Dirac operators and Spin structures

Paul Baum

notes taken by:
Paweł Witkowski
March 15, 2006

Contents

1 Dirac operators and Spin structures 2
1.1 The Dirac operator of \mathbb{R}^{n} 2
1.1.1 Dirac operator 3
1.1.2 Bott generator vector bundle 5
1.2 Spin representation and Spin c 6
1.2.1 Clifford algebras and spinor systems 10

Chapter 1

Dirac operators and Spin structures

1.1 The Dirac operator of \mathbb{R}^{n}

First we consider n even. We shall construct matrices

$$
E_{1}, E_{2}, \ldots, E_{n}, \quad n=2 r
$$

each E_{j} being $2^{r} \times 2^{r}$ matrix of complex numbers. In fact each entry will be in $\{0,1,-1, i,-i\}$. Properties of E_{j}

1. $E_{j}^{*}=-E_{j}$,
2. each E_{j} is block anti-diagonal

$$
E_{j}=\left[\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right]
$$

and each block has size $2^{r-1} \times 2^{r-1}$,
3. $E_{j}^{2}=I_{2^{r}}$,
4. $E_{j} E_{k}+E_{k} E_{j}=0$ for $j \neq k$,
5.

$$
i^{r} E_{1} E_{2} \ldots E_{n}=\left[\begin{array}{cc}
I_{2^{r-1}} & 0 \\
0 & -I_{2^{r-1}}
\end{array}\right]
$$

We will proceed by induction on n even. For $n=2$ we take

$$
E_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

Suppose we have $E_{1}, E_{2}, \ldots, E_{n}$ of size $2^{r} \times 2^{r}$. Then we put first n matrices of size $2^{r+1} \times 2^{r+1}$ as

$$
\left[\begin{array}{cc}
0 & E_{1} \\
E_{1} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & E_{2} \\
E_{2} & 0
\end{array}\right], \ldots,\left[\begin{array}{cc}
0 & E_{n} \\
E_{n} & 0
\end{array}\right]
$$

and two additional matrices

$$
\left[\begin{array}{cc}
0 & -I_{2^{r}} \\
I_{2^{r}} & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & i I_{2^{r-1}} & 0 \\
0 & 0 & 0 & i I_{2^{r-1}} \\
i I_{2^{r-1}} & 0 & 0 & 0 \\
0 & i I_{2^{r-1}} & 0 & 0
\end{array}\right]
$$

Example 1.1. For $n=4$ we have

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad E_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right], \\
E_{3}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \quad E_{4}=\left[\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right]
\end{array}
$$

For n odd, $n=2 r+1$, we define matrices $E_{1}, E_{2}, \ldots, E_{r}$ satisfying

1. $E_{j}^{*}=-E_{j}$,
2. $E_{j}^{2}=I_{2^{r}}$,
3. $E_{j} E_{k}+E_{k} E_{j}=0$ for $j \neq k$,
4. $i^{r+1} E_{1} E_{2} \ldots E_{n}=I_{2^{r}}$.

First if $n=1$ we set

$$
E_{1}=[-i] .
$$

Then for $n=2 r+1$ we use $2 r$ matrices $E_{1}, E_{2}, \ldots, E_{n-1}$ as for the even case and as the last one we put

$$
\left[\begin{array}{cc}
-i I_{2^{r-1}} & 0 \\
0 & i I_{2^{r-1}}
\end{array}\right]
$$

From $E_{1}, E_{2}, \ldots, E_{n}$ we obtain:

1. The Dirac operator of \mathbb{R}^{n} (described above)
2. The Bott generator vector bundle on S^{n} (n even)
3. The spin representation of $\operatorname{Spin}^{c}(n)$

1.1.1 Dirac operator

Now we can define Dirac operator of \mathbb{R}^{n}. For each n we set

$$
D:=\sum_{j=1}^{n} E_{j} \frac{\partial}{\partial x_{j}} .
$$

Example 1.2. For $n=1$ we have Dirac operator of \mathbb{R}

$$
D=-i \frac{\partial}{\partial x}
$$

For $n=2$

$$
D=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \frac{\partial}{\partial x_{1}}+\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right] \frac{\partial}{\partial x_{2}}
$$

For $n=2 r$ and $n=2 r+1 D$ is an unbounded operator on the Hilbert space

$$
\underbrace{L^{2}\left(\mathbb{R}^{n}\right) \oplus L^{2}\left(\mathbb{R}^{n}\right) \oplus \ldots \oplus L^{2}\left(\mathbb{R}^{n}\right)}_{2^{r}}
$$

D is a first order elliptic differential operator on

$$
\underbrace{C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \oplus C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \oplus \ldots \oplus C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}_{2^{r}}
$$

With this domain D is symmetric (that is D is formally self-adjoint) and D is essentially self-adjoint (that is D has unique self-adjoint extension). For n even

$$
D=\left[\begin{array}{cc}
0 & D_{-} \\
D_{+} & 0
\end{array}\right]
$$

where D_{-}is the formal adjoint of D_{+}.
We will descirbe these notions in a general context. Let \mathcal{H} be Hilbert space. An unbounded operator on \mathcal{H} is a pair (\mathcal{D}, T) such that

1. $\mathcal{D} \subset \mathcal{H}$ is a vector subspace of \mathcal{H},
2. \mathcal{D} is dense in \mathcal{H},
3. $T: \mathcal{D} \rightarrow \mathcal{H}$ is a \mathbb{C}-linear map,
4. (\mathcal{D}, T) is closeable, i.e. the closure of $\operatorname{graph}(T)$ in $\mathcal{H} \oplus \mathcal{H}$ is the graph of a \mathbb{C}-linear map

$$
\begin{gathered}
P(\overline{\operatorname{graph}(T)}) \rightarrow \mathcal{H} \\
P(u, v)=u .
\end{gathered}
$$

An unbounded operator (\mathcal{D}, T) is symmetric if and only if

$$
\langle T u, v\rangle=\langle u, T v\rangle \forall u, v \in \mathcal{D}
$$

For an unbounded operator (\mathcal{D}, T) on \mathcal{H} let

$$
\begin{aligned}
\mathcal{D}\left(T^{*}\right):= & \{u \in \mathcal{H} \mid v \mapsto\langle u, T v\rangle \text { extends from } \mathcal{D} \text { to } \mathcal{H} \text { extends } \\
& \text { to be a bounded linear functional on } \mathcal{H}\}
\end{aligned}
$$

For $u \in \mathcal{D}\left(T^{*}\right)$ and $v \in \mathcal{H}$ there exists

$$
T^{*}: \mathcal{D}\left(T^{*}\right) \rightarrow \mathcal{H}
$$

such that

$$
\langle u, T v\rangle=\left\langle T^{*} u, v\right\rangle
$$

Now (\mathcal{D}, T) is self-adjoint if and only if

$$
(\mathcal{D}, T)=\left(\mathcal{D}\left(T^{*}\right), T^{*}\right)
$$

Remark 1.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint operator is symmetric.

Example 1.4. Take $C_{c}^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R})$ and

$$
\begin{aligned}
\mathcal{D} & =\left\{u \in L^{2}(\mathbb{R}) \left\lvert\,-i \frac{d u}{d x} \in L^{2}(\mathbb{R})\right. \text { in the distribution sense }\right\} \\
& =\left\{u \in L^{2}(\mathbb{R}) \mid x \hat{u} \in L^{2}(\mathbb{R})\right\},
\end{aligned}
$$

where \hat{u} is the Fourier transform of u and

$$
x: \mathbb{R} \rightarrow \mathbb{R}, \quad x(t)=t, \quad \forall t \in \mathbb{R} .
$$

Then $\left(C_{c}^{\infty}(\mathbb{R}),-i \frac{d}{d x}\right)$ has unique self-adjoint extension $\left(\mathcal{D},-i \frac{d}{d x}\right)$.
Let D be Dirac operator of $\mathbb{R}^{n}, n=2 r$ or $2 r+1$.

$$
\begin{aligned}
\Omega^{1}\left(\mathbb{R}^{n}\right) & =\left\{C^{\infty} 1 \text {-forms on } \mathbb{R}^{n}\right\} \\
& =\left\{f_{1} d x_{1}+f_{2} d x_{2}+\ldots+f_{n} d x_{n} \mid f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{C}, j=1,2, \ldots, n\right\}
\end{aligned}
$$

$\Omega^{1}\left(\mathbb{R}^{n}\right)$ acts on

$$
\underbrace{C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \oplus C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \oplus \ldots \oplus C_{c}^{\infty}\left(\mathbb{R}^{n}\right)}_{2^{r}}
$$

in the following way. Let

$$
\begin{gathered}
\omega=f_{1} d x_{1}+f_{2} d x_{2}+\ldots+f_{n} d x_{n}, \\
s=\left(s_{1}, s_{2}, \ldots, s_{2} r\right), \quad s_{l}: \mathbb{R}^{n} \rightarrow \mathbb{C}, \quad l=1,2, \ldots, 2^{r} .
\end{gathered}
$$

Then

$$
\omega s=\sum_{j=1}^{n} f_{j} E_{j} s
$$

There is following Leibniz rule for D

$$
\begin{gathered}
D(f s)=(d f) s+f(D s), \\
f: \mathbb{R}^{n} \rightarrow \mathbb{C}, \quad f \in C^{\infty}\left(\mathbb{R}^{n}\right), d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j} .
\end{gathered}
$$

If M is C^{∞}-manifold, compact or non-compact, with or without boundary, $\operatorname{dim} M=M$, then the Dirac operator of M is an elliptic operator which is locally like the Dirac operator of \mathbb{R}^{n}.

1.1.2 Bott generator vector bundle

Let W be finite dimensional \mathbb{C}-vector space,

$$
T \in \operatorname{Hom}_{\mathbb{C}}(W, W), \quad T^{2}=-I
$$

Then eigenvalues of T are $\pm i$ and there is decomposition

$$
\begin{aligned}
& W=W_{i} \oplus W_{-i}, \\
& W_{i}=\{v \in W \mid T v=i v\} \\
& W_{-i}=\{v \in W \mid T v=-i v\}
\end{aligned}
$$

Assume that n is even, $S^{n} \subset \mathbb{R}^{n+1}$

$$
S^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \in \mathbb{R}^{n} \mid a_{1}^{2}+a_{2}^{2}+\ldots+a_{n+1}^{2}=1\right\} .
$$

We have a map

$$
\begin{gathered}
S^{n} \rightarrow M\left(2^{r}, \mathbb{C}\right) \\
\left(a_{1}, a_{2}, \ldots, a_{n+1}\right) \mapsto a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n+1} E_{n+1}=: F .
\end{gathered}
$$

From the properties of E_{j} we obtain

$$
\begin{aligned}
F^{2} & =\left(a_{1} E_{1}+a_{2} E_{2}+\ldots+a_{n+1} E_{n+1}\right)^{2} \\
& =\left(-a_{1}^{2}-a_{2}^{2}-\ldots-a_{n+1}^{2}\right) I \\
& =-I
\end{aligned}
$$

so the eigenvalues of F are $\pm i$.
The Bott generator vector bundle β on S^{n} is given by

$$
\begin{aligned}
\beta_{\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)} & :=\text { i-eigenspace of } F \\
& =\left\{v \in \mathbb{C}^{2} \mid F(v)=i v\right\}
\end{aligned}
$$

For n even and $S^{n} \subset \mathbb{R}^{n+1}$ there is an isomorphism

$$
\mathrm{K}^{0}\left(S^{n}\right)=\mathbb{Z} \oplus \mathbb{Z}
$$

$$
1 \quad \beta
$$

where $1=S^{n} \times \mathbb{C}$.

1.2 Spin representation and Spin ${ }^{c}$

Let G be a topological group, Hausdorff and paracompact, X topological space Hausdorff and paracompact. A principal G-bundle on X is a pair (P, π) where

1. P is a Hausdorff and paracompact topological space with given continuous (right) action of G

$$
\begin{gathered}
P \times G \rightarrow P \\
(p, g) \mapsto p g
\end{gathered}
$$

2. $\pi: P \rightarrow X$ is a continuous map, mapping P onto X
such that given any $x \in X$, there exists an open subset U of X with $x \in U$ and a homeomorphism

$$
\varphi: U \times G \rightarrow \pi^{-1}(U)
$$

with

$$
\begin{array}{ll}
\pi \varphi(u, g)=u & \forall(u, g) \in U \times G \\
\varphi\left(u, g_{1} g_{2}\right)=\varphi\left(u, g_{1}\right) g_{2} & \forall\left(u, g_{1}, g_{2}\right) \in U \times G \times G
\end{array}
$$

Such $\varphi: U \times G \rightarrow \pi^{-1}(U)$ is referred to as a local trivialization.

Two principal G-bundles (P, π) and (Q, θ) are isomorphic if there exists a G-equivariant homeomorphism $f: P \rightarrow Q$ with commutativity in the diagram

Let G, H be two topological groups and let $(P, \pi),(G, \theta)$ be a principal G-bundle and H bundle on X. A homomorphism of principal bundles from (P, π) to (Q, θ) is a pair (η, ρ) such that

1. ρ is a homomorphism of topological groups $\rho: G \rightarrow H$
2. $P \rightarrow Q$ is a continuous map with commutativity in the diagrams

A homomorphism of principal bundles on X will be denoted $\eta: P \rightarrow Q$ and $\rho: G \rightarrow H$ will be referred to as homomorphism of topological groups underlying η.

Lemma 1.5. Let $\eta: P \rightarrow Q$ be a homomorphism of principal bundles on X with underlying homomorphism of topological groups $\rho: G \rightarrow H$. Then for any $x \in X$ there exists an open subset U of X with $x \in U$ and local trivializations

$$
\begin{aligned}
& \varphi: U \times G \rightarrow \pi^{-1}(U) \\
& \psi: U \times H \rightarrow \theta^{-1}(U)
\end{aligned}
$$

such that the diagram

commutes.
Example 1.6. Let E be \mathbb{R}-vector bundle on $X, \operatorname{dim}_{\mathbb{R}}\left(E_{p}\right)=n$ for all $p \in X$. Denote $\Delta(E):=\left\{\left(p, v_{1}, v_{2}, \ldots, v_{n}\right) \mid p \in X, v_{1}, v_{2}, \ldots, v_{n}\right.$ form a vector space basis for $\left.E_{p}\right\}$
$\Delta(E)$ is topologized by

$$
\Delta(E) \subset \underbrace{E \oplus E \oplus \ldots \oplus E}_{n} .
$$

Define an action

$$
\Delta(E) \times \mathrm{GL}(n, \mathbb{R}) \rightarrow \Delta(E)
$$

$$
\begin{gathered}
\left(\left(p, v_{1}, v_{2}, \ldots, v_{n}\right),\left[a_{i j}\right]\right) \mapsto\left(p, w_{1}, w_{2}, \ldots, w_{n}\right), \\
w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}, \quad\left[a_{i j}\right] \in \operatorname{GL}(n, \mathbb{R})
\end{gathered}
$$

and a map

$$
\begin{gathered}
\theta: \Delta(E) \rightarrow X \\
\theta\left(p, v_{1}, v_{2}, \ldots, v_{n}\right)=p
\end{gathered}
$$

Then $(\Delta(E), \theta)$ is a principal $\mathrm{GL}(n, \mathbb{R})$-bundle on X.
For $n \geqslant 3$

$$
\pi_{1}(\mathrm{SO}(n))=\mathbb{Z} / 2 \mathbb{Z}
$$

and $\operatorname{Spin}(n)$ is the unique non-trivial 2 -fold cover of $\operatorname{SO}(n)$. It is a compact connected Lie group.

There is an exact sequence

$$
1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Spin}(n) \rightarrow \mathrm{SO}(n) \rightarrow 1
$$

The group $\mathbb{Z} / 2 \mathbb{Z}$ embeds in the $\operatorname{Spin}(n)$ and S^{1} as the $\{1,-1\}$. We define

$$
\operatorname{Spin}^{c}(n):=S^{1} \times_{\mathbb{Z} / 2 \mathbb{Z}} \operatorname{Spin}(n)
$$

Then there is an exact sequence

$$
1 \rightarrow S^{1} \rightarrow \operatorname{Spin}^{c}(n) \rightarrow \mathrm{SO}(n) \rightarrow 1
$$

$\operatorname{Spin}^{c}(n)$ is a compact connected Lie group

Example 1.7. For $n=1$

$$
\begin{gathered}
\operatorname{Spin}(1)=\mathbb{Z} / 2 \mathbb{Z}, \quad \operatorname{SO}(1)=1 \\
\operatorname{Spin}^{c}(1)=S^{1} \\
\rho: S^{1} \rightarrow \mathrm{pt}
\end{gathered}
$$

For $n=2$

$$
\begin{gathered}
\operatorname{Spin}(2)=S^{1}=\mathrm{SO}(2) \\
\operatorname{Spin}(2) \rightarrow \mathrm{SO}(2) \\
\zeta \mapsto \zeta^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{Spin}^{c}(2)=S^{1} \times_{\mathbb{Z} / 2 \mathbb{Z}} \operatorname{Spin}(2) \\
\rho(\lambda, \zeta)=\zeta^{2}
\end{gathered}
$$

Remark 1.8. Since $\mathrm{SO}(n) \subset \mathrm{GL}(n, \mathbb{R})$ we can view the standard map $\operatorname{Spin}^{c}(n) \rightarrow \mathrm{SO}(n)$ as $\operatorname{Spin}^{c}(n) \rightarrow \operatorname{GL}(n, \mathbb{R})$.
Definition 1.9. $A \operatorname{Spin}^{c}$ datum for an \mathbb{R}-vector bundle $E \rightarrow X$ is a homomorphism of principal bundles

$$
\eta: P \rightarrow \Delta(E)
$$

where P is a principal $\operatorname{Spin}^{c}(n)$-bundle on $X\left(n=\operatorname{dim}_{\mathbb{R}}\left(E_{p}\right)\right)$ and the homomorphism of topological groups underlying η is the standard map

$$
\rho: \operatorname{Spin}^{c}(n) \rightarrow \operatorname{GL}(n, \mathbb{R})
$$

Two Spin ${ }^{c}$ data $\eta: P \rightarrow \Delta(E), \eta^{\prime}: P^{\prime} \rightarrow \Delta(E)$ are isomorphic if there exists an isomorphism $f: P \rightarrow P^{\prime}$ of principal $\operatorname{Spin}^{c}(n)$-bundles on X with commutativity in the diagram

Two Spin^{c} data $\eta: P \rightarrow \Delta(E), \eta^{\prime}: P^{\prime} \rightarrow \Delta(E)$ are homotopic if there exists a principal $\operatorname{Spin}^{c}(n)$-bundle Q on X and a continuous map

$$
\Phi: Q \times[0,1] \rightarrow \Delta(E)
$$

such that

1. For $t \in[0,1]$ each

$$
\Phi_{t}=\Phi(-, t): Q \rightarrow \Delta(E)
$$

is a Spin^{c} data.
2.

$$
\begin{aligned}
& \Phi_{0}: Q \rightarrow \Delta(E) \text { is isomorphic to } \eta: P \rightarrow \Delta(E) \\
& \Phi_{1}: Q \rightarrow \Delta(E) \text { is isomorphic to } \eta^{\prime}: P \rightarrow \Delta(E)
\end{aligned}
$$

Definition 1.10. $A \operatorname{Spin}^{c}(n)$-structure for E is an equivalence class of $\operatorname{Spin}^{c}(n)$ data, where the equivalence relation is homotopy.
 the Stiefel-Whitney classes of $E, w_{j}(E) \mathrm{H}^{j}(X ; \mathbb{Z} / 2 \mathbb{Z})$-Cech cohomology. Then E is orientable if and only if $w_{1}(E)=0$.

A spin manifold is a C^{∞} manifold $M, \operatorname{dim} M=n$, for which the structure group of the tangent bundle $T M$ has been lifted from $\operatorname{GL}(n, \mathbb{R})$ to $\operatorname{Spin}(n)$. Such lifting is possible if and only if

$$
\begin{aligned}
& w_{1}(M)=0, \quad w_{1}(M) \in \mathrm{H}^{1}(M ; \mathbb{Z} / 2 \mathbb{Z}) \\
& \text { and } \\
& w_{2}(M)=0, \quad w_{2}(M) \in \mathrm{H}^{2}(M ; \mathbb{Z} / 2 \mathbb{Z})
\end{aligned}
$$

A Spin ${ }^{c}$ manifold is a C^{∞} manifold $M, \operatorname{dim} M=n$, for which the structure group of the tangent bundle $T M$ has been lifted from $\operatorname{GL}(n, \mathbb{R})$ to $\operatorname{Spin}^{c}(n)$. Such lifting is possible if and only if

$$
\begin{array}{ll}
w_{1}(M)=0, & w_{1}(M) \in \mathrm{H}^{1}(M ; \mathbb{Z} / 2 \mathbb{Z}) \\
\text { and } & \\
w_{2}(M) \text { is in the image of } & \mathrm{H}^{2}(M ; \mathbb{Z}) \rightarrow \mathrm{H}^{2}(M ; \mathbb{Z} / 2 \mathbb{Z}) .
\end{array}
$$

Various well known structures on a manifold M make M into Spin^{c} manifold

A Spin ${ }^{c}$ manifold can be thought of as an oriented manifold with a slight extra bit of structure. Most of the oriented manifolds which occur in practice are Spin^{c} manifolds. Spin^{c} structures behave very much like orientations. For example, an orientation on two of three \mathbb{R} vector bundles in a short exact sequence determine an orientation on the third vector bundle. Analogous assertions are true for Spin^{c} structures.

Lemma 1.11 (Two out of three lemma). Let

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0
$$

be an exact sequence of \mathbb{R} vector bundles on X. If Spin^{c} structures are given for any two of $E^{\prime}, E, E^{\prime \prime}$ then a Spin^{c} structure is determined for the third.

Corollary 1.12. If M is a Spin^{c} manifold with boundary ∂M, then ∂M is in canonocal way a Spin c manifold.

Proof. There is an exact sequence

$$
\left.0 \rightarrow T \partial M \rightarrow T M\right|_{\partial M} \rightarrow \partial M \times \mathbb{R} \rightarrow 0
$$

Remark 1.13. If E is orientable ($w_{1}(E)=0$), then the set of all possible orientations of E is in 1-1 correspondence with $\mathrm{H}^{0}(X ; \mathbb{Z} / 2 \mathbb{Z})$. If E is Spin^{c}-able $\left(w_{1}(E)=0\right.$ and $w_{2}(E) \in$ $\operatorname{im}\left(\mathrm{H}^{2}(X ; \mathbb{Z}) \rightarrow \mathrm{H}^{2}(X ; \mathbb{Z} / 2 \mathbb{Z})\right)$), then the set of all possible Spin^{c}-structures for E is then in 1-1 correspondence with $\mathrm{H}^{0}(X ; \mathbb{Z} / 2 \mathbb{Z}) \times \mathrm{H}^{2}(X ; \mathbb{Z})$.

1.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional \mathbb{R}-vector space, $\langle-,-\rangle$ a positive defninite, symmetric, bilinear \mathbb{R}-valued inner product on V. We can form a tensor algebra

$$
\mathcal{T} V:=\mathbb{R} \oplus V \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \ldots
$$

with multiplication given by composing the tensors, and then define Clifford algebra

$$
\operatorname{Cliff}(V):=\mathcal{T} V /(v \otimes v+\langle v, v\rangle \cdot 1)
$$

where $(v \otimes v+\langle v, v\rangle \cdot 1)$ denotes the two-sided ideal in $\mathcal{T} V$ generated by all elements of the form

$$
v \otimes v+\langle v, v\rangle \cdot 1, \quad v \in V, \quad 1 \in \mathbb{R}
$$

As a vector space over $\mathbb{R} C l i f f(V)$ is canonically isomorphic to the exterior algebra

$$
\Lambda^{*} V=\mathbb{R} \oplus V \oplus \Lambda^{2} V \oplus \ldots \Lambda^{n} V, \quad n=\operatorname{dim}_{\mathbb{R}} V
$$

Let $e_{1}, e_{2}, \ldots, e_{n}$ be an orthonormal basis of V. The monomials

$$
e_{1}^{\epsilon_{1}} e_{2}^{\epsilon_{2}} \ldots e_{n}^{\epsilon_{n}}, \quad \epsilon_{j} \in\{0,1\}
$$

form a vector space basis of $\operatorname{Cliff}(V)$. The canonical isomorphism of \mathbb{R}-vector spaces

$$
\operatorname{Cliff}(V) \rightarrow \Lambda^{*} V
$$

is given by

$$
e_{1}^{\epsilon_{1}} e_{2}^{\epsilon_{2}} \ldots e_{n}^{\epsilon_{n}} \mapsto e_{1}^{\epsilon_{1}} \wedge e_{2}^{\epsilon_{2}} \wedge \ldots \wedge e_{n}^{\epsilon_{n}}
$$

This isomorphism does not depend on the choice of orthonormal basis of V.

$$
\operatorname{dim}_{\mathbb{R}}(\operatorname{Cliff}(V))=2^{n}, \quad n=\operatorname{dim}_{\mathbb{R}} V
$$

In Cliff(V) we have following identities

$$
\begin{aligned}
e_{j}^{2}=-1, \quad j & =1,2, \ldots, n \\
e_{i} e_{j}+e_{j} e_{i} & =0, \quad i \neq j
\end{aligned}
$$

We can introduce $\mathbb{Z} / 2 \mathbb{Z}$-grading on $\operatorname{Cliff}(V)$ in the following way

$$
\operatorname{Cliff}(V)=(\operatorname{Cliff}(V))_{0} \oplus(\operatorname{Cliff}(V))_{1},
$$

where $(\operatorname{Cliff}(V))_{0}$ is an \mathbb{R}-vector space spanned by $e_{1}^{\epsilon_{1}} e_{2}^{\epsilon_{2}} \ldots e_{n}^{\epsilon_{n}}$ with $\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}$ even, and $(\operatorname{Cliff}(V))_{1}$ is an \mathbb{R}-vector space spanned by $e_{1}^{\epsilon_{1}} e_{2}^{\epsilon_{2}} \ldots e_{n}^{\epsilon_{n}}$ with $\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}$ odd. This $\mathbb{Z} / 2 \mathbb{Z}$-grading does not depend on the choice of orthonormal basis of V.

Take \mathbb{R}^{n} with the usual inner product

$$
S^{n-1} \subset \mathbb{R}^{n} \subset \operatorname{Cliff}\left(\mathbb{R}^{n}\right)
$$

The elements of S^{n-1} are invertible in Cliff $\left(\mathbb{R}^{n}\right)$. Let $\operatorname{Pin}(n)$ be the subgroup of the invertible elements of $\operatorname{Cliff}\left(\mathbb{R}^{n}\right)$ generated by S^{n-1}. Then

$$
\begin{gathered}
\operatorname{Spin}(n)=\operatorname{Pin}(n) \cap\left(\operatorname{Cliff}\left(\mathbb{R}^{n}\right)\right)_{0} \\
\rho: \operatorname{Spin}(n) \rightarrow \operatorname{SO}(n) \\
(\rho g)(x)=g x g^{-1}, \quad g \in S^{n-1}, \quad x \in \mathbb{R}^{n} .
\end{gathered}
$$

For $n \geqslant 3$ this is the unique non-trivial 2-fold covering space of $\mathrm{SO}(n)$.
Consider complexification

$$
\operatorname{Cliff}_{\mathbb{C}}(V):=\mathbb{C} \otimes_{\mathbb{R}} \operatorname{Cliff}(V)
$$

Then $\operatorname{Cliff}_{\mathbb{C}}(V)$ is a C^{*}-algebra with

$$
v^{*}=-v
$$

for

$$
v \in V \subset \operatorname{Cliff}(V) \subset \operatorname{Cliff}_{\mathbb{C}}(V) .
$$

Let

$$
\begin{gathered}
\operatorname{Cliff}_{\mathbb{C}}\left(\mathbb{R}^{n}\right):=\mathbb{C}_{\mathbb{R}} \operatorname{Cliff}\left(\mathbb{R}^{n}\right), \\
\operatorname{Spin}^{c}(n)=S^{1} \times_{\mathbb{Z} / 2 \mathbb{Z}} \operatorname{Spin}(n) \subset \operatorname{Cliff}_{\mathbb{C}}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

Then $\operatorname{Spin}^{c}(n)$ is a subgroup of the group of unitary elements of the C^{*}-algebra Cliff $\mathbb{C}\left(\mathbb{R}^{n}\right)$.
Let us now choose an orthogonal basis $e_{1}, e_{2}, \ldots, e_{n}$ for even-dimensional \mathbb{R}-vector space $V, n=2 n=\operatorname{dim}_{\mathbb{R}}(V)$. Recall $2^{r} \times 2^{r}$ matrices $E_{1}, E_{2}, \ldots, E_{n}$ defined in the beginning of the chapter and then define a mapping

$$
\begin{aligned}
\operatorname{Cliff}_{\mathbb{C}}(V) & \rightarrow M\left(2^{r}, \mathbb{C}\right) \\
e_{j} & \mapsto E_{j}, \quad j
\end{aligned}=1,2, \ldots, n .
$$

This gives an isomorphism of C^{*}-algebras $\operatorname{Cliff}_{\mathbb{C}}(V)$ and $M\left(2^{r}, \mathbb{C}\right)$. For an odd dimension $n=2 r+1$ recall $2^{r} \times 2^{r}$ matrices $E_{1}, E_{2}, \ldots, E_{n}$ and define two mappings

$$
\begin{gathered}
\varphi_{+}: \operatorname{Cliff}_{\mathbb{C}}(V) \rightarrow M\left(2^{r}, \mathbb{C}\right) \\
\varphi_{+}\left(e_{j}\right)=E_{j}, \quad j=1,2, \ldots, n \\
\varphi_{-}: \operatorname{Cliff}_{\mathbb{C}}(V) \rightarrow M\left(2^{r}, \mathbb{C}\right) \\
\varphi_{-}\left(e_{j}\right)=-E_{j}, \quad j=1,2, \ldots, n .
\end{gathered}
$$

Then

$$
\varphi_{+} \oplus \varphi_{-}: \operatorname{Cliff}_{\mathbb{C}}(V) \rightarrow M\left(2^{r}, \mathbb{C}\right) \oplus M\left(2^{r}, \mathbb{C}\right)
$$

is an isomorphism of C^{*}-algebras.
Remark 1.14. This isomorphisms are non-canonical since they depend on the choice of an orthonormal basis for V.

Let E be an \mathbb{R}-vector bundle on X. Assume given an inner product $\langle-,-\rangle$ for E. Then define $\operatorname{Cliff}_{\mathbb{C}}(E)$ as a bundle of C^{*}-algebras over X whose fiber at $p \in X$ is $\operatorname{Cliff}_{\mathbb{C}}\left(E_{p}\right)$.

Definition 1.15. An Hermitian module over $\operatorname{Cliff}_{\mathbb{C}}(E)$ is a complex vector bundle F on X with $a \mathbb{C}$-valued inner product $(-,-)$ and a module structure

$$
\operatorname{Cliff}_{\mathbb{C}}(E) \otimes F \rightarrow F
$$

such that

1. $(-,-)$ makes F_{p} into a finite dimensional Hilbert space,
2. for each $p \in X$, the module map

$$
\operatorname{Cliff}_{\mathbb{C}}\left(E_{p}\right) \rightarrow \mathcal{L}\left(F_{p}\right)
$$

is a unital homomorphism of C^{*}-algebras.
Remark 1.16. Of course all structures here are assumed to be continuous. If X is a C^{∞} manifold then we could take everything to be C^{∞}.

If E is oriented define a section ω of $\operatorname{Cliff}_{\mathbb{C}}(E)$ as follows. Given $p \in X$, choose a positively oriented orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$ of E_{p}. For n even, $n=2 r$, set

$$
\omega(p)=i^{r} e_{1} e_{2} \ldots e_{2 r}
$$

For $n=2 r+1$ odd

$$
\omega(p)=i^{r+1} e_{1} e_{2} \ldots e_{2 r+1}
$$

Then $\omega(p)$ does not depend on the choice of positively oriented orthonormal basis. In $\operatorname{Cliff}_{\mathbb{C}}\left(E_{p}\right)$ we have

$$
(\omega(p))^{2}=1
$$

If n is odd, then $\omega(p)$ is in the center of $\operatorname{Cliff}_{\mathbb{C}}\left(E_{p}\right)$. Note that to define ω, E must be oriented. Reversing the orientation will change ω to $-\omega$.

Definition 1.17. Let E be an \mathbb{R}-vector bundle on X. A Spinor system for E is a triple $(\epsilon,\langle-,-\rangle, F)$ such that

1. ϵ is an orientation of E,
2. $\langle-,-\rangle$ is an inner product for E,
3. F is an Hermitian module over $\operatorname{Cliff}_{\mathbb{C}}(E)$ with each F_{p} an irreducible module over $\operatorname{Cliff}_{\mathbb{C}}\left(E_{p}\right)$,
4. if $n=\operatorname{dim}_{\mathbb{R}}\left(E_{p}\right)$ is odd, then $\omega(p)$ acts identically on F_{p}.

Remark 1.18. The irreducibillity of F_{p} in (3) is equivalent to $\operatorname{dim}_{\mathbb{C}}\left(F_{p}\right)=2^{r}$, where $n=2 r$ or $n=2 r+1$. In (4) note that $\omega(p)^{2}=1$ so for n odd $\omega(p)$ is in the center of Cliff $\mathbb{C}\left(E_{p}\right)$. Hence irreducibility of F_{p} implies that $\omega(p)$ acts either by I or $-I$ on F_{p}. Thus (4) normalizes the matter by requiring that $\omega(p)$ acts as I. When $n=\operatorname{dim}_{\mathbb{R}}\left(E_{p}\right)$ is even no such normalization is made.

If $(\epsilon,\langle-,-\rangle, F)$ is a Spinor system for E, then F is referred to as the Spinor bundle.
Suppose that $n=\operatorname{dim}_{\mathbb{R}}\left(E_{p}\right)$ is even. Let $F_{p}^{+}\left(F_{p}^{+}\right)$be the $+1(-1)$ eigenspace of $\omega(p)$. We have a direct sum decomposition

$$
F=F^{+} \oplus F^{-}
$$

where F^{+}, F^{-}are $\frac{1}{2}-$ Spin bundles. $F^{+}\left(F^{-}\right)$is a vector bundle of positive (negative) spinors.

Assume we have right and left actions of the group G on topological spaces X, Y

$$
\begin{aligned}
& X \times G \rightarrow X \\
& G \times Y \rightarrow Y
\end{aligned}
$$

Then

$$
X \times_{G} Y:=X \times Y / \sim, \quad(x g, y) \sim(x, g y)
$$

Example 1.19. Let E be an \mathbb{R}-vector bundle on X. Then

$$
\begin{aligned}
& \Delta(E) \times_{\mathrm{GL}(n, \mathbb{R})} \simeq E \\
&\left(\left(p, v_{1}, v_{2}, \ldots, v_{n}\right),\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \mapsto a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}
\end{aligned}
$$

Let E be an \mathbb{R}-vector bundle on X. A Spin^{c} datum

$$
\eta: P \rightarrow \Delta(E)
$$

determines a Spinor system $(\epsilon,\langle-,-\rangle, F)$ for E. For $p \in X$, given orientation ϵ, and inner product $\langle-,-\rangle$, an \mathbb{R}-basis $v_{1}, v_{2}, \ldots, v_{n}$ of E_{p} is positively oriented and orthonormal if and only if

$$
\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \operatorname{im}(\eta) .
$$

The Spinor bundle for $n=2 r$ or $n=2 r+1$

$$
F=P \times_{\operatorname{Spin}^{c}(n)} \mathbb{C}^{2^{r}}
$$

We have to describe how $\operatorname{Spin}^{c}(n)$ acts on $\mathbb{C}^{2^{r}}$. For n odd $\operatorname{Spin}^{c}(n)$ has an irreducible representation known as its spin representation

$$
\operatorname{Spin}^{c}(n) \rightarrow \mathrm{GL}\left(2^{r}, \mathbb{C}\right), \quad n=2 r+1
$$

For n even $\operatorname{Spin}^{c}(n)$ has two irreducible representations known as its $\frac{1}{2}-$ Spin representations

$$
\begin{gathered}
\operatorname{Spin}^{c}(n) \rightarrow \mathrm{GL}\left(2^{r-1}, \mathbb{C}\right) \\
\operatorname{Spin}^{c}(n) \rightarrow \mathrm{GL}\left(2^{r-1}, \mathbb{C}\right), \quad n=2 r
\end{gathered}
$$

The direct sum

$$
\operatorname{Spin}^{c}(n) \rightarrow \mathrm{GL}\left(2^{r-1}, \mathbb{C}\right) \oplus \operatorname{GL}\left(2^{r-1}, \mathbb{C}\right) \subset \mathrm{GL}\left(2^{r}, \mathbb{C}\right)
$$

of these representations is the spin representation of $\operatorname{Spin}^{c}(n)$.
Consider \mathbb{R}^{n} with its usual inner product and usual orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$

$$
\begin{aligned}
& \varphi: \operatorname{Cliff}_{\mathbb{C}}\left(\mathbb{R}^{n}\right) \rightarrow M\left(2^{r}, \mathbb{C}\right) \\
& \varphi\left(e_{j}\right)=E_{j}, \quad j=1,2, \ldots, n .
\end{aligned}
$$

There is a canonical inclusion

$$
\operatorname{Spin}^{c}(n) \subset \operatorname{Cliff}_{\mathbb{C}}\left(\mathbb{R}^{n}\right)
$$

and φ restricted to $\operatorname{Spin}^{c}(n)$ maps $\operatorname{Spin}^{c}(n)$ to $2^{r} \times 2^{r}$ unitary matrices

$$
\operatorname{Spin}^{c}(n) \rightarrow \mathrm{U}\left(2^{r}\right) \subset \mathrm{GL}(n, \mathbb{C}) .
$$

This is Spin representation of $\operatorname{Spin}^{c}(n)$ and $\operatorname{Spin}^{c}(n)$ acts on $\operatorname{GL}\left(2^{r}, \mathbb{C}\right)$ acts on $\mathbb{C}^{2 r}$ via this representation.

Let M be C^{∞} manifold, possibly ∂M non-empty, $T M$ the tangent bundle of M. Then

$$
\begin{gathered}
\binom{\text { Spin }^{c} \text { datum for } T M}{\eta: P \rightarrow \Delta(T M)} \\
\downarrow \\
\left(\begin{array}{c}
\text { Spinor system for } T M \\
(\epsilon,\langle-,-\rangle, F) \\
\downarrow
\end{array}\right) \\
\binom{\text { Dirac operator }}{D: C_{c}^{\infty}(M, F) \rightarrow C_{c}^{\infty}(M, F)}
\end{gathered}
$$

where F is the Spinor bundle on M and $C_{c}^{\infty}(M, F)$ are its C^{∞} sections with compact support.
The Dirac operator

$$
D: C_{c}^{\infty}(M, F) \rightarrow C_{c}^{\infty}(M, F)
$$

is such that

1. D is \mathbb{C}-linear

$$
\begin{gathered}
D\left(s_{1}+s_{2}\right)=D s_{1}+D s_{2} \\
D(\lambda s)=\lambda D s, \quad s_{1}, s_{2}, s \in C_{c}^{\infty}(M, F), \quad \lambda \in \mathbb{C} .
\end{gathered}
$$

2. If $f: M \rightarrow \mathbb{C}$ is a C^{∞} function, then

$$
D(f s)=(d f) s+f(D s) .
$$

3. If $s_{1}, s_{2} \in C_{c}^{\infty}(M, F)$ then

$$
\int_{M}\left(D s_{1}(x), s_{2}(x)\right) d x=\int_{M}\left(s_{1}(x), D s_{2}(x)\right) d x
$$

4. If $\operatorname{dim} M$ is even, then D is off-diagonal

$$
\begin{gathered}
F=F^{+} \oplus F^{-} \\
D=\left[\begin{array}{cc}
0 & D^{-} \\
D^{+} & 0
\end{array}\right]
\end{gathered}
$$

$D: C_{c}^{\infty}(M, F) \rightarrow C_{c}^{\infty}(M, F)$ is an elliptic first-order differential operator. It can be viewed as an unbounded operator on the Hilbert space $L^{2}(M, F)$ with the scalar product

$$
\left(s_{1}, s_{2}\right):=\int_{M}\left(s_{1}(x), s_{2}(x)\right) d x
$$

Moreover it is a symmetric operator.
One proves existence of D by constructing it locally and patching together with a C^{∞} partition of unity. The uniqueness of D is obtained by the fact that if D_{0}, D_{1} satisfy conditions (1)-(4) above, then

$$
D_{0}-D_{1}: F \rightarrow F
$$

is a vector bundle map, hence D_{0}, D_{1} differ by lower order terms.
Example 1.20. Let n be even, $S^{n} \subset \mathbb{R}^{n+1}, D$-Dirac operator of S^{n}, F-Spinor bundle of S^{n}, $F=F^{+} \oplus F^{-}$.

$$
\begin{gathered}
D: C_{c}^{\infty}\left(S^{n}, F\right) \rightarrow C_{c}^{\infty}\left(S^{n}, F\right) \\
D=\left[\begin{array}{cc}
0 & D^{-} \\
D^{+} & 0
\end{array}\right] \\
D^{+}: C_{c}^{\infty}\left(S^{n}, F^{+}\right) \rightarrow C_{c}^{\infty}\left(S^{n}, F^{-}\right)
\end{gathered}
$$

Then

$$
\operatorname{Index}\left(D^{+}\right):=\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker} D^{+}\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{coker} D^{+}\right) .
$$

Theorem 1.21.

$$
\operatorname{Index}\left(D^{+}\right)=0 .
$$

We can tensor D^{+}with the Bott generator vector bundle β from section 1.1.2

$$
D_{\beta}^{+}: C_{c}^{\infty}\left(S^{n}, F^{+} \otimes \beta\right) \rightarrow C_{c}^{\infty}\left(S^{n}, F^{-} \otimes \beta\right) .
$$

Then we have
Theorem 1.22.

$$
\operatorname{Index}\left(D_{\beta}^{+}\right)=1 .
$$

