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Chapter 1

Comonads and Galois comodules of
corings

The aim of the remaining lectures is to study Galois structures which arise in differential
non-commutative geometry, in particular to show, how Galois conditions encode geometric
notions such as principal (and associated vector) bundles. The Galois condition which arises
in this context is very closely related to (co)monadicity described earlier. To make better
connection with the preceding sections we start with the category theory considerations.

We use the following notational conventions. The identity morphism for an object X is
denoted by X (though occasionally we write id for clarity). We do not write composition
symbol ◦ when composing functors. Given a natural transformation δ between functors F
and G, δX denotes corresponding morphism F (X) → G(X). For any other functors H, K
(composable with F or G, respectively) Hδ means the natural transformation HF → HG
given on objects X as H(δX), while δK means the transformation FK → GK given on
objects as δK(X).

1.1 Comonads

Definition 1.1. A comonad on a category A is a triple G = (G, δ, σ), where G : A → A
is a functor δ : G → GG, σ : G → idA are natural transformations such that the following
diagrams

G
δ //

δ

��

GG

Gδ

��
GG

δG
// GGG ,

G
δ //

δ

�� DDDDDDDDDDDD

DDDDDDDDDDDD GG

Gσ

��
GG

σG
// G

commute. The transformation δ is called a comultiplication, and σ is called a counit.

Comonads form a category. A morphism between comonads G → G′ is a natural trans-
formation ϕ : G→ G′ rendering commutative the following diagrams

G

δ

��

ϕ // G′

δ′

��
GG

Gϕ
// GG′

ϕG′
// G′G′ ,

G
ϕ //

σ

!!CCCCCCCCCCCC G′

σ′

}}zzzzzzzzzzzz

idA .
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Definition 1.2. A coalgebra over a comonad G = (G, δ, σ) is a pair (A, ρA) consisting of
an object A of A and a morphism ρA : A→ G(A), such that the following diagrams commute

A
ρA //

ρA

��

G(A)

δA

��
G(A)

G(ρA)
// GG(A) ,

A
ρA //

CCCCCCCCCCCC

CCCCCCCCCCCC G(A)

σA

��
A .

A morphism of coalgebras (A, ρA)→ (B, ρB) is a morphism f : A→ B in A compatible with
the structure maps ρA, ρB in the sense of the commutativity of the following diagram

A
f //

ρA

��

B

ρB

��
G(A)

G(f)
// G(B) .

The category of coalgebras of G is often referred to as the Eilenberg-Moore category and
is denoted by AG.

Dually to comonads one considers monads F on a category A and their Eilenberg-Moore
category of algebras AF .

The introduction of the Eilenberg-Moore category allows one to realise a close relationship
between adjoint functors and comonads. Any adjoint pair of functors L : A→ B, R : B→ A
(L is the left adjoint of R) gives rise to a comonad (G, δ, σ) on B, where G = LR, δ = LηR
(that is δB = L(ηR(B))), σ = ψ and η is the unit of adjunction (L,R), and ψ the counit of
adjunction.

Given a comonad (G, δ, σ) on A, there is an adjunction

L : AG → A , the forgetful functor,
R : A→ AG , the free coalgebra functor defined by R(A) = (G(A), δA)

Similarly, if (L,R) is an adjoint pair of functors, then F = RL is a monad on MA.
Conversely, given a comonad F on A, the free algebra functor A→ AF is the left adjoint of
the forgetful functor AF → A.

1.2 Comonadic triangles and the descent theory

The correspondence between pairs of adjoint functors and comonads leads to the following
fundamental question: What is the relationship between a category on which a pair of ad-
joint functors is defined and a category of coalgebras of a given comonad. The situation is
summarised in

Definition 1.3. Take categories A, B, a comonad G on A and adjoint functors L : B→ A,
R : A→ B. A triangle of categories and functors

B
K //

L

��@@@@@@@@@@@ AG

UG
~~|||||||||||

A

R

__@@@@@@@@@@@
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where UG is the forgetful functor is called a G-comonadic triangle provided UGK = L .
The functor K is referred to as a comparison functor.

We would like to study, when the comparison functor K is an equivalence. First, we need
to find an equivalent description of comparison functors.

Proposition 1.4. Fix categories A, B, a comonad G on A, and adjoint functors L : B →
A, R : A → B. There is a one-to-one correspondence between comparison functors K in
comonadic triangles made of G, L and R, and comonad morphisms ϕ : LR→ G.

Proof. Given ϕ define a natural transformation

β : L
Lη−→ LRL

ϕL−−→ GL, βB : L(B)→ G(L(B)), βB = ϕL(B) ◦ L(ηB),

where η is the unit of adjunction (L,R). Then the functor K : B → AG is given by B 7→
(L(B), βB). Conversely, given K : B → (K(B), ρK(B)) define

β : L→ GL, by βB = ρK(B).

Then
ϕ : LR

βR−−→ GLR
Gψ−−→ G,

where ψ is the counit of adjunction (L,R), is the required morphism of comonads.

Proposition 1.5. In the set-up of Proposition 1.4, If B has equalisers, then K has a right
adjoint D : AG → B defined by the equaliser

D(A, ρA)
eqA // R(A)

αA //

R(ρA)
// RG(A),

where
α : R

ηR−−→ RLR
Rϕ−−→ RG.

Proof. The unit of the adjoint pair (K,D) is given by η̂B in the diagram:

DK(B) // RL(B)
αL(B) //

RβB

// RGL(B)

B .

η̂B

ddH
H

H
H

H
H

H
H

H

ηB

OO

The existence of such η̂B follows by the universal property of equalisers. The counit of the
adjoint pair (K,D) is given by ψ̂ in the diagram

KD(A, ρA)

ψ̂
(A,ρA)

$$J
J

J
J

J
J

J
J

J

LαA // LR(A)

ψA

��

LαA //

LR(ρA)
// LRG(A)

A .

Note that ψ̂(A,ρA) is a composite, the universal property of an equaliser is not used here.
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Recall that a contractible equaliser of two morphisms g, h : B → G is a morphism f : A→
B fitting into the following diagram

A
f // B

g //

h
//

i

[[ G ,

j

\\

with two maps i, j such that

i ◦ f = A, j ◦ g = B, j ◦ h = f ◦ i, g ◦ f = h ◦ f.

For objects A in A consider a contractible equaliser

R(A)
αA // RG(A)

αG(A) //

R(δA)
//

R(σA)

`` RG2(A).

RG(σA)

bb

In view of the universal property of equalisers this implies that

αA = eqG(A), R(A) = D(G(A), δA),

hence

ψ̂(G(A),δA) = ψG(A) ◦ L(eqG(A))

= ψG(A) ◦ L(αA)

= ψG(A) ◦ LR(ϕA) ◦ L(ηR(A))

= ϕA,

where the last equality follows by one of the triangular equalities for the unit and counit of
an adjunction. Since a functor which has a right adjoint is full and faithful if and only if
the counit of adjunction is a (natural) isomorphism, this simple calculation of ψ̂ immediately
establishes the following

Proposition 1.6. If D is full and faithful, then ϕ is an isomorphism of comonads.

The problem of finding when K is an equivalence is equivalent to studying the comonadic-
ity of L. Thus the Beck monadicity theorem yields

Theorem 1.7. Consider a comonadic triangle in Definition 1.3. If B has equalisers, then
K is an equivalence if and only if ϕ is an isomorphism, L preserves equalisers that define D,
and L reflects isomorphisms.

Comonadic triangles encode (and generalise) the typical setup of descent theory. Let T
be a monad on a category B, and let L : B → A, R : A → B be a pair of adjoint functors.
Setting G = LR one obtains the following comonadic triangle

B
K //

FT

!!BBBBBBBB (BT )G

UG{{vvvvvvvvv

BT .
UT

aaBBBBBBBB

Here K is the standard comparison functor corresponding to ϕ = id. (BT )G is known as the
category of descent data. We say that this triangle is of descent type whenever K is full
and faithful, and we say that it defines an effective descent when K is an equivalence. The
standard descent theory studies effective descent in specific situations (such as, e.g. arise in
algebraic geometry).
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1.3 Comonads on a category of modules. Corings.

Let A,B be associative and unital algebras over a commutative ring k, with multiplication
operations denoted by µA, µB and units 1A, 1B (understood both as elements or linear maps
k → A, k → B), respectively. Denote by MA, MB the categories of right modules over A
and B. Categories of modules are additive and have colimits (they are abelian categories),
and we would like to study functors which preserve these structures. Such functors are fully
characterised by the Eilenberg-Watts theorem.

Theorem 1.8 (Eilenberg-Watts). Let F : MA →MB be an additive functor that preserves
colimits. Then F (A) is an (A,B)-bimodule and

F ' −⊗A F (A), F (M) 'M ⊗A F (A) .

We would like to study comonads (G, δ, σ) on MA such that G preserves colimits. By
Theorem 1.8, G ' − ⊗A G(A). Let C := G(A), so C is an A-bimodule. Next we explore
consequences of the fact that δ, σ are natural transformations. For any M ∈MA, m ∈ M ,
consider a morphism in MA

lm : A→M, a 7→ ma .

The naturality of δ implies

C ' A⊗A C
lm⊗AC //

δA

��

M ⊗A C

δM

��
C ⊗A C ' A⊗A C ⊗A C

lm⊗AC⊗AC //M ⊗A C ⊗A C .

The evaluation of this diagram at 1A ⊗A c, c ∈ C gives

δM (m⊗A c) = m⊗A δA(c).

Hence δM = M⊗AδA. This means, in particular, that δA is a left A-linear, hence an A-bilinear
map (it is right A-linear as a morphism in MA). Similarly, σM = M ⊗A σA. Let

∆C := δA : C → C ⊗A C , εC := σA : C → A .

Then diagrams for coassociativity of δ and counitarity of σ are equivalent to the following
commutative diagrams

C
∆C //

∆C

��

C ⊗A C

∆C⊗AC

��
C ⊗A C C⊗A∆C

// C ⊗A C ⊗A C ,

C
∆C //

∆C

��

'

''NNNNNNNNNNNNNNNNNN C ⊗A C

C⊗AεC

��
C⊗A εC⊗AC

// A⊗A C ' C ⊗A A .

(1.1)

Definition 1.9. AnA-bimodule C together withA-bilinear maps ∆C : C → C⊗AC, εC : C → A
satisfying (1.1) is called an A-coring (pronounced: co-ring). ∆C is called the comultipli-
cation and εC is called the counit of C.
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A morphism of A-corings (C,∆C , εC) → (D,∆D, εD) is an A-bimodule map f : C → D
such that that makes the following diagrams commute

C
f //

∆C

��

D

∆D

��
C ⊗A C f⊗Af

// D ⊗A D ,

C
f //

εC
  AAAAAAAAAAA D

εD

��
A .

Using arguments similar to those establishing the correspondence between corings and (tensor
functor) comonads, one easily finds that f arises as (and gives rise to) a morphism of comonads
(evaluated at A). We have thus established bijective correspondences:

A-coringsOO

��
Additive comonads on MA that preserve colimitsOO

��
Additive comonads on MA that have a right adjointOO

��
Additive monads on MA that have a left adjoint .

This last correspondence follows by the fact that the right adjoint of a comonad is a monad
and vice versa. The correspondence between corings and comonads is explicitly given by

(C,∆C , εC)↔ (−⊗A C,−⊗A ∆C ,−⊗A εC).

Definition 1.10. Let C be an A-coring, M be a right A-module and let ρM : M →M ⊗A C
be a right A-module map. A pair (M,ρM ) is called a right C-comodule if and only if the
following diagrams commute

M
ρM //

ρM

��

M ⊗A C

ρM⊗AC

��
M ⊗A C M⊗A∆C

//M ⊗A C ⊗A C ,

M
ρM //

'

$$HHHHHHHHHHHHH M ⊗A C

M⊗AεC

��
M ⊗A A .

The map ρM is called a coaction.

(M,ρM ) is a C-comodule if and only if (M,ρM ) is a coalgebra for the corresponding
comonad G = (−⊗A C,−⊗A ∆C ,−⊗A εC). A morphism in (MA)G is a right A-module map
f : M → N rendering the following diagram commutative

M
f //

ρM

��

N

ρN

��
M ⊗A C f⊗AC

// N ⊗A C .

8



The category of right C-comodules (i.e. the category of coalgebras of (−⊗A C,−⊗A∆C ,−⊗A
εC)) is denoted by MC . Morphisms between comodules (M,ρM ) and (N, ρN ) are denoted by
HomC(M,N).

Left comodules are defined symmetrically as coalgebras of the comonad (C ⊗A −,∆C ⊗A
−, εC ⊗A −) on the category of left A-modules.

As an example of a coring we can study corings associated to a module.

Example 1.11. Take algebras A, B and look at functors MB →MA preserving colimits. By
the Eilenberg-Watts theorem (Theorem 1.8) such functors have the tensor form, i.e. there is
a (B,A)-bimodule M such that the functor is of the form

−⊗B M : MB →MA.

For N ∈MA, morphisms HomA(M,N) form a right B-module by

(f · b)(m) = f(bm), f ∈ HomA(M,N), m ∈M, b ∈ B.

Since the functor HomA(M,−) : MA → MB is the right adjoint to − ⊗B M , there is a
comonad

G = HomA(M,−)⊗B M : MA →MA ,

with comultiplication

δN : HomA(M,N)⊗B M → HomA(M,HomA(M,N)⊗B M)⊗B M,

f ⊗B m 7→ [m′ 7→ f ⊗B m′]⊗B m ,

and counit
σN : HomA(M,N)⊗B M → N , f ⊗B m 7→ f(m) .

G preserves colimits if M is finitely generated and projective as a right A-module, i.e. there
exists e =

∑
i ei ⊗A ξi, ei ∈ M , ξi ∈ M∗ := HomA(M,A), i = 1, 2, . . . , n such that, for all

m ∈M ,
m =

∑
i

eiξi(m).

In this case
HomA(M,N) ' N ⊗AM∗, G = −⊗AM∗ ⊗B M.

Hence C = M∗ ⊗B M is an A-coring with comultiplication and counit

∆C(ξ ⊗B m) = ξ ⊗B e⊗B m, εC(ξ ⊗B m) = ξ(m).

G(A) = M∗ ⊗B M is called a (finite) comatrix coring.

1.4 Galois comodules for corings

We start with an A-coring C and take a category of right A-modules A := MA. Denote
by G = − ⊗A C the corresponding comonad on A. The category AG of G-coalgebras is
thus the same as the category of C-comodules MC . Take a comodule (M,ρM ) ∈MC and set
B = EndC(M) = HomC(M,M). This is an algebra with respect to composition of morphisms
and M is a left B-module by evaluation (b · m = b(m) for b ∈ B, m ∈ M). Furthermore,
the definition of comodule morphisms imply that ρM is a left B-linear map. Set B := MB.
Since ρM is a left B-linear map, there is a functor

K : MB →MC , V 7→ (V ⊗B M,V ⊗B ρM ). (1.2)

9



Note that for the forgetful functor UC : MC → MA, UCK(V ) = V ⊗B M. Thus there is a
comonadic triangle

MB
K //

−⊗BM

""DDDDDDDDDDDDDDDD MC

UC

||zzzzzzzzzzzzzzz

MA .

HomA(M,−)

bbDDDDDDDDDDDDDDDD

By Proposition 1.4 there is a comonad morphism

ϕ : HomA(M,−)⊗B M → −⊗A C.

Recall that, for allN ∈MA, the counit ψ of the tensor-hom adjunction (−⊗BM,HomA(M,−))
in provided by the evaluation map

ψN : HomA(M,N)⊗B M → N, f ⊗B m 7→ f(m).

Therefore,

ϕN = G(ψN ) ◦ ρKR(N),

f ⊗B m 7→ (ψN ⊗A C)(ρK(HomA(M,N))(f ⊗B m))

= (ψN ⊗A C)(f ⊗B ρM (m)) = (f ⊗A C)(ρM (m)) .

Writing
ρM (m) =

∑
m(0) ⊗A m(1) ,

(summation index suppressed) we obtain

ϕN (f ⊗B m) =
∑

f(m(0))⊗A m(1) . (1.3)

Definition 1.12. A right C-comodule (M,ρM ) is called a Galois comodule if and only if
the natural transformation ϕ determined by all the maps ϕN (1.3) is a natural isomorphism.

IfM is finitely generated and projective as a rightA-module, then the comonad HomA(M,−)⊗B
M comes from the comatrix coring −⊗AM∗⊗BM . The fact that ϕ is a comonad morphism
is equivalent to the fact that ϕA is a coring morphism. Write

canM := ϕA : M∗ ⊗B M → C , ξ ⊗B m 7→
∑

ξ(m(0))m(1) .

The map canM is called the canonical map.

Definition 1.13. A Galois comodule (M,ρM ) such that M is finitely generated projective
as a right A-module is called a finite Galois comodule.

The Galois property of a finite Galois comodule is entirely encoded in the properties of
the canonical map. More precisely,

Lemma 1.14. A right C-comodule (M,ρM ) with M finitely generated projective as a right
A-module is a Galois comodule if and only if the canonical map canM is an isomorphism of
A-corings.
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Since the category of modules has equalisers, the comparison functor K in (1.2) has a
right adjoint D; see Proposition 1.5. Recall that D is defined by the diagram

D(N, ρN )
eqN // R(N)

αN //

R(ρN )
// RG(N)

HomA(M,N) HomA(M,N ⊗A C) .

The equalised maps can be explicitly computed as

R(ρN )(f) = HomA(M,ρN )(f) = ρN ◦ f,

and
αN (f) = R(ϕN )(ηR(N)(f)) = HomA(M,ϕN )(f ⊗B −) = (f ⊗A C) ◦ ρN .

Therefore, D can be identified with the comodule homomorphism functor, i.e. for all right
C-comodules (N, ρN ),

D(N, ρN ) = HomC(M,N).

In order to state the conditions under which the comparison functor K, and thus also the
constructed functor D, is an equivalence we need to recall the notions of flatness and faithful
flatness. Consider a sequence of right B-module maps

V // V ′ // V ′′. (1.4)

For any left B-module M there is then also the following sequence

V ⊗B M // V ′ ⊗B M // V ′′ ⊗B M. (1.5)

The module M is said to be flat if the exactness of any sequence (1.4) implies exactness of
the corresponding sequence (1.5). The module M is said to be faithfully flat if its flat and,
for any sequence of modules (1.4), the exactness of (1.5) implies exactness of (1.4).

Combining the discussion of comodules in this and preceding sections with Beck’s monadic-
ity theorem (see Proposition 1.6 and Theorem 1.7) one derives the main characterisation of
Galois comodules in terms of equivalences of categories.

Theorem 1.15 (The finite Galois comodule structure theorem). Let (M,ρM ) be a comodule
over a coring C such that M is finitely generated projective as a right module over A. Then
the following conditions are equivalent:

1. the functor HomC(M,−) : MC →MB is fully faithful and C is flat as a right A-module;

2. M is flat as a left B-module and (M,ρM ) is Galois comodule.

Furthermore the following conditions are equivalent:

1. HomC(M,−) is an equivalence of categories and C is flat as a right A-module;

2. M is faithfully flat as a left B-module and (M,ρM ) is Galois comodule.
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1.5 The Maszczyk Galois condition

The notion of a Galois comodule presented in Section 1.4 is considered to be standard in the
theory of corings; see [?]. Recently, motivated by an approach to non-commutative algebraic
geometry through monoidal categories, Maszczyk introduced a different Galois condition in
[?]. We describe this condition here and compare it with the one studied in Section 1.4.

Start with a morphism of A-corings γ : D → C. Then D is a C-bicomodule (i.e. it has both
left and right C-coaction such that the left coaction is a morphism of right C-comodule) via

(D ⊗A γ) ◦∆D (right C-coaction) ,
(γ ⊗A D) ◦∆D (left C-coaction) .

Consider the k-module of C-bicomodule maps B :=CHomC(D, C). Then B is an algebra with
the product of b, b′ ∈ B given by

bb′ = (C ⊗A εC) ◦ (b⊗A b′) ◦∆D,

i.e. explicitly

bb′ : d 7→ d(1) ⊗A d(2) 7→ b(d(1))⊗A b′(d(2)) 7→ b(d(1))εC(b
′(d(2))) .

Furthermore, D is a B-bimodule. Define

D := D/[D, B], p : D → D .

Then D is an A-coring with the structure induced by p from that of A-coring D, and there
is a commutative triangle of coring maps:

D
γ //

p   BBBBBBBB C

D .

γ

>>}}}}}}}}

C is said to be a Galois coring in the sense of Maszczyk if the map γ is an isomorphism.
The above triangle of coring maps induces two functors

F : MD →MD, (M,ρM ) 7→ (M, (M ⊗A p) ◦ ρM ),

and
G : MD →MC , (M,ρM ) 7→ (M, (M ⊗A γ) ◦ ρM ).

Any right D-comodule (M,ρM ) defines two comonadic triangles

MB
K=−⊗BF (M) //

−⊗BM

!!CCCCCCCCCCCCCCCC MD

UD

}}{{{{{{{{{{{{{{{

MA,

HomA(M,−)

aaCCCCCCCCCCCCCCCC

with the corresponding (to K) morphism of comonads

ϕ(f ⊗B m) = (f ⊗A p)(ρM (m)), f ∈ HomA(M,N) , m ∈M ,
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and

MB
K=−⊗BG(M) //

−⊗BM

!!DDDDDDDDDDDDDDD MC

UD

}}{{{{{{{{{{{{{{{

MA,

HomA(M,−)

aaDDDDDDDDDDDDDDD

with the corresponding (to K) morphism of comonads

ϕ(f ⊗B m) = (f ⊗A γ)(ρM (m)), f ∈ HomA(M,N) , m ∈M .

Proposition 1.16 (G. Böhm). Assume that ϕ is an isomorphism (i.e. that F (M) is a Galois
D-comodule). Then ϕ is an isomorphism (i.e. G(M) is a Galois C-comodule) if and only if
γ is an isomorphism of corings (i.e. C is Galois in the sense of Maszczyk).

References. Barr and Wells [?]; Beck [?]; Brzeziński and Wisbauer [?]; Dubuc [?]; Eilen-
berg and Moore [?]; Gómez-Torrecillas [?]; Grothendieck [?]; MacLane [?]; Maszczyk [?];
Mesablishvili [?], Sweedler [?]; Watts [?].
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Chapter 2

Hopf-Galois extensions of
non-commutative algebras

In this lecture we introduce the key notions in the Galois theory of Hopf algebras or in the
algebraic approach to non-commutative principal bundles. We also show how Hopf-Galois
extensions fit into the theory of Galois comodules of corings described in Chapter 1.

From now on, k denotes a field, and all algebras etc. are over k. The tensor product over
k is denoted by ⊗.

2.1 Coalgebras and Sweedler’s notation

Definition 2.1. A coalgebra is a vector space C with k-linear maps ∆C : C → C ⊗ C,
εC : C → k such that the following diagrams commute

C
∆C //

∆C

��

C ⊗ C
C⊗∆C

��
C ⊗ C

∆C⊗C
// C ⊗ C ⊗ C,

C
∆C //

∆C
�� KKKKKKKKKKK

KKKKKKKKKKK C ⊗ C
εC⊗C
��

C ⊗ C
C⊗εC

// C

∆C is called a comultiplication and εC is called a counit.

In other words, a k-coalgebra is the same as a k-coring (when a vector space is viewed
as a symmetric k-bimodule). Following this identification of k-coalgebras as k-corings one
defines C-comodules as comodule of the k-coring C. (The reader should notice that we use
the term coalgebra here in the sense different from that in Chapter 1.)

The idea of comultiplication is somewhat counter-intuitive: out of a single element of a
vector spaces, a family of elements is produced. Heyneman and Sweedler developed a short-
hand notation which proves very useful in explicit computations that involve comultiplications
and counits. The Sweedler notation for comultiplication is based on omitting unnecessary
summation range, index and sign, and then employing the coassociativity of comultiplication
(the first of diagrams in Definition 2.1) to relabel indices by consecutive numbers. Given an
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element c ∈ C, we write

∆C(c) =
n∑
i=1

ci(1) ⊗ c
i
(2)

=
∑
i

ci(1) ⊗ c
i
(2)

=
∑

c(1) ⊗ c(2)

= c(1) ⊗ c(2).

The coassociativity of comultiplication means that the two ways to compute the result of two
applications of ∆ give the same result:

(C ⊗∆C) ◦∆C(c) = (C ⊗∆C)(c(1) ⊗ c(2))

= c(1) ⊗∆C(c(2)) = c(1) ⊗ c(2)(1) ⊗ c(2)(2)

(∆C ⊗ C) ◦∆C(c) = (∆C ⊗ C)(c(1) ⊗ c(2))

= ∆C(c(1))⊗ c(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2) .

We can order all indices appearing in above expressions (and in all expressions involving
multiple application of ∆C) in the following way. Remove the brackets, put 0. in front of the
index and then arrange them in increasing order. In this way we obtain

0.1 < 0.21 < 0.22, 0.11 < 0.12 < 0.2 .

The coassociativity of ∆C tells us that we do not need to care about exact labels but only
about their increasing order. Hence we can relabel:

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1) ⊗ c(2) ⊗ c(3) = c(1)(1) ⊗ c(1)(2) ⊗ c(2).

Exercise 2.2. Compute and check labelling for all three applications of ∆ to an element
c ∈ C.

In terms of the Sweedler notation, the counitality of the comultiplication or the second
of the diagrams in Definition 2.1 comes out as

c(1)εC(c(2)) = εC(c(1))c(2) = c.

Example 2.3. Let X be a set, C = kX – the linear span of X (elements of X form a basis of
the vector space kX). Define the comultiplication and counit by

∆C(x) = x⊗ x, εC(x) = 1, for all x ∈ X.

Remark: for any coalgebra C an element c ∈ C such that ∆C(c) = c⊗ c, εC(c) = 1 is called
a group-like element.

Example 2.4. Consider the trigonometric identities

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),
cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

and the values of sine and cosine at the origin sin(0) = 0, cos(0) = 1. We can abstract
from these expressions the variables x and y and use the trignometric identities to define the
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comultiplication, and values at 0 to define the counit. Thus we consider a two-dimensional
coalgebra C with a basis {sin, cos}, and comultiplication and counit

∆C(sin) = sin⊗ cos + cos⊗ sin, ∆C(cos) = cos⊗ cos− sin⊗ sin,
εC(sin) = 0, εC(cos) = 1.

This coalgebra is often referred to as the trigonometric coalgebra.

Example 2.5. Let G be a monoid with unit e, O(G) algebra of functions G → k. If G
is finite we take all functions, and if G is an algebraic group then we take polynomial (or
representative) functions. O(G) is a coalgebra with comultiplication and counit

∆O(G)(f)(g ⊗ g′) = f(gg′), εO(G)(f) = f(e).

2.2 Bialgebras and comodule algebras

In addition to comultiplication and counit, coalgebras in Examples 2.4 and 2.5 can be
equipped with the structure of an algebra in a way that is compatible with the coalgebra
structure.

Definition 2.6. A bialgebra is a vector space H such that:
(a) H is an algebra with multiplication µH and unit 1H ;
(b) H is a coalgebra with comultiplication ∆H and counit εH ;
(c) ∆H and εH are algebra maps, i.e. the following diagrams commute

H ⊗H
µH //

∆H⊗∆H

��

H

∆H

��
H ⊗H ⊗H ⊗H

H⊗flip⊗H // H ⊗H ⊗H ⊗H
µH⊗µH // H ⊗H,

H ⊗H
µH //

εH⊗εH

""DDDDDDDDDDDDDDDD H

εH

����������������

k,

and ∆H(1H) = 1H ⊗ 1H and εH(1H) = 1.

Explicitly, in terms of the Sweedler notation the first of diagrams in Definition 2.6 reads,
for all h, h′ ∈ H,

∆H(hh′) = h(1)h
′
(1) ⊗ h(2)h

′
(2) .

Example 2.7. Let G be a monoid with unit e, and let H = kG – the linear span of G. The
multiplication is the monoid multiplication extended linearly, i.e. µH : g ⊗ g′ 7→ gg′, for all
g, g′ ∈ G, unit 1H = e, the comultiplication is given by ∆H(g) = g ⊗ g, and the counit by
εH(g) = 1 (see Example 2.3). With these structures kG is a bialgebra.
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Example 2.8. Let G be a monoid with unit e, and let H = O(G) – the functions G → k;
see Example 2.5. H is an algebra by the pointwise multiplication µH(f ⊗ f ′)(g) = f(g)f ′(g),
and with the unit 1H(g) = 1. The comultiplication is given by ∆H(f)(g ⊗ g′) = f(gg′), and
the counit by εH(f) = f(e) as in Example 2.5. With these operations H is a bialgebra. For
example:

(i) Functions on the two element group G = Z2. As a vector space

O(Z2) = k2 with basis e1, e2 ,

e1(1) = 1, e1(−1) = 0, e2(1) = 0, e2(−1) = 1.

The comultiplication derived from the rule described above comes out as

∆H(e1) = e1 ⊗ e1 + e2 ⊗ e2, ∆H(e2) = e1 ⊗ e2 + e2 ⊗ e1.

The pointwise multiplication is e1e1 = e1, e1e2 = e2e1 = 0, e2e2 = e2.
(ii) Functions on the circle group G = S1 = U(1), k = C. As an algebra O(U(1)) is iso-

morphic to the algebra of Laurent polynomials,

O(U(1)) ' C[X,X−1].

The comultiplication is given on generators by ∆H(X) = X ⊗X, ∆H(X−1) = X−1 ⊗X−1

(and is extended multiplicatively to the whole of C[X,X−1]).

Definition 2.9. Given a bialgebraH, a rightH-comodule algebra is a quadruple (A,µA, 1A, ρA),
where

(a) (A,µA, 1A) is a k-algebra with multiplication µA and unit 1A;
(b) (A, ρA) is a right H-comodule (with coaction ρA : A→ A⊗H);
(c) the coaction ρA is an algebra map, when A⊗H is viewed as a tensor product algebra

(a⊗ h)(a′ ⊗ h′) = aa′ ⊗ hh′, 1A⊗H = 1A ⊗ 1H .

That is the following diagram commutes

A⊗A
ρA⊗ρA//

µA

��

A⊗H ⊗A⊗H

A⊗flip⊗H

��
A⊗A⊗H ⊗H

µA⊗µH

��
A

ρA // A⊗H,

and ρA(1A) = 1A ⊗ 1H .

An alternative definition of a bialgebra can be given by considering the structure of the
category of comodules of a coalgebra H. A coalgebra H is a bialgebra if and only if the
category of right H-comodules, MH , is a monoidal category and the forgetful functor from
MH to vector spaces is strongly monoidal (i.e. the monoidal operation in MH is the same
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as the tensor product of vector spaces). If H is a bialgebra and (M,ρM ) and (N, ρN ) are
H-comodules, then (M ⊗N, ρM⊗N ) is an H-comodule with the coaction

M ⊗N
ρM⊗ρN//M ⊗H ⊗N ⊗H

M⊗flip⊗H //M ⊗N ⊗H ⊗H
M⊗N⊗µH //M ⊗N ⊗H .

With this interpretation a right H-comodule algebra is simply an algebra in the monoidal
category of right H-comodules.

Similarly to comultiplication, in explicit expressions and calculations it is useful to use
Sweedler’s notation for comodules. Let (A, ρA) ∈MH . For all a ∈ A, we write omitting the
sum sign and summation indices

ρA(a) = a(0) ⊗ a(1).

Note that all the elements a(0) are in A, while all the a(1) are in H. The comodule property
(A⊗∆H) ◦ ρA(a) = (ρA ⊗H) ◦ ρA(a) can be written as

a(0) ⊗ a(1)(1) ⊗ a(1)(2) = a(0)(0) ⊗ a(0)(1) ⊗ a(1) =: a(0) ⊗ a(1) ⊗ a(2) .

In general, after relabelling according to the same rules as for comultiplication, symbols with
positive Sweedler indices are elements of the Hopf algebra H. The compatibility condition
from Definition 2.9 can be written as

(aa′)(0) ⊗ (aa′)(1) = a(0)a
′
(0) ⊗ a(1)a

′
(1) .

Example 2.10. Since the comultiplication in a bialgebra is an algebra map, the pair (H,∆H)
is a right comodule algebra. One often refers to (H,∆H) as a (right) regular comodule.

Example 2.11. Let G be a group, H = kG. Then A is an H-comodule algebra if and only if
A is a G-graded algebra

A =
⊕
g∈G

Ag, AgAg′ ⊆ Agg′ , 1A ∈ Ae.

If a ∈ Ag, then define
ρA(a) = a⊗ g.

Since 1A ∈ Ae, ρA(1A) = 1A ⊗ e = 1A ⊗ 1H .
Take a ∈ Ag, a′ ∈ Ag′ . Then aa′ ∈ Agg′ , hence ρA(aa′) = aa′ ⊗ gg′ as needed.

Example 2.12. Let H = O(G) for a monoid G. For a G-set X, take A = O(X) and identify
O(X)⊗O(G) with O(X ×G). Then A is an H-comodule algebra with respect to

ρA(f)(x, g) = f(xg), ∀x ∈ X, g ∈ G.

2.3 Hopf-Galois extensions and Hopf algebras

Definition 2.13. If A is a right H-comodule algebra (of a bialgebra H), define the set of
coinvariants (or coaction invariants) as

AcoH := {b ∈ A | ρA(b) = b⊗ 1H} .
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Coinvariants AcoH are a subalgebra of A, because ρA is an algebra map. Furthermore

AcoH = {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)} .

A is an AcoH -bimodule, and ρA is a left AcoH -module map. The coaction ρA is also a right
AcoH -module map, when A⊗H has the right multiplication given by (a⊗ h) · a′ = aa′ ⊗ h.

Example 2.14. Take a regular comodule algebra (H,∆H); see Example 2.10. Then H has
trivial coaction invariants, i.e.

HcoH = k · 1H .

Indeed, since ∆H(1H) = 1H ⊗ 1H , k1H ⊆ HcoH . On the other hand if

h(1) ⊗ h(2) = h⊗ 1H ,

then apply εH ⊗H to get h = εH(h)1H , hence h ∈ k1H .

Definition 2.15. A right H-comodule algebra is called a Hopf-Galois extension (of the
coinvariants B := AcoH) if the canonical map

can: A⊗B A→ A⊗H, a⊗B a′ 7→ aρA(a′) .

is bijective (an isomorphism of left A-modules and right H-comodules).

Example 2.16. Let G be a group, H = kG, and A =
⊕

g∈GAg be a G-graded algebra. Then
A is Hopf Galois extension if and only if it is strongly graded, i.e., for all g, g′ ∈ G,

AgAg′ = Agg′ , B = AcoH = Ae.

In this case, for all a ∈ Ag, a′ ∈ Ag′

can: a′ ⊗B a 7→ aa′ ⊗ g,

can−1 : a′ ⊗ g 7→
∑
i

aai ⊗B ai.

where ai ∈ Ag, ai ∈ Ag−1 are such that
∑

i aiai = 1A.

In classical differential geometry, a principal bundle with a compact structure Lie group
G is defined as a manifold with a free action of G. The following example motivates the
interpretation of Hopf-Galois extensions as non-commutative principal bundles.

Example 2.17. Suppose X is a free G-set (i.e. if xg = x, then g = e). Set A = O(X),
H = O(G). Then

B := AcoH = {f ∈ O(X) | ∀ x ∈ X, g ∈ G, f(xg) = f(x)} ' O(X/G) ,

can(f ⊗B f ′)(x, g) = f(x)f ′(xg) .

The inverse of can is defined in a few stages. Consider a pullback

X ×X/G X //

��

X

π

��
X π

// X/G,
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so that
(x, x′) ∈ X ×X/G X ⇔ π(x) = π(x′).

Identify A⊗B A with O(X ×X/G X) by the isomorphism ϕ : A⊗B A→ O(X ×X/G X),

ϕ(f ⊗B f ′)(x, x′) = f(x)f ′(x′), where π(x) = π(x′) .

The map ϕ is well defined because the B-actions are, for all f ∈ O(X), x ∈ X, b ∈ B,

(f · b)(x) = f(x)b(π(x)), (b · f)(x) = b(π(x))f(x) ,

so that, for all (x, x′) ∈ X ×X/G X,

ϕ(f · b⊗B f ′))(x, x′) = f(x)b(π(x))f(x′) = f(x)(b · f)(x′) = ϕ(f ⊗B b · f ′)(x, x′) .

Since X is a free G-set, for any x, x′ such that π(x) = π(x′), there is a unique g ∈ G such
that x′ = xg. Define

can−1(f ⊗ h)(x, x′) = f(x)h(g), f ∈ O(X), h ∈ O(G).

Then, for all x ∈ X, g ∈ G,

(can−1 ◦ can)(f ⊗B f ′)(x, x′) = can(f ⊗B f ′)(x, g)
= f(x)f ′(xg)
= f(x)f ′(x′)
= ϕ(f ⊗B f ′)(x, x′),

and

(can ◦ can−1)(f ⊗ h)(x, g) = can−1(f ⊗ h)(x, xg)
= f(x)h(g)
= (f ⊗ h)(x, g) .

Therefore, the constructed map can−1 is the inverse of the canonical map as required.

As explained in Example 2.10 (H,∆H) is a right H-comodule algebra. It is thus tempting
to ask the following

Question 1. When is (H,∆H) a Hopf-Galois extension by H?

Since the coinvariants HcoH of (H,∆H) coincide with the ground field k (see Exam-
ple 2.14), Question 1 is equivalent to determining, when

canH : H ⊗H → H ⊗H, h′ ⊗ h 7→ h′h(1) ⊗ h(2) ,

is an isomorphism.

Lemma 2.18. (H,∆H) is a Hopf-Galois extension if and only if there is a map S : H → H
such that

h(1)S(h(2)) = εH(h)1H = S(h(1))h(2) .

Such a map S is called an antipode.
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Proof. If such a map S exists, then the inverse of the canonical map is given by

can−1(h′ ⊗ h) = h′S(h(1))⊗ h(2) .

Conversely, if can−1 exists, then the linear map

S = (H ⊗ εH) ◦ can−1 ◦(1H ⊗H) ,

has the required properties.

Definition 2.19. A bialgebra with an antipode is called a Hopf algebra.

The antipode is an anti-algebra and anti-coalgebra map, and plays the role similar to the
mapping which to each element of a group assigns its inverse (and hence can be heuristically
understood as a generalised inverse).

Examples 2.20.

1. If G is a group, then kG is a Hopf algebra with the antipode S : kG→ kG given on G
by g 7→ g−1.

2. Similarly, for a group G, the antipode on O(G) is given by

S : f 7→ [g 7→ f(g−1)] .

2.4 Cleft extensions

Take an algebra B and a Hopf algebra H. Let A = B ⊗ H and consider it as a right
H-comodule with coaction

ρA : B ⊗H → B ⊗H ⊗H, ρA = B ⊗∆H .

Suppose furthermore that B ⊗H is an algebra with multiplication and unit

(b⊗ h)(b′ ⊗ h′) = bb′ ⊗ hh′ , 1B ⊗ 1H .

This makes (B ⊗H,B⊗∆H) into an H-comodule algebra. Clearly

AcoH = (B ⊗H)coH = {b⊗ 1H | b ∈ B} ' B.

The canonical map is

can: (B ⊗H)⊗B (B ⊗H) ' B ⊗H ⊗H → B ⊗H ⊗H,
b⊗ h′ ⊗ h 7→ b⊗ h′h(1) ⊗ h(2),

and hence is bijective with the inverse

can−1 : B ⊗H ⊗H → B ⊗H ⊗H ,

b⊗ h′ ⊗ h 7→ b⊗ h′S(h(1))⊗ h(2).

Therefore, B ⊗ H is a Hopf-Galois extension (of B). More generally, one can study Hopf-
Galois extensions built on the comodule (B ⊗H,B⊗∆H).

Definition 2.21. Let A be a Hopf-Galois extension of B = AcoH . A is said to have a normal
basis property if A ' B ⊗H as a left B-module and right H-comodule.
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Proposition 2.22. Let (A, ρA) be a right H-comodule algebra, and let B = AcoH . The
following statements are equivalent:

1. A is a Hopf-Galois extension with a normal basis property.

2. There exists a map j : H → A such that:

(a) j is a right H-comodule map, i.e. the following diagram

H
j //

∆H

��

A

ρA

��
H ⊗H

j⊗H
// A⊗H

is commutative;

(b) j is convolution invertible, i.e. there exists a linear map j̃ : H → A such that, for
all h ∈ H,

j(h(1))j̃(h(2)) = j̃(h(1))j(h(2)) = εH(h)1A.

Proof. (2) =⇒ (1) We prove that the inverse of the canonical map can has the following
form

can−1 : a⊗ h 7→ aj̃(h(1))⊗B j(h(2)) .

In one direction, starting with can−1, we compute

can(aj̃(h(1))⊗ j(h(2))) = aj̃(h(1))j(h(2)(1))⊗ h(2)(2) = aj̃(h(1)(1))j(h(1)(2))⊗ h(2) = a⊗ h.

The first equality follows by the fact that the coaction ρA is an algebra map and by the
colinearity of j (condition 2(a) in Proposition 2.22). The final equality is a consequence of
condition 2(b). The proof that the composite can−1 ◦ can is the identity map is slightly more
involved. First note that

ρA(j̃(h)) = j̃(h(2))⊗ S(h(1)). (2.1)

This is verified in a few steps. Start with the equality

1A ⊗ S(h(1))⊗ j̃(h(2)) = j̃(h(1))j(h(2))⊗ S(h(3))⊗ j̃(h(4)) ,

which is a consequence of condition 2(b) (and the definition of a counit). Then apply ρA ⊗
H ⊗A and use the multiplicativity of ρA and right H-colinearity of j to obtain

1A ⊗ 1H ⊗ S(h(1))⊗ j̃(h(2)) = j̃(h(1))(0)j(h(2))⊗ j̃(h(1))(1)h(3) ⊗ S(h(4))⊗ j̃(h(5)) .

Next multiply elements in H and use the definition of the antipode to reduce above equality
to

1A ⊗ S(h(1))⊗ j̃(h(2)) = j̃(h(1))(0)j(h(2))⊗ j̃(h(1))(1) ⊗ j̃(h(3)) .

Finally, equality (2.1) is obtained by multiplying elements in A and then using the convolution
inverse property 2(b). Equation (2.1) implies that, for all a ∈ A,

a(0)j̃(a(1)) ∈ B = AcoH . (2.2)
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To verify this claim, simply apply ρA to a(0)j̃(a(1)), use the multiplicativity of ρA, covariance
property (2.1) and the definition of the antipode to obtain

ρA(a(0)j̃(a(1))) = a(0)j̃(a(2))(0) ⊗ a(1)j̃(a(2))(1)

= a(0)j̃(a(3))⊗ a(1)S(a(2)) = a(0)j̃(a(1))⊗ 1H .

Property (2.2) is used to compute can ◦ can−1:

can ◦ can−1 : a′ ⊗B a 7→ a′a(0) ⊗ a(1)

7→ a′ a(0)j̃(a(1))︸ ︷︷ ︸
∈B

⊗Bj(a(2))

= a′ ⊗B a(0)j̃(a(1))j(a(2))

= a′ ⊗B a(0)εH(a(1)) (by property 2(b) in Proposition 2.22)

= a′ ⊗B a .

This completes the proof that A is a Hopf-Galois extension. We need to show that it has the
normal basis property, i.e. that A is isomorphic to B ⊗H. Consider the map

θ : B ⊗H → A , b⊗ h 7→ bj(h) .

This is clearly a left B-module map. It is also right H-colinear since ρA is left linear over the
coaction invariants and j is right H-colinear by assumption (2)(a). The inverse of θ is

θ−1 : A→ B ⊗H, a 7→ a(0)j̃(a(1))⊗ a(2) .

The verification that θ−1 is the inverse of θ makes use of assumption 2(b) and is left to the
reader.

(1) =⇒ (2) Given a left B-linear, right H-colinear isomorphism θ : B ⊗H '−→ A, define

j : H → A, h 7→ θ(1B ⊗ h) .

Since θ is right H-colinear, so is j. The convolution inverse of j is

j̃ : H 1A⊗H−−−−→ A⊗H can−1

−−−−→ A⊗B A
A⊗Bθ−1

−−−−−→ A⊗B B ⊗H ' A⊗H
A⊗εH−−−−→ A .

Verification of property 2(b) is left to the reader.

Definition 2.23. A comodule algebra A such that there is a convolution invertible right
H-comodule map j : H → A is called a cleft extension (of AcoH). The map j is called a
cleaving map.

Since 1H is a grouplike element j(1H)j̃(1H) = 1A, so j(1H) 6= 0, and a cleaving map
can always be normalised so that j(1H) = 1A. Proposition 2.22 establishes a one-to-one
correspondence between cleft extensions and Hopf-Galois extensions with a normal basis
property. Note finally that the isomorphism θ : A → B ⊗ H can be used to generate an
algebra structure on B ⊗H. In this way one obtains an example of a twisted tensor product
or crossed product algebra.
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2.5 Hopf-Galois extensions as Galois comodules

In this section we would like to make a connection between Hopf-Galois extensions and Galois
comodules of a coring described in Chapter 1.

Take a bialgebra H. Let A be a right H-comodule algebra, i.e. an algebra (A,µA, 1A)
and an H-comodule (A, ρA) such that ρA : A→ A⊗H is an algebra map. Then C = A⊗H
is an A-bimodule with the following A-actions

a · (a′ ⊗ h) = aa′ ⊗ h (left A-action), (a′ ⊗ h) · a = a′a(0) ⊗ ha(1) (right A-action) .

Furthermore, C is an A-coring with counit εC = A⊗ εH and comultiplication

∆C : A⊗H → (A⊗H)⊗A (A⊗H) ' A⊗H ⊗H, a⊗ h 7→ a⊗∆H(h) .

A is a right C-comodule with the coaction

A→ A⊗A (A⊗H) ' A⊗H, a 7→ ρA(a) = a(0) ⊗A (1A ⊗ a(1)) .

In other words, once the identification of A⊗A C with C = A⊗H is taken into account, A is
a C-comodule by the same coaction by which A is an H-comodule. Next we need to compute
the endomorphism ring of the right C-comodule (A, ρA). B = EndC(A) is a subalgebra of A,
once the right A-module endomorphisms of A are identified with A by the left multiplication
map, i.e.

B = EndC(A) ⊆ A ' EndA(A), A 3 b 7→ [lb : a 7→ ba] ∈ EndA(A) .

The element b ∈ A is an element of the subalgebra B if and only if the corresponding A-linear
map la is right C-colinear, i.e.

1A
� ρA //

_

lb

��

1A ⊗A 1A ⊗ 1H_

lb⊗A1A⊗1H

��
a �

ρA
// ρA(b) = b⊗ 1H .

Hence lb ∈ EndC(A) if and only if ρA(b) = b⊗1H . This means that the endomorphism algebra
B = EndC(A) coincides with the algebra of H-comodule invariants,

B = AcoH = {a ∈ A | ρA(a) = a⊗ 1H} .

Obviously A is a finitely generated projective right A-module and the dual module can be
identified with A,

A∗ := HomA(A,A) ' A .

The dual basis for A is

e = (l1A ⊗A 1A) = 1A ⊗A 1A ∈ A⊗A A .

The corresponding comatrix coring is simply the Sweedler canonical coring (associated
to the inclusion of algebras B ⊆ A) A⊗B A, with the comultiplication and counit

∆A⊗BA : a⊗B a′ 7→ (a⊗B 1A)⊗A (1A ⊗B a′) ,
εA⊗BA : a⊗B a′ 7→ aa′ .
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The canonical map for the right C-comodule (A, ρA) as defined in Section 1.4 comes out as

canA : A⊗B → A⊗H, a⊗B a′ 7→ la(a′(0))⊗A (1⊗ a′(1)) = aρA(a′) ,

and hence it coincides with the canonical map for the right H-comodule algebra (A, ρA) as
defined in Definition 2.15. Consequently, a right H-comodule algebra A is a Hopf-Galois
extension (of B = AcoH) if and only if (A, ρA) is a (finite) Galois comodule of C = A⊗H.

Right comodules of C = A⊗H are right A-modules M with a map ρM : M →M ⊗A A⊗
H 'M ⊗H, which is a right coaction. The coaction property means that (M,ρM ) is a right
H-comodule. The right A-module property of ρM yields the compatibility condition

ρM (ma) = m(0)a(0) ⊗m(1)a(1) .

Right A-modules and H-comodules M with this compatibility condition are called relative
Hopf modules and their category is denoted by MH

A . Thus MH
A is isomorphic to the

category of right C = A⊗H-comodules.
The following result is often referred to as an easy part of the Schneider Theorem I.

Theorem 2.24 (Schneider). Let A be a right H-comodule algebra, B = AcoH . The following
statements are equivalent:

1. A is a Hopf-Galois extension such that A is faithfully flat as a left B-module.

2. The functor −⊗B A : MB →MH
A is an equivalence.

Proof. Take C = A ⊗ H, identify right C-comodules with relative Hopf modules MH
A and

apply the finite Galois comodule theorem, Theorem 1.15.

References. Blattner and Montgomery [?]; Brzeziński [?]; Brzeziński and Wisbauer [?]; Doi
and Takeuchi [?]; Montgomery [?]; Schauenburg [?]; Schneider [?]; Sweedler [?]; Szlachányi
[?].
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Chapter 3

Connections in Hopf-Galois
extensions

Geometric aspects of Hopf-Galois extensions are most clearly present in the theory of con-
nections. The aim of this lecture is to outline the main points of this theory.

3.1 Connections

Connections are differential geometric objects. Thus before connections in a Hopf-Galois
extension can be defined, one needs to describe what is meant by a differential structure.

Definition 3.1. A differential graded algebra is an N ∪ {0}-graded algebra

ΩA =
∞⊕
n=0

ΩnA ,

with an operation
d : ΩnA→ Ωn+1A ,

such that d ◦ d = 0 and, for all ω ∈ ΩnA and ω′ ∈ ΩA,

d(ωω′) = d(ω)ω′ + (−1)nωd(ω′) . (3.1)

Equation (3.1) is known as the Leibniz rule.

The zero-degree part of a differential graded algebra, Ω0A, is an algebra which is denoted
by A.

Take an algebra (A,µA, 1A). One associates to A a differential graded algebra ΩA as
follows

Ω1A := kerµA =

{∑
i

ai ⊗ a′i ∈ A⊗A |
∑

aia
′
i = 0

}
' A⊗A/k ,

d(a) = 1A ⊗ a− a⊗ 1A ,

ΩnA := Ωn−1A⊗A Ω1A .

The differential d is extended to the whole of ΩA using the Leibniz rule (3.1). Ω1A is an
A-bimodule. As an algebra ΩA = TA(Ω1A) (the tensor algebra associated to the A-bimodule
Ω1A. This (ΩA, d) is called the universal differential envelope of A. (Ω1A, d) is known
as the universal differential calculus on A. We will only work with universal differential
calculus (or envelope).
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Lemma 3.2. If (A, ρA) is a comodule algebra of bialgebra H, then Ω1A is a right H-comodule
by

ρΩ1A : Ω1A→ Ω1A⊗H,
∑
i

ai ⊗ a′i 7→
∑
i

ai(0) ⊗ a′i(0) ⊗ ai(1)a
′
i(1) .

Furthermore, d is a right H-comodule map. We say that (Ω1A, d) is a covariant differen-
tial calculus on A.

Proof. To check that ρΩ1A is well-defined, we need to show that ImρΩ1A ⊆ Ω1A⊗H. Applying
µA ⊗H to ρΩ1A(

∑
i ai ⊗ a′i) and using the multplicativity of ρA we obtain∑

i

ai(0)a
′
i(0) ⊗ ai(1)a

′
i(1) = ρA(

∑
i

aia
′
i) = 0, since

∑
i

aia
′
i = 0.

Furthermore, for all a ∈ A,

ρΩ1A(d(a)) = ρΩ1A(1A ⊗ a− a⊗ 1A)
= 1A ⊗ a(0) ⊗ a(1) − a(0) ⊗ 1A ⊗ a(1) = d(a(0))⊗ a(1) ,

i.e. d is a right H-comodule map as required.

Definition 3.3. Let (A, ρA) be a right H-comodule algebra, B = AcoH . The A-subbimodule
Ω1
horA of Ω1A generated by all d(b), b ∈ B, is called a module of horizontal one-forms.

Thus:

Ω1
horA = A(Ω1B)A =

{∑
i

(ai ⊗ bia′i − aibi ⊗ a′i) | ai, a′i ∈ A, bi ∈ B

}
.

Equivalently, horizontal forms can be defined by the following short exact sequence

0→ Ω1
horA→ A⊗A→ A⊗B A→ A ,

where A⊗A→ A⊗B A is the epimorphism defining A⊗B A.

Definition 3.4. A connection in a Hopf-Galois extension B ⊆ A is a left A-linear map
Π: Ω1A→ Ω1A, such that

(a) Π ◦Π = Π,
(b) ker Π = Ω1

horA,
(c) (Π⊗H) ◦ ρΩ1A = ρΩ1A ◦Π.

In other words, a connection is an H-covariant splitting of Ω1A into the horizontal and
vertical parts.

3.2 Connection forms

In classical differential geometry connections in a principal bundle are in one-to-one corre-
spondence with connection forms, i.e. differential forms on the total space of the bundle with
values in the Lie algebra of the structure group that are covariant with respect to the adjoint
action of the Lie algebra. To be able to establish a similar relationship between connections
and connection forms in a Hopf-Galois extension we first need to reinterpret the definition of
a Hopf-Galois extension in terms of the universal differential envelope.
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Definition 3.5. Let A be a right H-comodule algebra. Set B = AcoH and H+ = ker εH ⊆ H.
Define

ver : Ω1A→ A⊗H+,
∑
i

a′i ⊗ ai 7→
∑
i

a′iρ
A(ai) .

The map ver is called a vertical lift.

Note in passing that ver is well defined (its range is in A⊗H+), since
∑

i a
′
iai = 0 implies∑

i

a′iai(0)εH(ai(1)) =
∑
i

a′iai = 0 .

Proposition 3.6. The following statements are equivalent:

1. B ⊆ A is Hopf-Galois extension.

2. The sequence
0→ Ω1

horA→ Ω1A
ver−−→ A⊗H+ → 0

is exact.

Proof. Note that
A⊗A ' Ω1A⊕A , A⊗H ' A⊗H+ ⊕A ,

as left A-modules. This implies that the sequence

0→ Ω1
horA→ Ω1A

ver−−→ A⊗H+ → 0

is exact if and only if the sequence

0→ Ω1
horA→ A⊗A can−−→ A⊗H → 0

is exact. Here can is the lift of the canonical map defined by the commutative diagram

A⊗A π //

can %%KKKKKKKKKK A⊗B A

can
yyrrrrrrrrrr

A⊗H,

in which π is the defining projection of the tensor product A ⊗B A. Since Ω1
horA = kerπ

(compare Definition 3.3), the second sequence is exact if and only if the canonical map can
is bijective.

The vector space H+ is a right H-comodule by the adjoint coaction,

Ad: H+ → H+ ⊗H, h 7→ h(2) ⊗ S(h(1))h(3) .

Therefore A⊗H+ is a right H-comodule by combining ρA and Ad, i.e.

ρA⊗H
+

: A⊗H+ → A⊗H+ ⊗H,
a⊗ h 7→ a(0) ⊗ h(2) ⊗ a(1)S(h(1))h(3) .

Lemma 3.7. The vertical lift is a right H-comodule map from (Ω1A, ρΩ1A) to (A⊗H+, ρA⊗H
+

).
Consequently, the sequence in Proposition 3.6 is a sequence of left A-modules and right H-
comodules.
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Proof. The first statement is checked by a direct calculation that is left to the reader as an
exercise. The second statement is obvious.

Definition 3.8. A connection form in a Hopf-Galois extension B ⊆ A is a k-linear map
ω : H+ → Ω1A such that

(a) ρΩ1A ◦ ω = (ω ⊗H) ◦Ad,
(b) ver ◦ ω = 1A ⊗H+.

Theorem 3.9. Connections in a Hopf-Galois extension B ⊆ A (by a Hopf algebra H) are
in bijective correspondence with connection forms. The correspondence is

ω 7→ Π, Π(a′da) = a′a(0)ω(a(1) − εH(a(1))).

Proof. Existence of Π means that Ω1
horA is a direct summand of Ω1A as a left A-module and

right H-comodule. This is equivalent to the existence of splitting of the left A-module and
right H-comodule sequence

0→ Ω1
horA→ Ω1A

ver−−→ A⊗H+ → 0.

In view of the identification

AHomH(A⊗H+,Ω1A) ' HomH(H+,Ω1A),

any splitting yields an ω with required properties.

3.3 Strong connections

Recall that given an algebra B and a left B-module Γ, a connection in Γ is a k-linear map

∇ : Γ→ Ω1B ⊗B Γ,

such that, for all b ∈ B, x ∈ Γ,

∇(bx) = d(b)⊗B x+ b∇(x).

A connection in Γ exists if and only if Γ is a projective B-module (remember that Ω1B is the
universal differential calculus) if and only if there exists a left B-module splitting (section)
of the multiplication map B ⊗ Γ→ Γ.

A general connection in a Hopf-Galois extension B ⊂ A does not induce a connection
in the left B-module A. Only connections which are related to a more restrictive notion of
horizontal forms yield connections in modules.

Definition 3.10. Given a connection Π in B ⊂ A, the right H-comodule map

D : A→ Ω1
horA, D := d−Π ◦ d ,

is called an covariant derivative corresponding to Π. The connection Π is called a strong
connection if D(A) ⊆ (Ω1B)A.

Lemma 3.11. Let D be a covariant derivative corresponding to a strong connection in a
Hopf-Galois extension B ⊆ A. Then D is a connection in the left B-module A.

Lemma 3.11 is a special case of Theorem 3.15 so is left without a proof (for the time
being).
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Definition 3.12. A connection form ω such that its associated connection is a strong con-
nection is called a strong connection form. Thus a strong connection form is a k-linear
map ω : H+ → Ω1A characterised by the following properties:

(a) ρΩ1A ◦ ω = (ω ⊗H) ◦Ad,
(b) ver ◦ ω = 1A ⊗H+,
(c) d(a)−

∑
a(0)ω(a(1) − εH(a(1))) ∈ (Ω1B)A, for all a ∈ A.

Definition 3.13. Let (A, ρA) be a right H-comodule and let (V, Vρ) be a left H-comodule.
The cotensor product is defined as an equaliser

A�HV // A⊗ V
ρA⊗V//

A⊗Vρ
// A⊗H ⊗ V.

This means that

A�HV = {
∑
i

ai ⊗ vi ∈ A⊗ V |
∑
i

ρA(ai)⊗ vi =
∑
i

ai ⊗ Vρ(vi)}.

The functor A�H− : HM→ Vect is a left exact functor, and A�HH ' A.
If (A, ρA) is a comodule algebra, B = AcoH , then A�HV is a left B-module by

b(
∑
i

ai ⊗ vi) =
∑
i

bai ⊗ vi.

This defines a functor A�H− : HM → BM from the category of left H-comodules to the
category of left B-modules.

Definition 3.14. Given a left H-comodule (V, Vρ) and a Hopf-Galois extension B ⊆ A, the
left B-module Γ := A�HV is called a module associated to B ⊆ A.

Here Γ plays the role of module of sections of a vector bundle (with a standard fibre V )
associated to the non-commutative principal bundle represented by the Hopf-Galois extension
B ⊆ A. In the case of a cleft extension B ⊆ A, A ' B⊗H, hence Γ ' (B⊗H)�HV ' B⊗V ,
and thus it is a free B-module. More generally,

Theorem 3.15. If Π is a strong connection, then

∇ : A�HV → Ω1B ⊗B (A�HV ), ∇ = D ⊗ V ,

is a connection in the associated left B-module Γ = A�HV . Consequently Γ is a projective
B-module.

Proof. Since D(A) ⊆ (Ω1B)A ' Ω1B ⊗B A and D is a right H-comodule map, the map ∇
is well defined. For all b ∈ B and a⊗ v ∈ A�HV (summation suppressed for clarity) we can
compute:

∇(ba⊗ v) = d(ba)⊗ v −Π(d(ba))⊗ v
= dba⊗ v + bda⊗ v −Π(dba)⊗ v −Π(bda)⊗ v
= dba⊗ v + bda⊗ v − bΠ(da)⊗ v = dba⊗ v + b∇(a⊗ v),

where the second equality follows by the Leibniz rule and the third one by the left A-linearity
of Π and the fact that (db)a is a horizontal form, hence in the kernel of Π. We thus conclude
that ∇ is a connection. The last assertion follows since every module admitting a connection
(with respect to the universal differential calculus) is projective.
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In general, the associated module A�HV in Theorem 3.15 is not finitely generated as a
left A-module, even if V is a finite dimensional vector space. However, if H has a bijective
antipode, then A�HV is finitely generated and projective for any finite dimensional V (and,
of course, provided that A has a strong connection).

Theorem 3.16 (Da̧browski-Grosse-Hajac). A strong connection in a Hopf-Galois extension
B ⊆ A by a Hopf algebra H exists if and only if A is H-equivariantly projective as a left
B-module, i.e. if and only if there exists a left B-module, right H-comodule section of the
multiplication map µA : B ⊗A→ A (section means s : A→ B ⊗A such that µA ◦ s = A).

Proof. Given a section s : A→ B ⊗A, define the connection by

Π(a′da) = a′da− a′ ⊗ a+ a′s(a) = a′s(a)− a′a⊗ 1A.

This map is clearly left A-linear and right H-colinear. It is an idempotent since, using
the fact that s is a section of the multiplication map B ⊗ P → P , one easily finds that
−a′ ⊗ a + a′s(a) ∈ Ω1

horA. This also implies that ker Π ⊆ Ω1
horA. The converse inclusion

follows by the left B-linearity of s and the Leibniz rule. Write s(a) = a(1) ⊗ a(2) ∈ B ⊗ A
(summation suppressed). The splitting property means that a(1)a(2) = a, so

D(a) = 1A ⊗ a− s(a) = 1A ⊗ a(1)a(2) − a(1) ⊗ a(2) = (da(1))a(2) ∈ (Ω1B)A.

If Π is a strong connection, then the splitting of the product is given by

s(a) = a⊗ 1A + Π(da).

The map s is obviously right H-colinear and the section of the multiplication map. Note
that s(a) = 1A ⊗ a − D(a), hence s(a) ∈ B ⊗ A as Π is a strong connection. An easy
calculation proves that s is left B-linear. That the above assignments describe mutual inverses
is immediate.

Corollary 3.17. Let B ⊆ A be a Hopf-Galois extension by H with a strong connection.
Then

1. A is projective as a left B-module;

2. B is a direct summand of A as a left B-module;

3. A is faithfully flat as a left B-module.

Proof. The statement (1) follows by Lemma 3.11 (or is contained in Theorem 3.16). For (2),
let sL : A → B be a k-linear map which is identity on B. Then the map µA ◦ (B ⊗ sL) ◦ s
is a left B-linear splitting of the inclusion B ⊆ A. Statements (1) and (2) imply (3); see [?,
2.11.29].

To give an example of a strong connection we construct such a connection in a cleft
extension; see Section 2.4.

Proposition 3.18. Let B ⊆ A be a cleft extension, with a cleaving map j : H → A such that
j(1H) = 1A. Write j̃ : H → A for the convolution inverse of j; see Proposition 2.22. Then

ω : H+ → Ω1A , h 7→ j̃(h(1))⊗ j(h(2)) ,

is a strong connection form.
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Proof. First, for all h ∈ H+, j̃(h(1))j(h(2)) = εH(h) = 0, so ω is well defined. We need to
check if ω satisfies conditions (a)-(c) in Definition 3.12. This is done by the following three
direct calculations.

ρΩ1A ◦ ω(h) = j̃(h(1))(0) ⊗ j(h(2))(0) ⊗ j̃(h(1))(1)j(h(2))(1)

= j̃(h(1)(2))⊗ j(h(2)(1))⊗ S(h(1)(1))h(2)(2)

= j̃(h(2))⊗ j(h(3))⊗ S(h(1))h(4)

= j̃(h(2)(1))⊗ j(h(2)(2))⊗ S(h(1))h(3)

= ω(h(2))⊗ S(h(1))h(3)

= ω ◦Ad(h).

The first equality is simply the definition of ρΩ1A, the second uses the H-colinearity of j and
its consequence (2.1). Then the Sweedler indices have been rearranged and definitions of the
adjoint coaction and ω used. Next,

ver(ω(h)) = ver(j̃(h(1))⊗ j(h(2)))

= j̃(h(1))j(h(2))(0) ⊗ j(h(2))(1)

= j̃(h(1))j(h(2)(1))⊗ h(2)(2)

= j̃(h(1)(1))j(h(1)(2))⊗ h(2)

= ε(h(1))1A ⊗ h(2)

= 1A ⊗ h.

The second equality is the definition of the vertical lift, then the H-colinearity of j is used
and the Sweedler indices rearranged. The penultimate equality is a consequence of property
(2)(b) in Proposition 2.22. Finally, using the normalisation of j (and hence also of j̃) one can
compute, for all a ∈ A,

D(a) = d(a)−Π(d(a))
= d(a)− a(0)ω(a(1) − εH(a(1)))

= 1⊗ a− a⊗ 1− a(0)j̃(a(1))⊗ j(a(2)) + aj̃(1H)⊗ j(1H)

= 1⊗ a− a(0)j̃(a(1))⊗ j(a(2)).

Since a(0)j̃(a(1)) ∈ B (see (2.2) in the proof of Proposition 2.22), we obtain D(a) ∈ Ω1B ⊗B
A ⊆ B ⊗A.

The normalisation of a cleaving map in Proposition 3.18 is not an essential assumption.
If j(1H) 6= 1A we can choose

ω(h) = j̃(h(1))⊗ j(h(2))− j̃(1H)⊗ j(1H) + 1A ⊗ 1A.

3.4 The existence of strong connections. Principal comodule
algebras

Here we would like to determine, when a Hopf-Galois extension admits a strong connection.
In all geometrically interesting situations the antipode S is a Hopf algebra is bijective, hence
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it is natural to restrict our considerations to this case. If a Hopf algebra H has a bijective
antipode, then we make a right H-comodule algebra A iinto a left H-comodule via

Aρ : A→ H ⊗A, a 7→ S−1(a(1))⊗ a(0).

Theorem 3.19. If a Hopf algebra H has a bijective antipode S, then strong connections in a
Hopf-Galois extension B ⊆ A are in bijective correspondence with k-linear maps ` : H → A⊗A
such that

(a) `(1H) = 1A ⊗ 1A,
(b) can ◦ ` = 1A ⊗H (or µA ◦ ` = 1A ◦ εH),
(c) (`⊗H) ◦∆H = (A⊗ ρA) ◦ `,
(d) (H ⊗ `) ◦∆H = (Aρ⊗A) ◦ `.

The correspondence is given by

Π(a′d(a)) = a′a(0)`(a(1))− a′a⊗ 1.

We also refer to ` as a strong connection.

Proof. The idea of the proof is to show the relation between ` and connection forms. First
we comment on two versions of condition (b). Since (A⊗ εH) ◦ can = µA, the first version of
condition (b) immediately implies that µA ◦ ` = 1A ◦ εH . The converse follows by the use of
colinearity (condition (c)).

So, using the second version of (b), if εH(h) = 0, then µA ◦ `(h) = 0. This means that
given ` one can define a map ω` : H+ → Ω1A, by ω`(h) = `(h). Obviously, for all h ∈ H+,
ver ◦ ω`(h) = can ◦ `(h) = 1A ⊗ h. A straightforward calculation reveals that (c) and (d)
imply that (ω`⊗H) ◦Ad = ρΩ1A ◦ω`. Hence if ` exists, the corresponding ω` is a connection
one-form. By Theorem 3.9 there is a connection Π` in A with the form stated. Using explicit
definition of the universal differential, the corresponding covariant derivative comes out as

D`(a) = 1A ⊗ a− a(0)`(a(1)). (3.2)

Now use the fact that A is a right H-comodule algebra, conditions (c) and (d) for ` and the
fact that S−1 is an anti-algebra map to compute

(Aρ⊗H)(D`(a)) = 1H ⊗ 1A ⊗ a− a(2)S
−1(a(1))⊗ a(0)`(a(3))

= 1H ⊗ 1A ⊗ a− S−1(a(1)S(a(2)))⊗ a(0)`(a(3))
= 1H ⊗ 1A ⊗ a− 1H ⊗ a(0)`(a(1)) = 1H ⊗D`(a).

This implies that, for all a ∈ A, D`(a) ∈ B ⊗A, i.e. the connection Π` is strong.
Conversely, given a strong connection Π with connection one-form ω : H+ → Ω1A, define

`ω : H → A ⊗ A by `ω(h) = εH(h)1A ⊗ 1A − ω(h − εH(h)). Such an `ω satisfies (a) and (b)
(the latter by condition (b) of Definition 3.12). Now, condition (a) of Definition 3.12 implies
that

(`ω ⊗H) ◦Ad = ρA⊗A ◦ `ω, (3.3)

where ρA⊗A is the diagonal coaction of H on A⊗A, given by the same formula as ρΩ1A. The
covariant derivative D corresponding to Π has the same form as in equation (3.2). Since the
connection Π is strong,

(B ⊗ ρA)(D(a)) = ρΩ1A(D(a)), ∀a ∈ A.
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In view of equation (3.2) this means that

(A⊗ ρA)(a(0)`ω(a(1))) = ρA⊗A(a(0)`ω(a(1))), ∀a ∈ A. (3.4)

Putting equations (3.3) and (3.4) together and using defining properties of the antipode one
obtains

(A⊗ ρA)(a(0)`ω(a(1))) = a(0)`ω(a(1))⊗ a(2), ∀a ∈ A. (3.5)

Since A is a Hopf-Galois extension, the canonical map is bijective. This means that, for
any h ∈ H, there exists h[1] ⊗B h[2] ∈ A ⊗B A (summation assumed) such that 1 ⊗ h =
can(h[1] ⊗B h[2]) = h[1]h[2]

(0) ⊗ h[2]
(1). Hence equation (3.5) implies for all h ∈ H,

(A⊗ ρA)(`ω(h)) = (A⊗ ρA)(h[1]h[2]
(0)`ω(h[2]

(1)))

= h[1]h[2]
(0)`ω(h[2]

(1))⊗ h[2]
(2) = `ω(h(1))⊗ h(2).

Therefore `ω satisfies property (c). Finally one easily verifies that (c) combined with equation
(3.3) imply property (d).

Theorem 3.20. Let A be a comodule algebra of H, set B := AcoH , and assume that the
antipode in H is bijective. Then the following statements are equivalent.

1. There exists ` : H → A⊗A such that

(a) `(1H) = 1A ⊗ 1A,

(b) can ◦ ` = 1A ⊗H (or µA ◦ ` = 1A ◦ εH),

(c) (`⊗H) ◦∆H = (A⊗ ρA) ◦ `,
(d) (H ⊗ `) ◦∆H = (Aρ⊗A) ◦ `.

2. A is a faithfully flat (as a left and right B-module) Hopf-Galois extension.

Proof. (1) =⇒ (2) The inverse of the canonical map is given as the following composite

can−1 : A⊗H A⊗`−−→ A⊗A⊗A µA⊗A−−−−→ A⊗A −→ A⊗B A .

Since ` is a strong connection, A is faithfully flat as a left B-module by Corollary 3.17. By
symmetry, A is a left Hopf-Galois extension, ` is a strong connection for this left Hopf-Galois
extension, hence A is faithfully flat as the right B-module (by the left-handed version of
Corollary 3.17).

(2) =⇒ (1) Since A is faithfully flat as a right B-module, for all left H-comodules V ,
there is a chain of isomorphisms

A⊗B (A�HV ) ' (A⊗B A)�V ' (A⊗H)�HV ' A⊗ V.

The flatness of A as a B-module is crucial for the first isomorphism since, in general, the
cotensor product does not commute with the tensor product. The second isomorphism is
obtained by applying the canonical map. One uses this chain of isomorphisms to argue that
A�H− is an exact functor as follows. Any exact sequence of left H-comodules V →W → 0
yields the exact sequence A ⊗ V → A ⊗ W → 0. By the constructed isomorphism, the
sequence A⊗B (A�HV )→ A⊗B (A�HW )→ 0 is exact, hence also A�HV → A�HW → 0
is an exact sequence by the faithful flatness of A as a right B-module. Hence A�H− is right
exact, and as it is always left exact, it is simply an exact functor.
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For a finitely dimensional rightH-comodule, (V, ρV ), the dual vector space V ∗ := Homk(V, k)
is a left H-comodule. Furthermore,

A�HV
∗ ' HomH(V,A).

This implies that HomH(−, A) is exact, i.e. (A, ρA) is an injective H-comodule. In other
words there is an H-colinear map π : A ⊗ H → A such that π ◦ ρA = A. Denote by AMH

the category with objects left A-modules M that are also right H-comodules with a left
A-linear coaction ρM , provided M ⊗ H is seen as a left A-module by the diagonal action,
a · (m ⊗ h) = a(0)m ⊗ a(1)h. Morphisms are maps which are both left A-linear and right
H-colinear. For every (M,ρM ) ∈ AMH , there is a right H-colinear retraction of the coaction
ρM : M →M ⊗H (i.e. (M,ρM ) is injective as an H-comodule),

πM : M ⊗H →M , m⊗ h 7→ π(1A ⊗ hS−1(m(1)))m(0) .

Note that the bijectivity of the antipode plays here the most crucial role. The existence of πM
implies that every short exact sequence in AMH splits as a sequence in MH . In particular,
can : A ⊗ A → A ⊗H is an epimorphism in AMH , where A ⊗ A and A ⊗H are comodules
with coactions

ρA⊗A(a⊗ a′) = a(0) ⊗ a′ ⊗ a(1),

ρA⊗H(a⊗ h) = a(0) ⊗ h(2) ⊗ a(1)S(h(1)),

and left A-actions provided by the multiplication in A, a · (a′ ⊗ a′′) = aa′ ⊗ a′′, a · (a′ ⊗ h) =
aa′ ⊗ h. Therefore, there is an H-colinear section α : A⊗H → A⊗A of can. The map

s : A→ B ⊗A, a 7→ a(0)α(1A ⊗ a(1)) ,

is a left B-module splitting of the multiplication B⊗A→ A. This shows that A is a projective
left B-module. It remains to construct a section of the multiplication B ⊗ A → A which is
also right H-colinear.

Define a left B-module, right H-comodule map

ϕ : A⊗H → A, a⊗ h 7→ a(0)π(1A ⊗ S(a(1))h).

A left B-module, right H-comodule splitting of the multiplication map B ⊗ A → A is the
composite

σ : A
ρA−→ A⊗H s⊗H−−−→ B ⊗A⊗H B⊗ϕ−−−→ B ⊗A .

This can be checked as follows. Write

s(a) = a(1)︸︷︷︸
∈B

⊗ a(2)︸︷︷︸
∈A

(summation implicit) ,

so that a(1)a(2) = a, and compute

a
σ7−→ a(0)

(1) ⊗ a(0)
(2)

(0)π(1A ⊗ S(a(0)
(2)

(1))a(1))
µA7−→ a(0)

(1)a(0)
(2)

(0)π(1A ⊗ S(a(0)
(2)

(1))a(1))

= (a(0)
(1)a(0)

(2))(0)π(1A ⊗ S((a(0)
(1)a(0)

(2))(1))a(1))

= a(0)π(1A ⊗ S(a(1))a(2))

= aπ(1A ⊗ 1H)
= a,
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where the first equality follows by the left B-linearity of coaction ρA, the second one follows
by the splitting property of s, the third one is the antipode axiom, and the last equality is a
consequence of the fact that the composite π ◦ ρA is the identity on A.

Thus it has been proven that A is a Hopf-Galois extension that is an H-equivariantly
projective left B-module. Theorem 3.16 now implies that there exists a strong connection
and Theorem 3.19 yields the required map `.

Definition 3.21. A comodule algebra of a Hopf algebra H with a bijective antipode which
satisfies conditions in Theorem 3.20 is called a principal comodule algebra.

Principal comodule algebras are a non-commutative version of principal bundles which
retains most of the features of the classical (commutative) objects.

Theorem 3.22 (The difficult part of Schneider’s theorem). Let (A, ρA) be an H-comodule
algebra that is injective as an H-comodule (i.e. there exists a right H-comodule map π :
A ⊗ H → A, such that π ◦ ρA = A). Assume that H has bijective antipode, and that lifted
canonical map can is injective. Then A is a principal comodule algebra.

Proof. Follow the same steps as in the part (2) =⇒ (1) in Theorem 3.20, starting from the
existence of π.

Theorem 3.23. Let A be a principal comodule algebra, B = AcoH . For any finitely dimen-
sional left H-comodule V , the associated B-module Γ := A�HV is finitely generated and
projective.

Proof. By Theorem 3.15 Γ is projective as a left B-module. By arguments in proof of Theo-
rem 3.20 A ⊗B Γ ' A ⊗ V . On the other hand A ⊗ V is finitely generated as an A-module
and A is faithfully flat right B-module, hence Γ is finitely generated as a left B-module.

Put differently, Theorem 3.23 states that a principal comodule algebra defines a functor

A�H− : HMf → BPf (3.6)

form finitely generated H-comodules to finitely generated projective B-modules.
On the other hand, principal comodule algebras can also be understood as monoidal

functors. Start with a right H-comodule algebra (A, ρA) with coaction invariants B. Since
the coaction ρA is right B-linear, there is a right B-action on A�HV defined by(∑

i

ai ⊗ vi

)
· b =

∑
i

aib⊗ vi ,

i.e. A�HV inherits B-bimodule structure from that in A. Both categories – of B-bimodules,
BMB, and left H-comodules, HM – are monoidal, where the monoidal structure in BMB is
the algebraic tensor product over B, while the monoidal structure in HM is

V⊗Wρ : V ⊗W
Vρ⊗Wρ−−−−→ H ⊗ V ⊗H ⊗W H⊗flip⊗W−−−−−−−→ H ⊗H ⊗ V ⊗W µH⊗V⊗W−−−−−−−→ H ⊗W ;

see the comments after the definition of a comodule algebra, Definition 2.9. The functor
A�H− : HM → BMB is lax monoidal. It is monoidal if A is a Hopf-Galois extension such
that A is faithfully flat as a right B-module.

Proposition 3.24 (Schauenburg-Ulbrich). If H has a bijective antipode, then there is a
bijective correspondence between:

36



1. exact monoidal functors HM→B MB ( fibre functors),

2. principal comodule algebras.

Example 3.25. Let A be a Hopf algebra with bijective antipode, and let A π−→ H be a surjective
map of Hopf algebras. Then A is a right H-comodule algebra with the coaction ρA =
(A⊗ π) ◦∆A, and B = AcoH = {a ∈ A | a(1) ⊗ π(a(2)) = a⊗ 1H}. Suppose that there exists
an H-bicomodule map ι : H → A such that π ◦ ι = H and ι(1H) = 1A. Here H is understood
as a left and right H-comodule via the regular coaction ∆H and A is a left H-comodule by
the induced coaction (π ⊗A) ◦∆A. Then the map

` : H → A⊗A, h 7→ S(ι(h)(1))⊗ ι(h)(2),

satisfies conditions (a)–(d) in Theorem 3.20, so A is a principal H-comodule algebra (with a
strong connection `).

Example 3.26. As a particular application of Example 3.25, take A to be the coordinate
algebra of functions on the quantum group SUq(2). A = O(SUq(2)) is generated by the 2×2

matrix of generators
(
α β
γ δ

)
subject to relations

αβ = qβα, αγ = qγα, βγ = γβ, βδ = qδβ, γδ = qδγ, δα− q−1βγ = 1, αδ − qβγ = 1,

where q is a non-zero number. When k is the field of complex numbers and q is real, then
O(SUq(2)) is a ∗-algebra with

α∗ = δ, β∗ = −qγ, γ∗ = −q−1β, δ∗ = α.

The algebra O(SUq(2)) is a Hopf algebra with coproduct given by

∆A(α) = α⊗ α+ β ⊗ γ, ∆A(β) = α⊗ β + β ⊗ δ,
∆A(γ) = γ ⊗ α+ δ ⊗ γ, ∆A(δ) = δ ⊗ δ + γ ⊗ β,

and extended to the whole of O(SUq(2)) as an algebra map. The counit is

εA(α) = εA(δ) = 1, εA(β) = εA(δ) = 0,

and the antipode

S(α) = δ, S(β) = −q−1β, S(γ) = −qγ, S(δ) = α.

Let H = O(U(1)) = k[w,w−1], a commutative Hopf algebra generated by the group-like
elements w, w−1 (cf. Example 2.8). If H is made into a ∗-algebra with w∗ = w−1, then H is
the algebra of polynomials on the circle. One easily finds that, similarly to the classical case,
the (diagonal) map π : O(SUq(2))→ H defined by

π(α) = w, π(δ) = w−1, π(β) = π(γ) = 0,

is a Hopf algebra map. The induced coaction makes A a Z-graded algebra with the grading

deg(a) = deg(c) = 1, deg(b) = deg(d) = −1.

The coaction invariants B = AcoH are simply the degree-zero subalgebra of A. Thus B is
generated by x = −q−1βγ, z = −q−1αβ z∗ = γδ. The elements x and z satisfy relations

zx = q2xz, xz∗ = q2z∗x, zz∗ = q2x(1− q2x), z∗z = x(1− x).
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(The coefficients are chosen so that for the ∗-algebra case x is real and z∗ is the conjugate of
z). An abstract algebra generated by x, z, z∗ and the above relations is called a standard or
polar Podleś or quantum sphere and is denoted by O(S2

q ).
A unital, H-bicolinear map splitting π is defined by

ι : O(U(1))→ O(SUq(2)), ι(1) = 1, ι(wn) = αn, ι(w−n) = δn.

The corresponding strong connection comes out as

`(wn) =
n∑
k=0

(
n

k

)
q−2

γ∗kα∗n−k ⊗ αn−kγk,

`(1) = 1⊗ 1,

`(w∗n) =
n∑
k=0

q2k

(
n

k

)
q−2

αn−kγk ⊗ γ∗kα∗n−k,

where the deformed binomial coefficients are defined for any number ζ by(
n

k

)
ζ

=
(ζn − 1)(ζn−1 − 1) . . . (ζk+1 − 1)

(ζn−k − 1)(ζn−k−1 − 1) . . . (ζ − 1)
.

This example describes a non-commutative version of the Hopf fibration with the Dirac
monopole connection.

References. Brzeziński and Majid [?]; Connes [?]; Cuntz and Quillen [?]; Da̧browski,
Grosse and Hajac [?]; Doi [?]; Schauenburg [?]; Schauenburg and Schneider [?]; Schneider
[?]; Ulbrich [?].
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Chapter 4

Principal extensions and the
Chern-Galois character

In the preceding chapter we have explained how a principal comodule algebra induces a
functor from the category of finite dimensional comodules of a Hopf algebra to the category
of finitely generated and projective modules over the coaction invariant subalgebra. When
restricted to isomorphism classes this functor gives a map from the K-group of the Hopf
algebra to the K-group of the invariant subalgebra. This can be followed by a map to
the cyclic homology (the Chern-Connes character) and thus provides one with homological
methods of studying (invariants of) Hopf-Galois extensions. The composite mapping is known
as the Chern-Galois character and we describe its construction (in a slightly more general
set-up than the Hopf-Galois theory) in this lecture.

4.1 Coalgebra-Galois extensions

One of the main examples of principal bundles in classical geometry is provided by homoge-
nous spaces of a Lie group. The following example shows how the classical construction of
a principal bundle over a homogeneous space is performed in the realm of non-commutative
geometry, and how it forces one to go beyond principal comodule algebras if one wants to
develop fully an example driven approach to non-commutative principal bundles.

Example 4.1. Let A be a Hopf algebra. A subalgebra B ⊆ A such that

∆A(B) ⊂ A⊗B

is called a left A-comodule subalgebra.
If we think of A as of an algebra of functions on a group G, B is an algebra of functions

on a homogeneous space of G.
If A is faithfully flat as a left B-module, one can construct B as a coaction invariant sub-

algebra (this is the non-commutative counterpart of classical identification of a homogeneous
space as a quotient space). First, define

B+ = ker εA ∩B.
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Then J := B+A is a right ideal in A, and a coideal in A, i.e., for all x = ba ∈ J

∆A(ba) = b(1)a(1) ⊗ b(2)a(2)

= ba(1) ⊗ a(2) − b(1)a(1) ⊗ εA(b(2))a(2) + b(1)a(1) ⊗ b(2)a(2)

= ba(1) ⊗ a(2)︸ ︷︷ ︸
∈J⊗A

+ b(1)a(1) ⊗ (b(2) − εA(b(2)))a(2)︸ ︷︷ ︸
∈A⊗J

.

Hence C := A/J is a coalgebra and a right A-module, and π : A → C is a right A-linear
coalgebra epimorphism. Note that J is not an (two-sided) ideal in A, hence in general C is
not a quotient algebra (or Hopf algebra) of A. However, since π is a coalgebra map, A is a
right C-comodule by

ρA = (A⊗ π) ◦∆A.

Define the coaction invariant subalgebra

AcoC := {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)}.

Since ρA is a right A-module map, the coaction invariant subalgebra can be equivalently
described as

AcoC = {b ∈ A | ρA(b) = bρA(1A)}.

Note that, for all b ∈ B,

ρA(b) = b(1) ⊗ π(b(2)) = b⊗ π(1A) + b(1) ⊗ π(b(2) − ε(b(2))︸ ︷︷ ︸
∈B+⊆J

) = b⊗ π(1A),

so B ⊆ AcoC . Faithful flatness implies also that AcoC ⊆ B, that is A is an extension of B
by a coalgebra C, but not necessarily by a bialgebra or a Hopf algebra, as one would naively
expect guided by the classical geometric intuition. The reasons why the non-commutative
geometry is reacher (or less rigid) than the classical one lie in the Poisson geometry and the
reader is referred to lectures by N. Ciccoli [Pawle, prosze sprawdz!].

The description of quantum homogeneous spaces as invariant subalgebras in Example 4.1
justifies a generalisation of Hopf-Galois extensions in which the symmetry is given by a
coalgebra rather than a Hopf algebra.

Definition 4.2. Let C be a coalgebra and let (A, ρA) be a C-comodule. Set

B = AcoC := {b ∈ A | for all a ∈ A, ρA(ba) = bρA(a)} .

A is called a coalgebra-Galois extension if the canonical left A-linear right C-colinear
map

can: A⊗B A→ A⊗ C , a⊗B a′ 7→ aρA(a′) ,

is bijective.

Although C in a coalgebra-Galois extension does not need to be an algebra (or have an
algebra structure compatible with the coaction and the algebra structure of A), nevertheless
the fact that A is an algebra gives some more information about C. In particular, since A⊗BA
is an A-coring (see Section 2.5), also A ⊗ C can be made an A-coring via the isomorphism
can. The coproduct in A⊗B A is transported to a coproduct in A⊗ C as

∆A⊗C : A⊗ C → (A⊗ C)⊗A (A⊗ C) ' A⊗ C ⊗ C, ∆A⊗C = A⊗∆C .
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Furthermore, the right A-module structure on A ⊗B A induces a right A-module structure
on A⊗ C,

(1A ⊗ c) · a = can(can−1(1A ⊗ c)a).

Define
ψ : C ⊗A→ A⊗ C, c⊗ a 7→ can(can−1(1A ⊗ c)a).

The map ψ is called a canonical entwining associated to the coalgebra-Galois extension
B ⊆ A. The word entwining means that ψ makes the following bow-tie diagram commute

C ⊗A⊗A

ψ⊗A

~~}}}}}}}}}}}}}}}}}}}
C⊗µA

&&NNNNNNNNNNN C ⊗ C ⊗A

C⊗ψ

  BBBBBBBBBBBBBBBBBBB

C ⊗A

∆C⊗A
77ppppppppppp

εC⊗A

''NNNNNNNNNNNN

ψ

��

A⊗ C ⊗A

A⊗ψ

  AAAAAAAAAAAAAAAAAAA C

C⊗1A
88pppppppppppp

1A⊗C &&NNNNNNNNNNNN A C ⊗A⊗ C

ψ⊗C

~~|||||||||||||||||||

A⊗ C
A⊗εC

77pppppppppppp

A⊗∆C ''NNNNNNNNNNN

A⊗A⊗ C
µA⊗C

88ppppppppppp
A⊗ C ⊗ C.

The commutativity of this bow-tie diagram for the canonical entwining can be checked by
relating A ⊗ C to the Sweedler coring A ⊗B A. In particular the right pentagon and the
right triangle are a consequence of the definition of ψ in terms of right A-action on A ⊗ C,
while the left pentagon and triangle are responsible for right A-linearity of comultiplication
A⊗∆C . An entwining is a special case of a (mixed) distributive law.

Lemma 4.3. In a coalgebra-Galois extension B ⊆ A,

ρA(aa′) = a(0)ψ(a(1) ⊗ a′), for all a, a′ ∈ A,

where ψ is the canonical entwining. This means that (A, ρA) is an entwined module (a
comodule of A-coring A⊗ C).

Proof. This is checked by the following calculation which uses the left linearity of can and
can−1, and the definition of can,

a(0)ψ(a(1) ⊗ a′) = a(0) can(can−1(1⊗ a(1))a
′)

= can(can−1(a(0) ⊗ a(1))a
′) = can(1B ⊗B aa′) = ρA(aa′).

Lemma 4.3 provides one with an explicit form of the coaction in terms of the canonical
entwining

ρA(a) = 1A(0)ψ(1A(1) ⊗ a).

To simplify further discussions, we will assume that there is a grouplike element e ∈ C such
that

ρA(1A) = 1A ⊗ e, so ρA(a) = ψ(e⊗ a).

This is, for example, applicable to quantum homogeneous spaces described in Example 4.1,
where e = π(1A).
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Lemma 4.4. The coaction invariant subalgebra of A can be equivalently described as

B = {b ∈ A | ρA(b) = b⊗ e}.

Proof. If b ∈ AcoC , then ρA(b) = bρA(1A) = b⊗ e. If ρA(b) = b⊗ e, then, for all a ∈ A,

ρA(ba) = b(0)ψ(b(1) ⊗ a) = bψ(e⊗ a) = bρA(a).

Example 4.5. Let H be a Hopf algebra, and let (A, ρA) be a Hopf-Galois extension. Then the
right action in the A-coring A⊗H induced from A⊗BA is given by (a′⊗h)a = a′a(0)⊗ha(1),
hence

ψ : H ⊗A→ A⊗H, h⊗ a 7→ a(0) ⊗ ha(1).

Note that this ψ is bijective if and only if the antipode S is bijective. Then

ψ−1(a⊗ h) = hS−1a(1) ⊗ a(0).

4.2 Principal extensions

While defining principal comodule algebras we assumed that the Hopf algebra has a bijective
antipode. Example 4.5 indicates that this assumption translates to coalgebra-Galois exten-
sions into the bijectivity of the canonical entwining ψ. If ψ is bijective, then A is a left
C-comodule by

Aρ : A→ C ⊗A , a 7→ ψ−1(a⊗ e) (e ∈ C such that ρA(1A) = 1A ⊗ e).

Definition 4.6. Let B ⊆ A be a coalgebra-Galois extension by a coalgebra C, with a bijective
canonical entwining map ψ : C ⊗A→ A⊗ C. Assume that ρA(1A) = 1A ⊗ e for a grouplike
element e ∈ C. A k-linear map ` : C → A⊗A such that

(a) `(e) = 1A ⊗ 1A,
(b) µA ◦ ` = 1A ◦ εC ,
(c) (A⊗ ρA) ◦ ` = (`⊗ C) ◦∆C ,
(d) (Aρ⊗A) ◦ ` = (C ⊗ `) ◦∆C ,

is called a strong connection in B ⊆ A. A coalgebra extension with a strong connection is
called a principal extension.

Following the same reasoning as in the principal comodule algebra case one proves

Proposition 4.7. Let B ⊆ A be a principal extension. Then

1. A is a C-equivariantly projective left (or right) B-module (i.e. there is a B-module,
C-comodule splitting of the product map B ⊗A→ A).

2. A is a faithfully flat left (or right) B-module.

3. B is a direct summand in A as a left B-module.

In terms of a strong connection the left B-comodule right C-comodule splitting of the
multiplication map is s(a) = a(0)`(a(1)).

Proposition 4.8. Let B ⊆ A be a principal extension. If (V, Vρ) is a finite dimensional left
C-comodule, then Γ := A�CV is a finitely generated and projective left B-module.
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Proof. One can follow the same arguments as in the case of a principal comodule algebra.
The module Γ has a connection Γ 3 a⊗v 7→ 1A⊗a⊗v−a(0)`(a(1))⊗v, hence it is a projective
B-module. Consider the sequence of isomorphisms

A⊗B (A�CV ) ' (A⊗B A)�CV ' (A⊗ C)�CV ' A⊗ V .

Since A ⊗ V is a finitely generated left A-module and B is a faithfully flat right B-module,
Γ := A�CV is a finitely generated left B-module.

In view of Proposition 4.8, a principal extension B ⊆ A can be understood as a functor

A�C− : CMf →B Pf

from the category of finite dimensional C-comodules to the category of finitely generated
projective B-modules. Passing to the Grothendieck group one obtains a map

Rep(C)→ K0(B) ch−→ HCev(B),

where Rep(C) is the Grothendieck group of equivalence classes of finite dimensional comodules
of C, ch denotes the Chern character, and HCev(B) is the even cyclic homology of B. This
composite map is known as the Chern-Galois character and we will describe it presently.

4.3 Cyclic homology of an algebra and the Chern character

We begin by describing a cyclic homology of an algebra and the Chern character. For any
algebra B, consider a bicomplex CC•(B):

...
∂3

��

...
−∂′3
��

...
∂3

��

...
−∂′3
��

B⊗3

∂2
��

B⊗3
τ̃2oo

−∂′2
��

B⊗3
N2oo

∂1
��

B⊗3
τ̃2oo

−∂′2
��

. . .N2oo

B⊗2

∂1
��

B⊗2
τ̃1oo

−∂′1
��

B⊗2
N1oo

∂1
��

B⊗2
τ̃1oo

−∂′1
��

. . .N1oo

B B
τ̃0oo B

N0oo B
τ̃0oo . . . ,N0oo

where

∂′n(b0 ⊗ b1 ⊗ · · · ⊗ bn) =
n−1∑
i=0

(−1)ib0 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn,

∂n(b0 ⊗ b1 ⊗ · · · ⊗ bn) = ∂′n(b0 ⊗ b1 ⊗ · · · ⊗ bn) + (−1)nbnb0 ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bn−1,

τn(b0 ⊗ · · · ⊗ bn) = (−1)nbn ⊗ b0 ⊗ · · · ⊗ bn−1,

τ̃n = B⊗(n+1) − τn,

Nn =
n∑
i=0

(τn)i.
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The homology of the bicomplex CC•(B) is known as the cyclic homology of B and is
denoted by HC•(B). In case k is a field of characteristic 0, the cyclic homology can be
equivalently described as the homology of the Connes complex of B defined as

Cλ
n(B) := B⊗(n+1)/(id− τn),

boundary: δn := the quotient of ∂n.

It is denoted by Hλ(B). The Chern and Chern-Galois characters can be defined with respect
to either of these homologies, hence – for the convenience of the reader – we will describe
both these constructions in parallel. The Chern character is a map ch: K0(B) → HCev(B)
defined as follows. Take a class [P ] ∈ K0(B) of a finitely generated projective B-module P .
P has a finite dual basis, say xi ∈ P , πi ∈ B Hom(P,B), i = 1, . . . , n. Since, for all p ∈ P ,

p =
n∑
i=1

πi(p)xi,

the matrix E := (Eij)ni,j=1 := (πj(xi))ni,j=1 is an idempotent with image P . With the idem-
potent E one associates a 2n-cycle in CC•(B). First define

c̃hn(E) :=
∑

i1,i2,...,in+1

Ei1i2 ⊗ Ei2i3 ⊗ · · · ⊗ Ein+1i1 ,

and then 2n-cycle
2n⊕
l=0

(−1)b
l
2
c l!
b l2c!

c̃hl(E).

The class of this 2n-cycle does not depend on the choice of P or E in [P ]. Hence it defines
an abelian group map

ch: K0(B)→ HCev(B),

known as the Chern character.
In the case of the Connes complex, with the idempotent E one associates a 2n-cycle in

Cλ
•(B) by taking the quotient of

c̃h2n(E) :=
∑

i1,i2,...,i2n+1

Ei1i2 ⊗ Ei2i3 ⊗ · · · ⊗ Ei2n+1i1 .

Note that similar construction for even number of factors yields 0 ∈ Cλ
•(B). The class of this

2n-cycle does not depend on the choice of E or P in [P ]. It is also compatible with the direct
sums of P ’s and additive structure of Cλ

•(B). Hence it defines an abelian group map

ch: K0(B)→ Hλ
ev(B),

also known as the Chern character.
If B = C∞(X), then

ch: K0(X)→ Hev
dR(X), [E] 7→ Tr(EdE . . . dE),

which is simply the Chern character in differential geometry.
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4.4 The Chern-Galois character

Let B ⊆ A be a principal extension by a coalgebra C. Take a strong connection ` and
introduce a Sweedler-type notation for `,

`(c) = c〈1〉 ⊗ c〈2〉. (4.1)

Let (V, Vρ) be a finite dimensional left C-comodule with a basis {vi}. This defines an n× n
matrix of elements (eij)ni,j=1 by

Vρ(vi) =
n∑
j=1

eij ⊗ vj .

The trace of (eij)ni,j=1 is known as a character of the comodule V . The coassociativity of Vρ
implies that (eij) is a coidempotent matrix, i.e.,

∆C(eij) =
n∑
l=1

eil ⊗ elj , εC(eij) = δij , i, j = 1, . . . , n.

Lemma 4.9. For any c ∈ C,

`(c(1))`(c(2)) ∈ A⊗B ⊗A.

Proof. Use the introduced notation for the strong connection (4.1) and apply A⊗ ρA ⊗A to
`(c(1))`(c(2)) to obtain

c(1)
〈1〉 ⊗ ρA(c(1)

〈2〉c(2)
〈1〉)⊗ c(2)

〈2〉 = c(1)
〈1〉 ⊗ c(1)

〈2〉
(0)ψ(c(1)

〈2〉
(1) ⊗ c(2)

〈1〉)⊗ c(2)
〈2〉

= c(1)
〈1〉 ⊗ c(1)

〈2〉ψ(c(2) ⊗ c(3)
〈1〉)⊗ c(3)

〈2〉

= c(1)
〈1〉 ⊗ c(1)

〈2〉ψ(Aρ(c(2)
〈1〉))⊗ c(2)

〈2〉

= c(1)
〈1〉 ⊗ c(1)

〈2〉ψ(ψ−1(c(2)
〈1〉 ⊗ e))⊗ c(2)

〈2〉

= c(1)
〈1〉 ⊗ c(1)

〈2〉c(2)
〈1〉 ⊗ e⊗ c(2)

〈2〉.

The first equality follows by the entwined module property of A, Lemma 4.3, the second one
is the right colinearity of ` (condition (c) in Definition 4.6). The third equality follows by
condition (d) in Definition 4.6 (left C-colinearity of a strong connection), next one is the
definition of left coaction Aρ. Finally, employ Lemma 4.4 to conclude that the middle term
in `(c(1))`(c(2)) is an element of the coaction invariant subalgebra.

Next we describe the Chern-Galois character in Connes’ complex.

Theorem 4.10. Given a finite dimensional C-comodule V and the corresponding coidempo-
tent matrix e = (eij)ni,j=1, define

c̃hgn(e) :=
∑

i1,i2,...,in+1

ei1i2
〈2〉`(ei2i3)`(ei3i4)`(ei3i4) . . . `(ein+1i1)ei1i2

〈1〉 ∈ B⊗(n+1).

Then c̃hg2n(e) is a 2n-cycle in Cλ(B), c̃hg2n+1(e) = 0. It does not depend on the choice of
a basis for V and it is the same for isomorphic comodules.
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Proof. Note that c̃hgn(e) is an element of B⊗(n+1) by Lemma 4.9. An easy calculation that
uses µA ◦ ` = 1A ◦ εC gives

∂2n(c̃hg2n(e)) = −c̃hg2n−1(e).

Since
τ2n−1(c̃hg2n−1(e)) = −c̃hg2n−1(e),

c̃hg2n−1(e) = 0 in Cλ(B). Thus c̃hg2n(e) is a 2n-cycle in Cλ(B).
The c̃hg2n(e) do not depend on the choice of basis and a representative in the isomorphism

class of comodules, since they are defined only using the character of the comodule V , tr(e) =∑
i eii.

Similarly in the full cyclic bicomplex

Theorem 4.11. Given a finite dimensional C-comodule V and the corresponding coidempo-
tent matrix e = (eij)ni,j=1, define

ĉhg2n :=
2n⊕
l=0

(−1)b
l
2
c l!
b l2c!

c̃hgl(e).

Then ĉhg2n is a 2n-cycle in CC•(B), and it does not depend on the choice of a basis for V
and is the same for isomorphic comodules.

Proof. Since µA ◦ ` = 1A ◦ εC , one finds

Nn(c̃hgn(e)) = (n+ 1)c̃hgn(e),

∂n(c̃hgn(e)) = c̃hgn−1(e), if n is even,

∂′n(c̃hgn(e)) = c̃hgn−1(e),

τ̃n(c̃hgn(e)) = 2c̃hgn(e) if n is odd.

This implies that ĉhg2n is a cycle in CC•(B) as claimed.
A representative in the isomorphism class of comodules does not depend on the choice of

basis, since it is defined only using the character of the comodule V , tr(e) =
∑

i eii.

The cycles constructed in Theorem 4.10 or Theorem 4.11 might depend on the choice of
a strong connection (at least their form explicitly depends on this choice). The full indepen-
dence is achieved by going to homology.

Theorem 4.12. The class of the Chern-Galois cycle ĉhg2n(e) (or c̃hg2n(e) in the case of the
Connes complex) defines a map of abelian groups

chg : Rep(C)→ HCev(B) , (4.2)

known as the Chern-Galois character of the principal extension B ⊆ A. The Chern-Galois
character is independent of the choice of a strong connection.

Proof. The independence of chg on the choice of ` follows by observing that there is a fac-
torisation

Rep(C)
chg //

A�C− %%JJJJJJJJJ
HCev(B)

K0(B)
ch

99ssssssssss
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in which both factors are independent of `.
In more detail, an idempotent for the left B-module Γ = A�CV is

E = (E(i,p),(j,q)) := ϕ(lp(eij)xq)(i,p),(j,q),

where ϕ is a left B-module retraction of B ⊆ A, which exists since B is a direct summand
in A, (eij) is the coidempotent matrix defining the comodule V , {xq} is a finite basis of the
subspace of A generated by the eij〈1〉ν , where ν is a summation index in `(c) =

∑
ν c
〈1〉

ν⊗c〈2〉ν .
Finally, `p = (ξp ⊗A) ◦ `, where {ξp} is a dual basis to {xq}. Then

c̃hgn(e) = c̃hn(E).

This justifies the stated factorisation property.

4.5 Example: the classical Hopf fibration

We illustrate the construction of the Chern-Galois character on the classical example of the
Hopf fibration. The reader is encouraged to compare this example with its non-commutative
counterpart described in Example 3.26. In this example we take k = C, and

SU(2) =
{
M =

(
w −z̄
z w̄

)
| w, z ∈ C, det(M) = 1

}
.

The condition det(M) = 1 means that |w|2 + |z|2 = 1, i.e. SU(2) is a 3-sphere.
The algebra of functions on SU(2), O(SU(2)) is generated by

a : M 7→ w, c : M 7→ z, a∗ : M 7→ w̄, c∗ : M 7→ z̄,

with the relation
(aa∗ + cc∗)(M) = ww̄ + zz̄ = 1.

Hence
A := O(SU(2)) = C[a, a∗, c, c∗]/(aa∗ + cc∗ = 1).

There is an action of the group U(1) (the unit circle {u ∈ C | |u|2 = 1}) on SU(2):(
w −z̄
z w̄

)
· u =

(
wu −zu
zu wu

)
.

The algebra O(U(1)) is generated by

x : u 7→ u, x∗ : u 7→ ū,

with the relation xx∗ = x∗x = 1. Hence

O(U(1)) = C[x, x∗]/(xx∗ = x∗x = 1).

As a Hopf algebra

H := O(U(1)) = C[Z], xn 7→ n, x∗n = x−n 7→ −n.

A comodule of O(U(1)) can be viewed as a Z-graded vector space. In particular, the algebra
O(SU(2)) is Z-graded, deg(a) = deg(c) = 1, deg(a∗) = deg(c∗) = −1. In fact it is strongly
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graded, that is O(SU(2)) is a Hopf-Galois extension by O(U(1)). Invariant subalgebra B is
a degree 0 part generated by the following three polynomials

ξ := aa∗ − cc∗, η := ac∗ + ca∗, ζ := i(ac∗ − ca∗),

satisfying ξ2 + η2 + ζ2 = 1. This means that B is an algebra of functions on the two-sphere,
B = O(S2).

Since SU(2) is a group, A = O(SU(2)) is a Hopf algebra with comultiplication

∆A(a) = a⊗ a∗ − c∗ ⊗ c, ∆A(c) = c⊗ a+ a∗ ⊗ c.

The Z-grading comes from the Hopf algebra map

π : A→ H, π(a) = x, π(a∗) = x∗, π(c) = π(c∗) = 0.

The algebra O(S2) is an algebra of functions on a homogenous space. The connection is
determined by an H-colinear map (see Example 3.25)

ι : H = O(U(1))→ O(SU(2)) = A, xn 7→ an, x∗n 7→ a∗n, 1 7→ 1.

The resulting strong connection form, `(x) = a∗da + c∗dc, is known as the Dirac monopole
connection

To compute the Chern-Galois character (for line bundles), take smooth functions on SU(2)
and define

A := Ĉ(SU(2)) = {f ∈ C∞(U(2)) | ρ̂(f) ∈ C∞(SU(2))⊗O(U(1))}

=
⊕
n∈Z

C∞n (SU(2)),

where ρ̂(f)(x, g) = f(xg), and C∞n (SU(2)) is the algebra of smooth functions on S2 and all
polynomials of Z-degree n on SU(2) (recall that O(SU(2)) is a strongly Z-graded algebra).
Then Ĉ(SU(2)) is a Hopf-Galois extension of B := C∞(S2) by H = O(U(1)) ' C[Z].

For any n ∈ Z, take a one-dimensional left H-comodule (Vn,Vnρ) with coaction

Vnρ(v) := xn ⊗ v.

Then
Γ−n = Ĉ(SU(2))�O(U(1))Vn = C∞n (SU(2))

is a line bundle over S2. The idempotents for Γ−n coming from the strong connection induced
by ι can be written explicitely. For example, for Γ−1,

E−1 =
(
aa∗ ac∗

cA∗ cc∗

)
= 1

2

(
1 + ξ η − iζ
η + iζ 1− ξ

)
.

Furthermore, the Chern-Galois character is given by the following diagram

Rep(U(1)) = Rep(O(U(1))) // K0(C∞(S2)) // Hλ
ev(C

∞(S2))

��
K0(S2) // HdR(S2) .
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In particular, the first two terms of the Chern (or Chern-Galois) character come out as

Tr(E−1) = 1,
Tr(E−1dE−1dE−1) = 1

2(ξdη ∧ dζ + ηdζ ∧ dξ + ζdξ ∧ dη).

Integration over the sphere S2 gives the Chern number

ch(Γ−1) =
1

2πi

∫
S2 Tr(E−1dE−1dE−1) = −1.

Similarly, for Γ−n we compute

ch(Γ−n) =
1

2πi

∫
S2 Tr(EndEndEn) = −n.

References. Beck [?]; Böhm and Brzeziński [?]; Brzeziński and Hajac [?]; Brzeziński and
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