \operatorname{Cliff}_{\mathbb{C}}(\mathbb{R}^n).$$

Then $\operatorname{Spin}^{c}(n)$ is a subgroup of the group of unitary elements of the C^* -algebra $\operatorname{Cliff}_{\mathbb{C}}(\mathbb{R}^n)$.

Let us now choose an orthogonal basis e_1, e_2, \ldots, e_n for even-dimensional \mathbb{R} -vector space $V, n = 2n = \dim_{\mathbb{R}}(V)$. Recall $2^r \times 2^r$ matrices E_1, E_2, \ldots, E_n defined in the beginning of the chapter and then define a mapping

$$\operatorname{Cliff}_{\mathbb{C}}(V) \to M(2^r, \mathbb{C})$$

 $e_j \mapsto E_j, \ j = 1, 2, \dots, n.$

This gives an isomorphism of C^* -algebras $\operatorname{Cliff}_{\mathbb{C}}(V)$ and $M(2^r, \mathbb{C})$. For an odd dimension n = 2r + 1 recall $2^r \times 2^r$ matrices E_1, E_2, \ldots, E_n and define two mappings

$$\varphi_{+} \colon \operatorname{Cliff}_{\mathbb{C}}(V) \to M(2^{r}, \mathbb{C})$$
$$\varphi_{+}(e_{j}) = E_{j}, \quad j = 1, 2, \dots, n,$$
$$\varphi_{-} \colon \operatorname{Cliff}_{\mathbb{C}}(V) \to M(2^{r}, \mathbb{C})$$
$$\varphi_{-}(e_{j}) = -E_{j}, \quad j = 1, 2, \dots, n.$$

Then

$$\varphi_+ \oplus \varphi_- \colon \operatorname{Cliff}_{\mathbb{C}}(V) \to M(2^r, \mathbb{C}) \oplus M(2^r, \mathbb{C})$$

is an isomorphism of $C^{\ast}\text{-algebras}.$

Remark 1.14. This isomorphisms are non-canonical since they depend on the choice of an orthonormal basis for V.

Let E be an \mathbb{R} -vector bundle on X. Assume given an inner product $\langle -, - \rangle$ for E. Then define $\operatorname{Cliff}_{\mathbb{C}}(E)$ as a bundle of C^* -algebras over X whose fiber at $p \in X$ is $\operatorname{Cliff}_{\mathbb{C}}(E_p)$.

Definition 1.15. An Hermitian module over $\text{Cliff}_{\mathbb{C}}(E)$ is a complex vector bundle F on X with a \mathbb{C} -valued inner product (-, -) and a module structure

$$\operatorname{Cliff}_{\mathbb{C}}(E) \otimes F \to F$$

such that

- 1. (-, -) makes F_p into a finite dimensional Hilbert space,
- 2. for each $p \in X$, the module map

$$\operatorname{Cliff}_{\mathbb{C}}(E_p) \to \mathcal{L}(F_p)$$

is a unital homomorphism of C^* -algebras.

Remark 1.16. Of course all structures here are assumed to be continuous. If X is a C^{∞} manifold then we could take everything to be C^{∞} .

If E is oriented define a section ω of $\text{Cliff}_{\mathbb{C}}(E)$ as follows. Given $p \in X$, choose a positively oriented orthonormal basis e_1, e_2, \ldots, e_n of E_p . For n even, n = 2r, set

$$\omega(p) = i^r e_1 e_2 \dots e_{2r}.$$

For n = 2r + 1 odd

$$\omega(p) = i^{r+1} e_1 e_2 \dots e_{2r+1}.$$

Then $\omega(p)$ does not depend on the choice of positively oriented orthonormal basis. In $\operatorname{Cliff}_{\mathbb{C}}(E_p)$ we have

$$(\omega(p))^2 = 1.$$

If n is odd, then $\omega(p)$ is in the center of $\text{Cliff}_{\mathbb{C}}(E_p)$. Note that to define ω , E must be oriented. Reversing the orientation will change ω to $-\omega$.

Definition 1.17. Let E be an \mathbb{R} -vector bundle on X. A Spinor system for E is a triple $(\epsilon, \langle -, - \rangle, F)$ such that

- 1. ϵ is an orientation of E,
- 2. $\langle -, \rangle$ is an inner product for E,
- 3. F is an Hermitian module over $\operatorname{Cliff}_{\mathbb{C}}(E)$ with each F_p an irreducible module over $\operatorname{Cliff}_{\mathbb{C}}(E_p)$,
- 4. if $n = \dim_{\mathbb{R}}(E_p)$ is odd, then $\omega(p)$ acts identically on F_p .

Remark 1.18. The irreducibility of F_p in (3) is equivalent to $\dim_{\mathbb{C}}(F_p) = 2^r$, where n = 2r or n = 2r + 1. In (4) note that $\omega(p)^2 = 1$ so for n odd $\omega(p)$ is in the center of $\operatorname{Cliff}_{\mathbb{C}}(E_p)$. Hence irreducibility of F_p implies that $\omega(p)$ acts either by I or -I on F_p . Thus (4) normalizes the matter by requiring that $\omega(p)$ acts as I. When $n = \dim_{\mathbb{R}}(E_p)$ is even no such normalization is made.

If $(\epsilon, \langle -, - \rangle, F)$ is a Spinor system for E, then F is referred to as the **Spinor bundle**.

Suppose that $n = \dim_{\mathbb{R}}(E_p)$ is even. Let $F_p^+(F_p^+)$ be the +1 (-1) eigenspace of $\omega(p)$. We have a direct sum decomposition

$$F = F^+ \oplus F^-,$$

where F^+ , F^- are $\frac{1}{2}$ – Spin **bundles**. F^+ (F^-) is a vector bundle of positive (negative) spinors.

Assume we have right and left actions of the group G on topological spaces X, Y

$$X \times G \to X$$
$$G \times Y \to Y$$

Then

$$X \times_G Y := X \times Y / \sim, \ (xg, y) \sim (x, gy).$$

Example 1.19. Let E be an \mathbb{R} -vector bundle on X. Then

$$\Delta(E) \times_{\mathrm{GL}(n,\mathbb{R})} \simeq E$$
$$((p, v_1, v_2, \dots, v_n), (a_1, a_2, \dots, a_n)) \mapsto a_1 v_1 + a_2 v_2 + \dots + a_n v_n.$$

Let E be an \mathbb{R} -vector bundle on X. A Spin^c datum

$$\eta: P \to \Delta(E)$$

determines a Spinor system $(\epsilon, \langle -, -\rangle, F)$ for E. For $p \in X$, given orientation ϵ , and inner product $\langle -, -\rangle$, an \mathbb{R} -basis v_1, v_2, \ldots, v_n of E_p is positively oriented and orthonormal if and only if

$$(v_1, v_2, \ldots, v_n) \in \operatorname{im}(\eta).$$

The Spinor bundle for n = 2r or n = 2r + 1

$$F = P \times_{\operatorname{Spin}^c(n)} \mathbb{C}^{2^r}.$$

We have to describe how $\operatorname{Spin}^{c}(n)$ acts on $\mathbb{C}^{2^{r}}$. For n odd $\operatorname{Spin}^{c}(n)$ has an irreducible representation known as its spin representation

$$\operatorname{Spin}^{c}(n) \to \operatorname{GL}(2^{r}, \mathbb{C}), \ n = 2r + 1.$$

For n even $\operatorname{Spin}^{c}(n)$ has two irreducible representations known as its $\frac{1}{2}$ – Spin representations

$$\operatorname{Spin}^{c}(n) \to \operatorname{GL}(2^{r-1}, \mathbb{C}),$$

 $\operatorname{Spin}^{c}(n) \to \operatorname{GL}(2^{r-1}, \mathbb{C}), \quad n = 2r.$

The direct sum

$$\operatorname{Spin}^{c}(n) \to \operatorname{GL}(2^{r-1}, \mathbb{C}) \oplus \operatorname{GL}(2^{r-1}, \mathbb{C}) \subset \operatorname{GL}(2^{r}, \mathbb{C})$$

of these representations is the spin representation of $\operatorname{Spin}^{c}(n)$.

Consider \mathbb{R}^n with its usual inner product and usual orthonormal basis e_1, e_2, \ldots, e_n

$$\varphi \colon \operatorname{Cliff}_{\mathbb{C}}(\mathbb{R}^n) \to M(2^r, \mathbb{C})$$

 $\varphi(e_j) = E_j, \ j = 1, 2, \dots, n.$

There is a canonical inclusion

$$\operatorname{Spin}^{c}(n) \subset \operatorname{Cliff}_{\mathbb{C}}(\mathbb{R}^{n})$$

and φ restricted to $\operatorname{Spin}^{c}(n)$ maps $\operatorname{Spin}^{c}(n)$ to $2^{r} \times 2^{r}$ unitary matrices

$$\operatorname{Spin}^{c}(n) \to \operatorname{U}(2^{r}) \subset \operatorname{GL}(n, \mathbb{C}).$$

This is **Spin representation** of $\text{Spin}^{c}(n)$ and $\text{Spin}^{c}(n)$ acts on $\text{GL}(2^{r}, \mathbb{C})$ acts on $\mathbb{C}^{2^{r}}$ via this representation.

Let M be C^{∞} manifold, possibly ∂M non-empty, TM the tangent bundle of M. Then

$$\begin{pmatrix} \operatorname{Spin}^{c} \operatorname{datum for } TM \\ \eta \colon P \to \Delta(TM) \end{pmatrix} \\ \downarrow \\ \begin{pmatrix} \operatorname{Spinor system for } TM \\ (\epsilon, \langle -, - \rangle, F) \end{pmatrix} \\ \downarrow \\ \begin{pmatrix} \operatorname{Dirac operator} \\ D \colon C^{\infty}_{c}(M, F) \to C^{\infty}_{c}(M, F) \end{pmatrix}$$

where F is the Spinor bundle on M and $C_c^{\infty}(M, F)$ are its C^{∞} sections with compact support. The Dirac operator

$$D: C_c^{\infty}(M, F) \to C_c^{\infty}(M, F)$$

is such that

1. D is \mathbb{C} -linear

$$D(s_1 + s_2) = Ds_1 + Ds_2,$$

$$D(\lambda s) = \lambda Ds, \ s_1, s_2, s \in C_c^{\infty}(M, F), \ \lambda \in \mathbb{C}.$$

2. If $f: M \to \mathbb{C}$ is a C^{∞} function, then

$$D(fs) = (df)s + f(Ds).$$

3. If $s_1, s_2 \in C_c^{\infty}(M, F)$ then

$$\int_{M} (Ds_1(x), s_2(x)) dx = \int_{M} (s_1(x), Ds_2(x)) dx$$

4. If $\dim M$ is even, then D is off-diagonal

$$F = F^+ \oplus F^-$$
$$D = \left[\begin{array}{cc} 0 & D^- \\ D^+ & 0 \end{array}\right]$$

 $D: C_c^{\infty}(M, F) \to C_c^{\infty}(M, F)$ is an elliptic first-order differential operator. It can be viewed as an unbounded operator on the Hilbert space $L^2(M, F)$ with the scalar product

$$(s_1, s_2) := \int_M (s_1(x), s_2(x)) dx.$$

Moreover it is a symmetric operator.

One proves existence of D by constructing it locally and patching together with a C^{∞} partition of unity. The uniqueness of D is obtained by the fact that if D_0, D_1 satisfy conditions (1)-(4) above, then

$$D_0 - D_1 \colon F \to F$$

is a vector bundle map, hence D_0, D_1 differ by lower order terms.

Example 1.20. Let n be even, $S^n \subset \mathbb{R}^{n+1}$, D-Dirac operator of S^n , F-Spinor bundle of S^n , $F = F^+ \oplus F^-$.

$$D: C_c^{\infty}(S^n, F) \to C_c^{\infty}(S^n, F)$$
$$D = \begin{bmatrix} 0 & D^- \\ D^+ & 0 \end{bmatrix}$$
$$D^+: C_c^{\infty}(S^n, F^+) \to C_c^{\infty}(S^n, F^-)$$

Then

$$\operatorname{Index}(D^+) := \dim_{\mathbb{C}}(\ker D^+) - \dim_{\mathbb{C}}(\operatorname{coker} D^+)$$

 $Theorem \ 1.21.$

$$\operatorname{Index}(D^+) = 0.$$

We can tensor D^+ with the Bott generator vector bundle β from section (1.1.2)

$$D^+_{\beta} \colon C^{\infty}_c(S^n, F^+ \otimes \beta) \to C^{\infty}_c(S^n, F^- \otimes \beta).$$

Then we have

 $Theorem \ 1.22.$

$$\operatorname{Index}(D_{\beta}^+) = 1$$