Equivariant KK-theory and noncommutative index theory

Paul F. Baum

Notes by
Paweł Witkowski
June 2007

Contents

1 KK-theory 3
$1.1 \mathrm{C}^{*}$-algebras 3
1.2 K-theory 6
1.3 Representations 7
1.4 K-homology 7
1.5 Equivariant K-homology 10
1.6 Hilbert modules 12
1.7 Reduced crossed product 13
1.8 Topological K-theory of Γ 14
1.9 KK-theory 16
1.10 Equivariant KK-theory 17
1.11 K-theory of the reduced group C^{*}-algebra 18
$1.12 \mathrm{KK}_{G}^{0}(\mathbb{C}, \mathbb{C})$ 19

Chapter 1

KK-theory

1.1 C*-algebras

Let G be a locally compact, Hausdorff, second countable (the topology of G has a countable base) group. Examples are:

- Lie groups with $\pi_{0}(G)$ finite - $\mathrm{SL}(n, \mathbb{R})$,
- p-adic groups - $\operatorname{SL}\left(n, \mathbb{Q}_{p}\right)$,
- adelic groups - $\operatorname{SL}(n, \mathbb{A})$,
- discrete groups - $\mathrm{SL}(n, \mathbb{Z})$.

For a group G we have the reduced C^{*}-algebra of G, denoted by $C_{r}^{*} G$. The problem is to compute its K-theory $\mathrm{K}_{j}\left(C_{r}^{*} G\right), j=0,1$.

Conjecture 1 (P. Baum - A. Connes). For all locally compact, Hausdorff, second countable groups G

$$
\mu: \mathrm{K}_{j}^{G}(\underline{\mathrm{E}} G) \rightarrow \mathrm{K}_{j}\left(C_{r}^{*} G\right)
$$

is an isomorphism for $j=0,1$.
Recall some definitions:
Definition 1.1. A Banach algebra is an algebra A over \mathbb{C} with a given norm $\|\cdot\|$

$$
\|\cdot\|: A \rightarrow\{t \in \mathbb{R} \mid t \geq 0\}
$$

such that A is complete normed algebra, i.e.

- $\|\lambda a\|=|\lambda|\|a\|, \lambda \in \mathbb{C}, a \in A$,
- $\|a+b\| \leq\|a\|+\|b\|, a, b \in A$,
- $\|a b\| \leq\|a\|\|b\|, a, b \in A$,
- $\|a\|=0$ if and only if $a=0$,
and every Cauchy sequence is convergent in A (with respect to the metric $\|a-b\|$).
Definition 1.2. A C*-algebra is a Banach algebra $(A,\|\cdot\|)$ with a map $*: A \rightarrow A, a \mapsto a^{*}$ satisfying
- $\left(a^{*}\right)^{*}=a$,
- $(a+b)^{*}=a^{*}+b^{*}$,
- $(a b)^{*}=b^{*} a^{*}$,
- $(\lambda a)^{*}=\bar{\lambda} a^{*}, a, b \in A, \lambda \in \mathbb{C}$,
- $\left\|a a^{*}\right\|=\|a\|^{2}=\left\|a^{*}\right\|^{2}$.

A *-morphism is an algebra homomorphism $\varphi: A \rightarrow B$ such that $\varphi\left(a^{*}\right)=(\varphi(a))^{*}$ for all $a \in A$.

Lemma 1.3. If $\varphi: A \rightarrow B$ is a^{*}-homomorphism then $\|\varphi(a)\| \leq\|a\|$ for all $a \in A$.
Example 1.4. Let X be a locally compact Hausdorff topological space, and $X^{+}=X \cup\left\{p_{\infty}\right\}$ its one-point compactification. Define

$$
\begin{gathered}
C_{0}(X):=\left\{\alpha: X^{+} \rightarrow \mathbb{C} \mid \alpha \text { is continuous, } \alpha\left(p_{\infty}\right)=0\right\} \\
\|\alpha\|=\sup _{p \in X}|\alpha(p)|, \quad \alpha^{*}(p)=\overline{\alpha(p)}
\end{gathered}
$$

with operations

$$
\begin{aligned}
(\alpha+\beta)(p) & =\alpha(p)+\beta(p) \\
(\alpha \beta)(p) & =\alpha(p) \beta(p) \\
(\lambda \alpha)(p) & =\lambda \alpha(p), \lambda \in \mathbb{C}
\end{aligned}
$$

If X is compact, then

$$
C_{0}(X):=C(X)=\{\alpha: X \rightarrow \mathbb{C} \mid \alpha \text { is continuous }\}
$$

Example 1.5. Let \mathcal{H} be a separable Hilbert space (admits a countable or finite orthonormal basis). Define

$$
\begin{gathered}
\mathcal{L}(\mathcal{H}):=\{T: \mathcal{H} \rightarrow \mathcal{H} \mid T \text { bounded }\} \\
\|T\|=\sup _{u \in \mathcal{H},\|u\|=1}\|T u\|, \quad\|u\|=\sqrt{\langle u, u\rangle} \\
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle \text { for all } u, v \in \mathcal{H} .
\end{gathered}
$$

with operations

$$
\begin{aligned}
(T+S) u & =T u+S u \\
(T S) u & =T(S u) \\
(\lambda T) u & =\lambda(T u), \lambda \in \mathbb{C}
\end{aligned}
$$

Example 1.6. If \mathcal{H} is a Hilbert space, then define

$$
\begin{aligned}
\mathcal{K}(\mathcal{H}) & =\{T \in \mathcal{L}(\mathcal{H}) \mid T \text { is compact operator }\} \\
& =\overline{\left\{T \in \mathcal{L}(\mathcal{H}) \mid \operatorname{dim}_{\mathbb{C}} T(\mathcal{H})<\infty\right\}}
\end{aligned}
$$

with the closure in operator norm. Then $\mathcal{K}(\mathcal{H})$ is a sub- C^{*}-algebra of $\mathcal{L}(\mathcal{H})$ and an ideal in $\mathcal{L}(\mathcal{H})$.

Example 1.7. Let G be a locally compact Hausdorff second countable topological group. Fix a left-invariant Haar measure $d g$ for G, that is for all continuous $f: G \rightarrow \mathbb{C}$ with compact support

$$
\int_{G} f(\gamma g) d g=\int_{G} f(g) d g
$$

for all $\gamma \in G$.
Let $L^{2} G$ be the following Hilbert space

$$
\begin{gathered}
L^{2} G=\left\{u:\left.G \rightarrow \mathbb{C}\left|\int_{G}\right| u(g)\right|^{2} d g<\infty\right\} \\
\langle u, v\rangle=\int_{G} \overline{u(g)} v(g) d g, \quad u, v \in L^{2} G
\end{gathered}
$$

Let $\mathcal{L}\left(L^{2} G\right)$ be the C^{*}-algebra of all bounded operators $T: L^{2} G \rightarrow L^{2} G$. Let

$$
C_{c} G=\{f: G \rightarrow \mathbb{C} \mid f \text { is continuous, and has compact support }\} .
$$

Then $C_{c} G$ is an algebra

$$
\begin{aligned}
(\lambda f) g & =\lambda(f g), \quad \lambda \in \mathbb{C}, g \in G \\
(f+h) g & =f g+h g \\
(f * h) g_{0} & =\int_{G} f(g) h\left(g^{-1} g_{0}\right) d g, \quad g_{0} \in G .
\end{aligned}
$$

There is an injection of algebras

$$
0 \rightarrow C_{c} G \rightarrow \mathcal{L}\left(L^{2} G\right)
$$

given by $f \mapsto T_{f}, T_{f}(u)=f * u, u \in L^{2} G$,

$$
(f * u) g_{0}=\int_{G} f(g) u\left(g^{-1} g_{0}\right) d g, \quad g_{0} \in G .
$$

Define the reduced C*-algebra $C_{r}^{*} G$ of G as the closure of $C_{c} G \subset \mathcal{L}\left(L^{2} G\right)$ in the operator norm. $C_{r}^{*} G$ is a sub-C*-algebra of $\mathcal{L}\left(L^{2} G\right)$.
Definition 1.8. A subalgebra A of $\mathcal{L}(\mathcal{H})$ is a C^{*}-algebra of operators if and only if

1. A is closed with respect to the operator norm.
2. If $T \in A$, then the adjoint operator $T^{*} \in A$.

Theorem 1.9 (I. Gelfand, V. Naimark). Any C^{*}-algebra is isomorphic, as a C^{*}-algebra, to a C^{*}-algebra of operators.
Theorem 1.10. Let A be a commutative C^{*}-algebra. Then A is (canonically) isomorphic to $C_{0}(X)$ where X is the space of maximal ideals of A.

Thus a non-commutative C*-algebra can be viewed as a "noncommutative locally compact Hausdorff topological space".

We have an equivalence of the following categories

- Commutative C^{*}-algebras with *-homomorphisms,
- Locally compact Hausdorff topological spaces with morphisms from X to Y being a continuous maps $f: X^{+} \rightarrow Y^{+}$with $f\left(p_{\infty}\right)=q_{\infty}$.

1.2 K-theory

Let A be a C^{*}-algebra with unit 1_{A},

$$
\begin{gathered}
\mathrm{K}_{0}(A)=\mathrm{K}_{0}^{a l g}(A)=\underset{(\text { Grothendieck group of finitely generated }}{ } \\
\text { (left) projective } A \text {-modules }
\end{gathered}
$$

In the definition of $\mathrm{K}_{0}(A)$ we can forget about $\|\cdot\|$ and $*$. In the definition of $\mathrm{K}_{1}(A)$ we cannot forget about that.

Take a topological groups GL (n, A) and embeddings $\operatorname{GL}(n, A) \hookrightarrow \operatorname{GL}(n+1, A)$

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) \mapsto\left(\begin{array}{cccc}
a_{11} & \ldots & a_{1 n} & 0 \\
\vdots & & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n} & 0 \\
0 & \ldots & 0 & 1_{A}
\end{array}\right)
$$

Then $\mathrm{GL}(A)=\underset{\lim _{n \rightarrow \infty}}{ } \mathrm{GL}(n, A)$ with the direct limit topology. Define the K-theory groups

$$
\mathrm{K}_{j}(A):=\pi_{j-1}(\mathrm{GL}(A)), \quad j=1,2,3, \ldots
$$

Bott periodicity states that $\Omega^{2} \mathrm{GL}(A) \sim \mathrm{GL}(A)$, so $\mathrm{K}_{j}(A) \simeq \mathrm{K}_{j+2}(A)$ for $j=0,1,2, \ldots$. Thus in fact we have two groups $\mathrm{K}_{0}(A)$ and $\mathrm{K}_{1}(A)$.

If A is not unital, then we can adjoin a unit,

$$
0 \rightarrow A \rightarrow \widetilde{A} \rightarrow \mathbb{C} \rightarrow 0
$$

and define

$$
\begin{aligned}
& \mathrm{K}_{0}(A):=\operatorname{ker}\left(\mathrm{K}_{0}(\widehat{A}) \rightarrow \mathrm{K}_{0}(\mathbb{C})\right) \\
& \mathrm{K}_{1}(A):=\mathrm{K}_{1}(\widetilde{A})
\end{aligned}
$$

If $\varphi: A \rightarrow B$ is a *-homomorphism, then there is an induced homomorphism of abelian groups $\mathrm{K}_{j}(A) \rightarrow \mathrm{K}_{j}(B)$.
Example 1.11. \mathbb{C} is a C^{*}-algebra, $\|\lambda\|=|\lambda|, \lambda^{*}=\bar{\lambda}$.
Theorem 1.12 (Bott).

$$
\mathrm{K}_{j}(\mathbb{C})= \begin{cases}\mathbb{Z} & j \text { even } \\ 0 & j \text { odd }\end{cases}
$$

Theorem 1.13 (Bott).

$$
\pi_{j}(\mathrm{GL}(n, \mathbb{C}))= \begin{cases}0 & j \text { even } \\ \mathbb{Z} & j \text { odd }\end{cases}
$$

for $j=0,1, \ldots, 2 n-1$.
For a locally compact Hausdorff topological space one defines a topological K-theory with compact supports (Atiyah-Hirzebruch)

$$
\mathrm{K}^{j}(X):=\mathrm{K}_{j}\left(C_{0}(X)\right)
$$

If X is compact Hausdorff then $\mathrm{K}^{0}(X)$ is the Grothendieck group of complex vector bundles on X.

There is a chern character

$$
\operatorname{ch}: \mathrm{K}^{j}(X) \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(X ; \mathbb{Q}), \quad j=0,1
$$

Theorem 1.14. For any locally compact Hausdorff topological space X

$$
\mathrm{ch}: \mathrm{K}^{j}(X) \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(X ; \mathbb{Q})
$$

is a rational isomorphism, i.e.

$$
\operatorname{ch}: \mathrm{K}^{j}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \bigoplus_{l} \mathrm{H}_{c}^{j+2 l}(X ; \mathbb{Q})
$$

is an isomorphism for $j=0,1$.
We can use Čech cohomology, Alexander-Spanier cohomology or representable cohomology (all with compact supports).

1.3 Representations

Definition 1.15. A representation of C^{*}-algebra A is a ${ }^{*}$-homomorphism

$$
\varphi: A \rightarrow \mathcal{L}(\mathcal{H})
$$

where \mathcal{H} is a Hilbert space.
The myth: for a reduced C^{*}-algebra $C_{r}^{*} G$ of G there exists a locally compact Hausdorff topological space \widehat{G}_{r}. The space \widehat{G}_{r} has one point for each distinct (i.e. non-equivalent) irreducible unitary representation of G which is weakly contained in the (left) regular representation of $G . \widehat{G}_{r}$ is known as the support of the Plancherel measure or the reduced unitary dual of G. The K-theory $\mathrm{K}_{*}\left(C_{r}^{*} G\right)$ is the topological K-theory (with compact supports of $\left.\widehat{G}_{r}\right)$.
Example 1.16. For $G=\operatorname{SL}(2, \mathbb{R})$ we have \widehat{G}_{r} :

1.4 K-homology

Let A be a separable C^{*}-algebra (A has o countable dense subset). We will define generalized elliptic operators over A in the odd and even case.

Definition 1.17 (odd case). A generalized odd elliptic operator over A is a triple (\mathcal{H}, ψ, T) such that

1. \mathcal{H} is a separable Hilbert space,
2. $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a *-homomorphisms,
3. $T \in \mathcal{L}(\mathcal{H})$
and

$$
T=T^{*}, \quad \psi(a) T-T \psi(a) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T^{2}\right) \in \mathcal{K}(\mathcal{H})
$$

for all $a \in A$.
We will denote the set of such triples by $\mathcal{E}^{1}(A)$. If $\varphi: A \rightarrow B$ is a ${ }^{*}$-homomorphism then there is an induced map

$$
\varphi^{*}: \mathcal{E}^{1}(B) \rightarrow \mathcal{E}^{1}(A), \quad \varphi^{*}(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi \circ \varphi, T)
$$

Example 1.18. $S^{1}:=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R} \mid t_{1}^{2}+t_{2}^{2}=1\right\}, A=C\left(S^{1}\right), \psi: C\left(S^{1}\right) \rightarrow \mathcal{L}\left(L^{2}\left(S^{1}\right)\right)$

$$
\begin{gathered}
\psi(\alpha)(u)=\alpha(u), \quad \alpha \in C\left(S^{1}\right), u \in L^{2}\left(S^{1}\right) \\
(\alpha u)(\lambda)=\alpha(\lambda) u(\lambda), \quad \lambda \in S^{1}
\end{gathered}
$$

The Dirac operator D of S^{1} is $-i \frac{\partial}{\partial \theta}$. If we take a basis $\left\{e^{i n \theta}\right\}_{n \in \mathbb{Z}}$ of $L^{2}\left(S^{1}\right)$, then

$$
D\left(e^{i n \theta}\right)=\left(-i \frac{\partial}{\partial \theta}\right)\left(e^{i n \theta}\right)=n e^{i n \theta}
$$

Set $T=D(I+D D)^{-\frac{1}{2}}$. Then

$$
T\left(e^{i n \theta}\right)=\frac{n}{\sqrt{1+n^{2}}} e^{i n \theta}
$$

and $\left(L^{2}\left(S^{1}\right), \psi, T\right) \in \mathcal{E}^{1}\left(C\left(S^{1}\right)\right)$.
We will define odd K-homology of A by

$$
\mathrm{K}^{1}(A):=\mathcal{E}^{1}(A) / \sim(=\operatorname{KK}(A, \mathbb{C}))
$$

where the relation \sim is homotopy, which is defined below.
Definition 1.19. Let $\xi=(\mathcal{H}, \psi, T), \eta=\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)$ be elements of $\mathcal{E}^{1}(A)$. We say that ξ is isomorphic to $\eta, \xi \simeq \eta$ if there exists a unitary operator $U: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ with commutativity in the diagrams

for all $a \in A$.
Definition 1.20. We say that $\xi=(\mathcal{H}, \psi, T), \eta=\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right) \in \mathcal{E}^{1}(A)$ are strictly homotopic if there exists a continuous function $[0,1] \rightarrow \mathcal{L}(\mathcal{H}), t \mapsto T_{t}$ such that

1. $T_{0}=T$,
2. for all $t \in[0,1],\left(\mathcal{H}, \psi, T_{t}\right) \in \mathcal{E}^{1}(A)$,
3. $\left(\mathcal{H}, \psi, T_{1}\right) \simeq\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)$.

Definition 1.21. We say that a generalized elliptic operator $(\mathcal{H}, \psi, T) \in \mathcal{E}^{1}(A)$ is degenerate if and only if

$$
\psi(a) T-T \psi(a)=0, \quad \psi(a)\left(I-T^{2}\right)=0, \quad \text { for all } a \in A
$$

Definition 1.22. We say that $\xi=(\mathcal{H}, \psi, T), \eta=\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right) \in \mathcal{E}^{1}(A) \underset{\sim}{\text { are homotopic }} \underset{\sim}{\boldsymbol{\xi}}, \xi \sim \eta$, if and only if there exists degenerate generalized elliptic operators $\widetilde{\xi}, \widetilde{\eta}$ with $\xi \oplus \widetilde{\xi}$ strictly homotopic to $\eta \oplus \widetilde{\eta}$.

Definition 1.23. Odd K-homology of a C^{*}-algebra A is defined as the group of homotopy classes of generalized odd elliptic operators,

$$
\mathrm{K}^{1}(A):=\mathcal{E}^{1}(A) / \sim
$$

It is an abelian group with respect to

$$
(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)=\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right)
$$

with inverse defined by

$$
-(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi,-T)
$$

If $\varphi: A \rightarrow B$ is a ${ }^{*}$-homomorphism, then there is an induced map

$$
\varphi^{*}: \mathrm{K}^{1}(B) \rightarrow \mathrm{K}^{1}(A), \quad \varphi^{*}(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi \circ \varphi, T)
$$

Now we will define even elliptic operators and $\mathrm{K}^{0}(A)$.
Definition 1.24 (even case). A generalized even elliptic operator over A is a triple (\mathcal{H}, ψ, T) such that

1. \mathcal{H} is a separable Hilbert space,
2. $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a *-homomorphisms,
3. $T \in \mathcal{L}(\mathcal{H})$
and

$$
\psi(a) T-T \psi(a) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T T^{*}\right) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T^{*} T\right) \in \mathcal{K}(\mathcal{H})
$$

for all $a \in A$.
We will denote the set of such triples by $\mathcal{E}^{0}(A)$.
Definition 1.25. Even K-homology of a C^{*}-algebra A is defined as the group of homotopy classes of generalized even elliptic operators,

$$
\mathrm{K}^{0}(A):=\mathcal{E}^{0}(A) / \sim
$$

It is an abelian group with respect to

$$
(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right)=\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right)
$$

with inverse defined by

$$
-(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi,-T)
$$

If $\varphi: A \rightarrow B$ is a ${ }^{*}$-homomorphism, then there is an induced map

$$
\varphi^{*}: \mathrm{K}^{0}(B) \rightarrow \mathrm{K}^{0}(A), \quad \varphi^{*}(\mathcal{H}, \psi, T)=(\mathcal{H}, \psi \circ \varphi, T)
$$

1.5 Equivariant K-homology

Let G be a locally compact Hausdorff second countable group, and \mathcal{H} a separable Hilbert space. Denote the set of unitary operators on \mathcal{H} by

$$
\mathcal{U}(\mathcal{H}):=\left\{U \in \mathcal{L}(\mathcal{H}) \mid U U^{*}=U^{*} U=I\right\}
$$

Definition 1.26. A unitary representation of G is a group homomorphism $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ such that for each $v \in \mathcal{H}$ the $\operatorname{map} G \rightarrow \mathcal{H}, g \mapsto \pi(g) v$ is a continuous map from G to \mathcal{H}.

Definition 1.27. A G - \mathbf{C}^{*}-algebra is a C^{*}-algebra A with a given continuous action

$$
G \times A \rightarrow A
$$

by automorphisms.
Example 1.28. Let X be a locally compact G-space. Then G acts on $C_{0}(X)$ by

$$
(g \alpha)(x)=\alpha\left(g^{-1} x\right), g \in G, \alpha \in C_{0}(X), x \in X
$$

This makes $C_{0}(X)$ a G-C ${ }^{*}$-algebra.
Let A be a (separable) G-C*-algebra.
Definition 1.29. A covariant representation of A is a triple (\mathcal{H}, ψ, π) such that

- \mathcal{H} is a separable Hilbert space,
- $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a ${ }^{*}$-homomorphism,
- $\pi: G \rightarrow \mathcal{U}(\mathcal{H})$ is a unitary representation of G,
- and

$$
\psi(g a)=\pi(g) \psi(a) \pi\left(g^{-1}\right)
$$

for all $g \in G, a \in A$.
Definition 1.30. Equivariant odd K-homology $\mathrm{K}_{G}^{1}(A)$ of a G - C^{*}-algebra A is the group of homotopy classes of quadriples $(\mathcal{H}, \psi, T, \pi)$, where (\mathcal{H}, ψ, π) is a covariant representation of A, and $T \in \mathcal{L}(\mathcal{H})$ is such that

$$
T=T^{*}, \pi(g) T-T \pi(g) \in \mathcal{K}(\mathcal{H}), \quad \psi(a) T-T \psi(a) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T^{2}\right) \in \mathcal{K}(\mathcal{H})
$$

for all $g \in G, a \in A$.

$$
\mathrm{K}_{G}^{1}(A)=\{(\mathcal{H}, \psi, \pi, T)\} / \sim
$$

Example 1.31. Let $G=\mathbb{Z}, X=\mathbb{R}, A=C_{0}(\mathbb{R})$. Consider the action by translations

$$
\mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}, \quad(n, t) \mapsto n+t
$$

Let $\mathcal{H}=L^{2}(\mathbb{R})$. Define $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ by

$$
\psi(\alpha) u=\alpha u, \quad \alpha u(t)=\alpha(t) u(t), \quad \alpha \in C_{0}(\mathbb{R}), u \in L^{2}(\mathbb{R}), t \in \mathbb{R}
$$

The representation $\pi: \mathbb{Z} \rightarrow \mathcal{U}\left(L^{2}(\mathbb{R})\right)$ is defined by

$$
(\pi(n) u)(t):=u(t-n)
$$

As an operator on $L^{2}(\mathbb{R})$ we take $-i \frac{d}{d x}$. It is not a bounded operator on $L^{2}(\mathbb{R})$, but we can "normalize" it to obtain a bounded operator T. Since $-i \frac{d}{d x}$ is self-adjoint ther is functional calculus, and T can be taken to be the function $\frac{x}{\sqrt{1+x^{2}}}$ applied to $-i \frac{d}{d x}$,

$$
T:=\left(\frac{x}{\sqrt{1+x^{2}}}\right)\left(-i \frac{d}{d x}\right) .
$$

Equivalently, T can be constructed using Fourier transform. Let \mathcal{M}_{x} be the operator of "multiplication by x "

$$
\left(\mathcal{M}_{x} f\right)(x)=x f(x) .
$$

Fourier transform converts $-i \frac{d}{d x}$ to \mathcal{M}_{x} i.e. there is a commutativity in the diagram

where \mathcal{F} denotes the Fourier transform. Let $\mathcal{M} \frac{x}{\sqrt{1+x^{2}}}$ be the operator of "multiplication by $\frac{x}{\sqrt{1+x^{2}}} "$. Then

$$
\left(\mathcal{M}_{\frac{x}{\sqrt{1+x^{2}}}} f\right)(x)=\frac{x}{\sqrt{1+x^{2}}} f(x)
$$

and $\mathcal{M}_{\frac{x}{\sqrt{1+x^{2}}}}$ is a bounded operator

$$
\mathcal{M}_{\frac{x}{\sqrt{1+x^{2}}}}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}) .
$$

Now, T is the unique bounded operator $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ such that there is commutativity in the diagram

Then

$$
\left(L^{2}(\mathbb{R}), \psi, \pi, T\right) \in \mathcal{E}_{\mathbb{Z}}^{1}(\mathbb{R}) .
$$

Definition 1.32. Equivariant even K-homology $\mathrm{K}_{G}^{0}(A)$ of a G - C^{*}-algebra A is the group of homotopy classes of quadriples $(\mathcal{H}, \psi, T, \pi)$, where (\mathcal{H}, ψ, π) is a covariant representation of A, and $T \in \mathcal{L}(\mathcal{H})$ is such that
$\pi(g) T-T \pi(g) \in \mathcal{K}(\mathcal{H}), \quad \psi(a) T-T \psi(a) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T^{*} T\right) \in \mathcal{K}(\mathcal{H}), \quad \psi(a)\left(1-T T^{*}\right) \in \mathcal{K}(\mathcal{H})$ for all $g \in G, a \in A$.

$$
\mathrm{K}_{G}^{0}(A)=\{(\mathcal{H}, \psi, \pi, T)\} / \sim
$$

If A, B are G-C*-algebras, and $\varphi: A \rightarrow B$ is a G-equivariant ${ }^{*}$-homomorphism, then $\varphi^{*}: \mathcal{E}_{G}^{j}(B) \rightarrow \mathcal{E}_{G}^{j}(A)$ for $j=0,1$ is given by

$$
\varphi^{*}(\mathcal{H}, \psi, \pi, T) \mapsto(\mathcal{H}, \psi \circ \varphi, \pi, T) .
$$

Addition in $\mathrm{K}_{G}^{j}(A)$ is direct sum

$$
(\mathcal{H}, \psi, \pi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, \pi^{\prime}, T^{\prime}\right)=\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, \pi \oplus \pi^{\prime}, T \oplus T^{\prime}\right),
$$

and the inverse is

$$
-(\mathcal{H}, \psi, \pi, T)=(\mathcal{H}, \psi, \pi,-T) .
$$

1.6 Hilbert modules

Let A be a C^{*}-algebra. Recall that an element $a \in A$ is positive (notation: $a \geq 0$) if and only if there exists $b \in A$ such that $b^{*} b=a$.

Definition 1.33. A pre-Hilbert A-module is a right A-module \mathcal{H} with a given A-valuead inner product $\langle-,-\rangle$ such that

$$
\begin{aligned}
&\left\langle u, v_{1}+v_{2}\right\rangle=\left\langle u, v_{1}\right\rangle+\left\langle u, v_{2}\right\rangle \\
&\langle u, v a\rangle=\langle u, v\rangle a \\
&\langle u, v\rangle=\langle v, u\rangle^{*} \\
&\langle u, u\rangle \geq 0 \quad \forall u \in A \\
&\langle u, u\rangle=0 \equiv u=0
\end{aligned}
$$

for $u, v_{1}, v_{1}, v \in \mathcal{H}, a \in A$.
Definition 1.34. A Hilbert A-module is a pre-Hilbert A-module \mathcal{H} which is complete in the norm

$$
\|u\|=\|\langle u, u\rangle\|^{\frac{1}{2}}
$$

Example 1.35. A Hilbert \mathbb{C}-module is a Hilbert space (viewed as a right \mathbb{C}-module).
If \mathcal{H} is a Hilbert A-module, and A has unit 1_{A}, then \mathcal{H} is a \mathbb{C}-vector space with

$$
u \lambda=u\left(\lambda 1_{A}\right), \quad \lambda \in \mathbb{C}
$$

Moreover, even if A does not have a unit, then by using approximate identity in A, it is a \mathbb{C}-vector space.

Example 1.36. Let A be C^{*}-algebra. We define a Hilbert A-module structure on $\mathcal{H}=A^{n}$ by

$$
\begin{gathered}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
\left(a_{1}, \ldots, a_{n}\right) a=\left(a_{1} a, \ldots, a_{n} a\right) \\
\left\langle\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)\right\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2}+\ldots a_{n}^{*} b_{n}
\end{gathered}
$$

Example 1.37. Let

$$
\mathcal{H}=\left\{\left(a_{1}, a_{2}, \ldots\right) \mid \sum_{j=1}^{\infty} a_{j}^{*} a_{j} \text { is norm-convergent in } A\right\}
$$

with the operations

$$
\begin{gathered}
\left(a_{1}, a_{2}, \ldots\right)+\left(b_{1}, b_{2}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right), \\
\left(a_{1}, a_{2}, \ldots\right) a=\left(a_{1} a, a_{2} a, \ldots\right) \\
\left\langle\left(a_{1}, a_{2}, \ldots\right),\left(b_{1}, b_{2}, \ldots\right)\right\rangle=\sum_{j=1}^{\infty} a_{j}^{*} b_{j} .
\end{gathered}
$$

Then \mathcal{H} is a Hilbert A-module.

Example 1.38. Let G be a locally compact Hausdorff second countable topological group. Fix a left-invariant Haar measure $d g$ for G. Let A be a G-C*-algebra. Denote

$$
L^{2}(G, A):=\left\{f: G \rightarrow A \mid \int_{G} g^{-1} f(g)^{*} f(g) d g \text { is norm-convergent in } A\right\} .
$$

Then $L^{2}(G, A)$ is a Hilbert A-module with operations

$$
\begin{aligned}
(f+h) g & =f(g)+h(g) \\
(f a)(g) & =f(g)[g a] \\
\langle f, h\rangle & =\int_{G} g^{-1} f(g)^{*} h(g) d g .
\end{aligned}
$$

Definition 1.39. An A-module map $T: \mathcal{H} \rightarrow \mathcal{H}$ is adjointable if there exists an A-module map $T^{*}: \mathcal{H} \rightarrow \mathcal{H}$ with

$$
\langle T u, v\rangle=\left\langle u, T^{*} v\right\rangle
$$

for all $u, v \in \mathcal{H}$.
If T^{*} exists, then it is unique, and $\sup _{\|u\|=1}\|T u\|<\infty$. Set

$$
\mathcal{L}(\mathcal{H}):=\{T: A \rightarrow A \mid \| T \text { is adjointable }\} .
$$

Then $\mathcal{L}(\mathcal{H})$ is a C^{*}-algebra with operations

$$
\begin{aligned}
(T+S) u & =T u+S u \\
(S T)(u) & =S(T u) \\
(T \lambda) u & =(T u) \lambda \\
\|T\| & =\sup _{\|u\|=1}\|T u\|
\end{aligned}
$$

for $u \in \mathcal{H}, \lambda \in \mathbb{C}$.

1.7 Reduced crossed product

Let A be a G-C ${ }^{*}$-algebra. Denote

$$
C_{c}(G, A)=\{f: G \rightarrow A \mid f \text { is continuous and has compact support }\}
$$

Then $C_{c}(G, A)$ is an algebra with operations

$$
\begin{aligned}
(f+h)(g) & =f(g)+h(g) \\
(f \lambda)(g) & =f(g) \lambda \\
(f * h)\left(g_{0}\right) & =\int_{G} f(g)\left[g h\left(g^{-1} g_{0}\right)\right] d g
\end{aligned}
$$

for $g, g_{0} \in G, \lambda \in \mathbb{C}$. The operation $*$ is the twisted convolution. There is an injection of algebras $C_{c}(G, A) \rightarrow \mathcal{L}\left(L^{2}(G, A)\right)$.

$$
\begin{gathered}
f \mapsto T_{f}, \quad T_{f}(u)=f * u \\
(f * u)\left(g_{0}\right)=\int_{G} f(g)\left(g u\left(g^{-1} g_{0}\right)\right) d g .
\end{gathered}
$$

Definition 1.40. The reduced crossed product C^{*}-algebra $C_{r}(G, A)$ is the completion of $C_{c}(G, A)$ in $\mathcal{L}\left(L^{2}(G, A)\right)$ with respect to the norm $\|f\|=\| T_{f} \mid$.

Example 1.41. Let G be a finite group and A a G - C^{*}-algebra. Assume that each $g \in G$ has mass 1. Then

$$
C_{r}^{*}(G, A)=\left\{\sum_{\gamma \in \Gamma} a_{\gamma}[\gamma] \mid a_{\gamma} \in A\right\}
$$

with the following operations

$$
\begin{gathered}
\left(\sum_{\gamma \in \Gamma} a_{\gamma}[\gamma]\right)+\left(\sum_{\gamma \in \Gamma} b_{\gamma}[\gamma]\right)=\sum_{\gamma \in \Gamma}\left(a_{\gamma}+b_{\gamma}\right)[\gamma] \\
\left(a_{\gamma}[\gamma]\right)\left(b_{\beta}[\beta]\right)=a_{\alpha}\left(a b_{\beta}\right)[\alpha \beta] \\
\left(\sum_{\gamma \in \Gamma} a_{\gamma}[\gamma]\right)^{*}=\sum_{\gamma \in \Gamma}\left(\gamma^{-1} a_{\gamma}^{*}\right)\left[\gamma^{-1}\right] \\
\left(\sum_{\gamma \in \Gamma} a_{\gamma}[\gamma]\right) \lambda=\sum_{\gamma \in G}\left(a_{\lambda} \lambda\right)[\gamma]
\end{gathered}
$$

for $\gamma \in G, \lambda \in \mathbb{C}$.
Let X be a locally compact G-space. Then $C_{0}(X)$ is a G-C*-algebra with

$$
(g f)(x)=f\left(g^{-1} x\right), \quad, f \in C_{0}(X), g \in G, x \in X
$$

We will denote $C_{r}^{*}\left(G, C_{0}(X)\right)$ by $C_{r}^{*}(G, X)$. We ask about the K-theory of this C^{*}-algebra. If G is compact, then $\mathrm{K}_{j}\left(C_{r}^{*}(G, X)\right)$ is the Atiyah-Segal group $\mathrm{K}_{G}^{j}(X), j=0,1$. Hence for G non-compact $\mathrm{K}_{j}\left(C_{r}^{*}(G, X)\right)$ is the natural extension of the Atiyah-Segal theory to the case when G is non-compact.

We say that the G-space is G-compact if and only if the quotient space X / G is compact. If X is a proper G-compact G-space, then an equivariant \mathbb{C}-vector bundle E on X determines an element $[E] \in \mathrm{K}_{0}\left(C_{r}^{*}(G, X)\right)$.

Theorem 1.42 (W. Lück, B. Oliver). If Γ is a (countable) discrete group and X is a proper Γ-compact Γ-space, then $\mathrm{K}_{0}\left(C_{R}^{*}(\Gamma, X)\right)$ is the Grothendieck group of Γ-equivariant \mathbb{C}-vector bundles on X.

1.8 Topological K-theory of Γ

Consider pairs (M, E) such that M is a C^{∞} manifold without boundary, with a given smooth proper co-compact action of Γ and a given Γ-equivariant Spin c-structure, and E is a Γ equivariant vector bundle on M. We introduce an equivalence relation on such pairs, which is generated by three elementary steps

- Bordism
- Direct sum - disjoint union
- Vector bundle modification

Then we define topological K-theory of Γ as

$$
\mathrm{K}_{0}^{t o p}(\Gamma) \oplus \mathrm{K}_{1}^{t o p}(\Gamma)=\{(M, E)\} / \sim
$$

Addition will be disjoint sum

$$
(M, E)+\left(M^{\prime}, E^{\prime}\right)=\left(M \cup M^{\prime}, E \cup E^{\prime}\right) .
$$

The main result of this section is:
Theorem 1.43 (P. Baum, N. Higson, T. Schick). The map

$$
\tau: \mathrm{K}_{j}^{\text {top }}(\Gamma) \rightarrow \mathrm{K}_{j}^{\Gamma}(\underline{\mathrm{E}} \Gamma)
$$

is an isomorphism for $j=0,1$.
We will describe the equivalence relation \sim in details. We say that (M, E) is isomorphic to $\left(M^{\prime}, E^{\prime}\right)$ if and only if there exist a Γ-equivariant diffeomorphism $\psi: M \rightarrow M^{\prime}$ preserving the Γ-equivariant Spin^{c}-structures on M, M^{\prime} with $\psi^{*} E^{\prime} \simeq E$. The equivalence relation is generated by three elementary steps:

- Bordism: we say that $\left(M_{0}, E_{0}\right)$ is bordant to $\left(M_{1}, E_{1}\right)$ if and only if there exists (W, E) such that

1. W is a C^{∞} manifold with boundary, with a given smooth proper co-compact action of Γ
2. W has a given Γ-equivariant Spin c-structure
3. E is a Γ-equivariant vector bundle on W
4. $\left(\partial W,\left.E\right|_{\partial W}\right) \simeq\left(M_{0}, E_{0}\right) \cup\left(-M_{1}, E_{1}\right)$.

- Direct sum - disjoint union: if E, E^{\prime} are Γ-equivariant vector bundles on M, then

$$
(M, E) \cup\left(M, E^{\prime}\right) \sim\left(M, E \oplus E^{\prime}\right)
$$

- Vector bundle modification: let F be a Γ-equivariant Spin^{c} vector bundle on M. Assume that for every fiber F_{p} we have $\operatorname{dim}_{\mathbb{R}}\left(F_{p}\right)=0 \bmod 2$. Take a one-dimensional Γ-equivariant trivial bundle $\mathbf{1}=M \times \mathbb{R}, \gamma(p, t)=(\gamma p, t)$. Let $S(F \oplus \mathbf{1})$ be the unit sphere bundle of $F \oplus \mathbf{1} . F \oplus \mathbf{1}$ is a Γ-equivariant Spin^{c} vector bundle with odd dimensional fibers. Let Σ be the spinor bundle for $F \oplus 1$

$$
\pi: \mathbb{C l}\left(F_{p} \oplus \mathbb{R}\right) \otimes \Sigma_{p} \rightarrow \Sigma_{p}
$$

Decompose $\pi^{*} \Sigma=\beta_{+} \oplus \beta_{-}$. Then

$$
(M, E) \sim\left(S(F \oplus 1), \beta_{+} \otimes \pi^{*} E\right)
$$

1.9 KK-theory

Let A be a C^{*}-algebra, \mathcal{H} a Hilbert module, $u, v \in \mathcal{L}(\mathcal{H})$. Denote

$$
\theta_{u, v} \in \mathcal{L}(\mathcal{H}), \quad \theta_{u, v}(\xi)=u\langle v, \xi\rangle, \quad \theta_{u, v}^{*}=\theta_{v, u}
$$

The $\theta_{u, v}$ are the rank one operators on \mathcal{H}. A finite rank operator on \mathcal{H} is any $T \in \mathcal{L}(\mathcal{H})$ such that T is a finite sum of $\theta_{u, v}$.

$$
T=\theta_{u_{1}, v_{1}}+\theta_{u_{2}, v_{2}}+\ldots+\theta_{u_{n}, v_{n}}
$$

The compact operators $\mathcal{K}(\mathcal{H})$ are defined as the norm closure in $\mathcal{L}(\mathcal{H})$ of the space of finite rank operators. It is an ideal in $\mathcal{L}(\mathcal{H})$.

We say that \mathcal{H} is countably generated if in \mathcal{H} there is a countable (or finite) set such that the A-module generated by this set is dense in \mathcal{H}.

Let A, B be C^{*}-algebras, $\varphi: A \rightarrow B$ a *-homomorphism, and \mathcal{H} a Hilbert A-module. We will define $\mathcal{H} \otimes_{A} B$ which will be a Hilbert B-module. First form the algebraic tensor product $\mathcal{H} \odot_{A} B$. It is a right B-module

$$
(h \otimes b) b^{\prime}=h \otimes b b^{\prime}, h \in \mathcal{H}, b, b^{\prime} \in B
$$

Now define B-valued inner product $\langle-,-\rangle$ on $\mathcal{H} \odot_{A} B$ by

$$
\left\langle h \otimes b, h^{\prime} \otimes b^{\prime}\right\rangle=b^{*} \varphi\left(\left\langle h, h^{\prime}\right\rangle\right) b^{\prime}
$$

Set

$$
\mathcal{N}:=\left\{\xi \in \mathcal{H} \odot_{A} B \mid\langle\xi, \xi\rangle=0\right\}
$$

It is a B-submodule of $\mathcal{H} \odot_{A} B$, and $\mathcal{H} \odot_{A} B / \mathcal{N}$ is a pre-Hilbert B-module.
Definition 1.44. $\mathcal{H} \otimes_{A} B$ is the completion of $\mathcal{H} \odot_{A} B / \mathcal{N}$.
Let A, B be separable C^{*}-algebras, $\mathcal{E}^{1}(A, B)=\{(\mathcal{H}, \psi, T)\}$, where \mathcal{H} is a countably generated Hilbert B-module, $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a ${ }^{*}$-homomorphism, $T \in \mathcal{L}(\mathcal{H})$ is such that

$$
\begin{aligned}
T & =T * \\
\psi(a)\left(I-T^{2}\right) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a) T-T \psi(a) & \in \mathcal{K}(\mathcal{H})
\end{aligned}
$$

for all $a \in A$.
We say that $\left(\mathcal{H}_{0}, \psi_{0}, T_{0}\right),\left(\mathcal{H}_{1}, \psi_{1}, T_{1}\right) \in \mathcal{E}^{1}(A, B)$ are isomorphic if there exists an isomorphism of Hilbert B-modules $\Phi: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}$ with

$$
\Phi \psi_{0}(a)=\psi_{1}(a) \Phi, \text { for all } a \in A, \Phi T_{0}=T_{1} \Phi
$$

Let A, B, D be separable C^{*}-algebras, $\varphi: B \rightarrow D$ a ${ }^{*}$-homomorphism. There is an induced map

$$
\begin{aligned}
& \varphi_{*}: \mathcal{E}^{1}(A, B) \rightarrow \mathcal{E}^{1}(A, D) \\
& \varphi_{*}(\mathcal{H}, \psi, T)=\left(\mathcal{H} \otimes_{B} D, \psi \otimes_{B} I, T \otimes_{B} I\right)
\end{aligned}
$$

where I is the identity operator of D.

Consider two maps $\rho_{0}, \rho_{1}: C([0,1], B) \rightarrow B, \rho_{0}(f)=f(0), \rho_{1}(f)=f(1)$. We say that $\left(\mathcal{H}_{0}, \psi_{0}, T_{0}\right),\left(\mathcal{H}_{1}, \psi_{1}, T_{1}\right) \in \mathcal{E}^{1}(A, B)$ are homotopic if there exists $(\mathcal{H}, \psi, T) \in \mathcal{E}^{1}(A, C([0,1], B))$ with $\left(\rho_{j}\right)_{*}(\mathcal{H}, \psi, T) \simeq\left(\mathcal{H}_{j}, \psi_{j}, T_{j}\right)$.

For the even case, consider $\mathcal{E}^{0}(A, B)=\{(\mathcal{H}, \psi, T)\}$, where \mathcal{H} is a countably generated Hilbert B-module, $\psi: A \rightarrow \mathcal{L}(\mathcal{H})$ is a -homomorphism, and $T \in \mathcal{L}(\mathcal{H})$ is such that

$$
\begin{aligned}
\psi(a) T-T \psi(a) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a)\left(I-T^{*} T\right) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a)\left(I-T T^{*}\right) & \in \mathcal{K}(\mathcal{H})
\end{aligned}
$$

for all $a \in A$.
Definition 1.45. We define the KK-theory of A, B as

$$
\begin{aligned}
& \mathrm{KK}^{0}(A, B):=\mathcal{E}^{0}(A, B) / \sim \\
& \mathrm{KK}^{1}(A, B):=\mathcal{E}^{1}(A, B) / \sim
\end{aligned}
$$

where the relation \sim is homotopy. $\operatorname{KK}^{j}(A, B)$ is an abelian group

$$
\begin{aligned}
(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right) & =\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right) \\
-(\mathcal{H}, \psi, T) & =\left(\mathcal{H}, \psi, T^{*}\right) .
\end{aligned}
$$

1.10 Equivariant KK-theory

Let A be a G-C*-algebra.
Definition 1.46. A G-Hilbert A-module is a Hilbert A-module \mathcal{H} with a given continuous action $G \times \mathcal{H} \rightarrow \mathcal{H},(g, v) \mapsto g v$ such that

$$
\begin{aligned}
g(u+v) & =g u+g v \\
g(u a) & =(g u)(g a) \\
\langle g u, g v\rangle & =g\langle u, v\rangle
\end{aligned}
$$

for $u, v \in \mathcal{H}, g \in G, a \in A$. Continuity here means that for each $u \in \mathcal{H}, g \mapsto g u$ is a continuous map $G \rightarrow \mathcal{H}$.

For each $g \in G$, denote by L_{g} the map $L_{g}: \mathcal{H} \rightarrow \mathcal{H}, L_{g}(v)=g v$. Note that L_{g} might not be in $\mathcal{L}(\mathcal{H})$. But if $T \in \mathcal{L}(\mathcal{H})$, then $L_{g} T L_{g}^{-1} \in \mathcal{L}(\mathcal{H})$. Thus $\mathcal{L}(\mathcal{H})$ is a G-C ${ }^{*}$-algebra with $g T=L_{g} T L_{g}^{-1}$.
Example 1.47. If A isa G-C ${ }^{*}$-algebra, n positive integer. Then A^{n} is a G-Hilbert A-module with $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(g a_{1}, g a_{2}, \ldots, a_{n}\right)$.

Let A, B be separable G-C*-algebras, $\mathcal{E}^{1}(A, B)=\{(\mathcal{H}, \psi, T)\}$, where \mathcal{H} is a G-Hilbert B-module (countably generated), $\psi: A \rightarrow \mathcal{L}(B)$ is a ${ }^{*}$-homomorphism with

$$
\psi(g a)=g \psi(a), g \in G, a \in A,
$$

and $T \in \mathcal{L}(\mathcal{H})$ is such that

$$
\begin{aligned}
T & =T^{*} \\
g T-T & \in \mathcal{K}(\mathcal{H}) \\
\psi(a) T-T \psi(a) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a)\left(I-T^{2}\right) & \in \mathcal{K}(\mathcal{H})
\end{aligned}
$$

for all $g \in G, a \in A$.
In the even case we take $\mathcal{E}^{0}(A, B)=\{(\mathcal{H}, \psi, T)\}$, where \mathcal{H} is a G-Hilbert B-module (countably generated), $\psi: A \rightarrow \mathcal{L}(B)$ is a ${ }^{*}$-homomorphism with

$$
\psi(g a)=g \psi(a), g \in G, a \in A,
$$

and $T \in \mathcal{L}(\mathcal{H})$ is such that

$$
\begin{aligned}
g T-T & \in \mathcal{K}(\mathcal{H}) \\
\psi(a) T-T \psi(a) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a)\left(I-T^{*} T\right) & \in \mathcal{K}(\mathcal{H}) \\
\psi(a)\left(I-T T^{*}\right) & \in \mathcal{K}(\mathcal{H})
\end{aligned}
$$

for all $g \in G, a \in A$.
Definition 1.48. We define the equivariant KK-theory of A, B as

$$
\begin{aligned}
& \operatorname{KK}_{G}^{0}(A, B):=\mathcal{E}^{0}(A, B) / \sim \\
& \operatorname{KK}_{G}^{1}(A, B):=\mathcal{E}^{1}(A, B) / \sim
\end{aligned}
$$

where the relation \sim is homotopy. $\operatorname{KK}_{G}^{j}(A, B)$ is an abelian group

$$
\begin{aligned}
(\mathcal{H}, \psi, T)+\left(\mathcal{H}^{\prime}, \psi^{\prime}, T^{\prime}\right) & =\left(\mathcal{H} \oplus \mathcal{H}^{\prime}, \psi \oplus \psi^{\prime}, T \oplus T^{\prime}\right) \\
-(\mathcal{H}, \psi, T) & =\left(\mathcal{H}, \psi, T^{*}\right) .
\end{aligned}
$$

1.11 K-theory of the reduced group C*-algebra

If a compact group G acts on \mathbb{C} by a \mathbb{C}^{*}-automorphisms, then it must act trivially, since \mathbb{C} has no nontrivial ${ }^{*}$-automorphisms. We will prove the following:

Theorem 1.49. For a compact group G there is an isomorphism

$$
\mathrm{K}_{0}\left(C_{r}^{*}(G)\right) \simeq \mathrm{R}(G) .
$$

The key element in the proof is the Peter Weyl theorem:
Theorem 1.50 (Peter Weyl). If G is a compact, Hausdorff, second countable unitary representation of G, then every irreducible unitary representation of G is finite dimensional.

Proof. Let $\rho: G \rightarrow \mathrm{U}(\mathcal{H})$ bea an irreducible representation on a separable Hilbert space \mathcal{H}. Choose a projection p on $\mathcal{H}, p \neq 0, p=p^{*}$ with finitely dimensional range. Let

$$
T:=\int_{G} \rho(g) p \rho(g)^{*} d g,
$$

where $d g$ is a Haar measure. Then

- T commutes with $\rho(g)$ for all $g \in G$,
- $T=T^{*}, T \geq 0, T \neq 0$,
- T is compact operator, $T \in \mathcal{K}(\mathcal{H})$.

The structure theorem for compact selfadjoint positive operators gives

$$
\operatorname{sp}(T):=\left\{a_{n} \in \mathbb{R} \mid a_{n} \rightarrow 0\right\},
$$

where each a_{n} is an eigenvalue with finitely dimensional eigenspace. In particular any compact selfadjoint operator has finite dimensional eigenspace. For T this eigenspace has to be preserved by the group action, so ρ has to be finitely dimensional if it is irreducible.

Proof. (of Theorem 1.49) Notice that for compact group $C_{r}^{*}(G)=C^{*}(G)$ (there is only one C^{*}-algebra for a compact group). Irreducible unitary representations of G (up to equivalence) form a countable set. There is a C^{*}-isomorphism

$$
C^{*}(G) \simeq \bigoplus_{\sigma \in \operatorname{Irrep}(G)} A_{\sigma}
$$

where each A_{σ} is a finitelry dimensional C^{*}-algebra, which is isomorphic to $M_{n}(\mathbb{C}), n=\operatorname{dim} \sigma$. Hence

$$
\mathrm{K}_{j}\left(C^{*}(G)\right) \simeq \bigoplus_{\sigma \in \operatorname{Irrep}(G)} \underbrace{\mathrm{K}_{j}\left(A_{\sigma}\right)}_{\mathrm{K}_{j}(\mathbb{C})} \simeq \begin{cases}\mathrm{R}(G) & \text { for } j=0, \\ 0 & \text { for } j=1 .\end{cases}
$$

For a compact group G we have the map

$$
\left.\mu: \mathrm{K}_{j}^{G}(\underline{E} G)\right) \rightarrow \mathrm{K}_{j}\left(C_{r}^{*}(G)\right) .
$$

The elements of $\mathrm{K}_{j}^{G}(\underline{\mathrm{E}} G)$ can be viewed as generalized elliptic operators on $\underline{E} G$. The map μ assigns to auch a generalized elliptic operator its index

$$
\mu(\mathcal{H}, \psi, T, \pi)=\operatorname{ker} T-\operatorname{coker} T .
$$

$1.12 \operatorname{KK}_{G}^{0}(\mathbb{C}, \mathbb{C})$

If G is a compact group then $\underline{E} G=\mathrm{pt}$ and $\mathrm{K}_{0}\left(C_{r}^{*}(G)\right)=\mathrm{R}(G)$ - the representation ring of G. We obtain $\mathrm{R}(G)$ as a Grothendieck group of the category of finite dimensional (complex) representations of G. It is a free abelian group with one generator for each distinct (i.e. nonequivalent) irreducible representation of G.

Theorem 1.51. For a compact group G there is an isomorphism

$$
\mathrm{K}_{G}(\mathbb{C}, \mathbb{C}) \simeq \mathrm{R}(G)
$$

Proof. Given $(\mathcal{H}, \psi, T, \pi) \in \mathcal{E}_{G}^{0}(\mathbb{C})$ within the equivalence relation on $\mathcal{E}_{G}^{0}(\mathbb{C})$ we may assume that

$$
\begin{equation*}
T \pi(g)-\pi(g) T=0, \tag{1.1}
\end{equation*}
$$

because we can average T over the compact group G

$$
\begin{gathered}
T^{\prime}:=\int_{G} \pi(g) T \pi(g)^{*} d g=0 \\
T-T^{\prime}=T-\int_{G} \pi(g) T \pi(g)^{*} d g \\
=\int_{G}\left(T-\pi(g) T \pi(g)^{*}\right) d g \in \mathcal{K}(\mathcal{H})
\end{gathered}
$$

because $\int_{G} T d g=T$ since we normalize Haar measure.
Furthermore we can assume that

$$
\begin{equation*}
\psi(\lambda)=\lambda \mathrm{Id} \tag{1.2}
\end{equation*}
$$

Indeed, $\psi: \mathbb{C} \rightarrow B(\mathcal{H})$ is a *-homomorphism, and $\psi(1)$ is a selfadjoint projection. For all $\lambda \in \mathbb{C}$

$$
\psi(\lambda)=\lambda \psi(1), \quad p:=\psi(1)
$$

\mathcal{H} splits into $p \mathcal{H} \oplus(1-p) \mathcal{H}$, and

$$
T p-p T \in \mathcal{K}(\mathcal{H}), T(1-p)-(1-p) T \in \mathcal{K}(\mathcal{H})
$$

Compare T to $p T p \oplus(1-p) T(1-p)$, to see that on $(1-p) \mathcal{H} \psi$ is 0 .
The only nontrivial condition on $(\mathcal{H}, \psi, T, \pi)$ is

$$
\begin{aligned}
& I-T^{*} T \in \mathcal{K}(\mathcal{H}) \\
& I-T T^{*} \in \mathcal{K}(\mathcal{H})
\end{aligned}
$$

These conditions imply that T is Fredholm, that is

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}(\operatorname{ker} T) & <\infty \\
\operatorname{dim}_{\mathbb{C}}(\operatorname{coker} T) & <\infty
\end{aligned}
$$

The spaces $\operatorname{ker} T$ and coker T are finite dimensional representations of G. We have

$$
\mu(\mathcal{H}, \psi, T, \pi)=\operatorname{ker} T-\operatorname{coker} T \in \mathrm{R}(G)
$$

First we will prove the surjection of $\mathrm{K}_{G}(\mathbb{C}, \mathbb{C}) \rightarrow \mathrm{R}(G)$. Let $V \in \mathrm{R}(G)$ be finitely dimensional irreducible unitary representation. Consider countable direct sum $\bigoplus V$ and $\bigoplus \pi$. Let T be a shift

$$
\left(v_{1}, v_{2}, \ldots\right) \mapsto\left(v_{2}, v_{3}, \ldots\right)
$$

Then $\operatorname{ker} T=V$ (first copy), and coker $T=0$.
The homomorphism $\mathrm{K}_{G}(\mathbb{C}, \mathbb{C}) \rightarrow \mathrm{R}(G)$ is well defined and injective. Indeed, consider irreducible representation $V \in \mathrm{R}(G)$. There is a canonical decomposition into isotypical components

$$
V=n_{1} V_{1} \oplus n_{2} V_{2} \oplus \ldots n_{n} V_{k}
$$

Then T will preserve this decomposition because it commutes with the group action. If $T_{t}, t \in[0,1]$ is a homotopy of operators, then also each T_{t} commutes with $\pi(g), g \in G$. We can stick to $(\mathcal{H}, \psi, \pi, T)$ with the equivalence relation consisting only of homotopy and isomorphism.

When T is unitary then $(\mathcal{H}, \psi, \pi, T)$ is degenerate.

