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This article arose from a series of three lectures given at the Banach
Center, Warsaw, during the period of 24 March to 13 April, 2003.

Morse functions are useful tool to reveal the geometric formation of its
domain manifolds M. They indicate the handle decompositions of M from
which the additive homologies H, (M) may be constructed. In these lectures
two further issues were emphasized.

(1) How to find a Morse function on a given manifold?

(2) From Morse functions can one derive the multiplicative cohomology
rather than the additive homology?”

Without attempting to a thorough study of the questions, the aim of these
talks is to present the audience concrete examples showing the perspectives
that these questions might lead us to.

I am very grateful to Piotr Pragacz for arranging me the opportunity to
speak of the wonder that I have experienced with Morse functions, and for
his hospitality during my stay in Warsaw. Thanks are also due to Dr. Marek
Szyjewski, who took the notes from which the present article was initiated.

1 Computing homology: a classical method

There are many ways to introduce Morse Theory. However, 1'd like to present
it in the realm of effective computation of homology (cohomology) of mani-
folds.
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Homology theory is a bridge between geometry and algebra in the sense
that it assigns to a manifold M a graded abelian group H,(M) (graded ring
H*(M)), assigns to a map f : M — N between manifolds the induced
homomorphism

fo: Hi(M) — H.(N) (resp. f*: H*(N) — H*(M)).
During the past century this idea has been widely applied to translate geo-
metric problems concerning manifolds and maps to problems about groups
(or rings) and homomorphisms, so that by solving the latter in the well-
developed framework of algebra, one obtains solutions to the problems initi-
ated from geometry.

The first problem one encounters when working with homology theory is
the following one.

Problem 1. Given a manifold M, compute H,(M) (as a graded abelian
group) and H*(M) (as a graded ring).

We begin by recalling a classical method to approach the additive homol-
ogy of manifolds.

1-1. Homology of a cell complex

The simplest geometric object in dimension n, n > 0, is the unit ball in
the Euclidean n-space R" = {z = (z1,--- ,x,) | x; € R}
D" ={z e R"| |l|* < 1}.
which will be called the n-dimensional disk (or cell) . Its boundary presents

us the simplest closed (n — 1) dimensional manifold, the (n — 1) sphere:
St = 9p" = {x e R" | ||z||* = 1}.
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Figure 1. Cells of small dimension n=1,2,3

Let f: S ! — X be a continuous map from S"~! to a topological space
X. From f one gets

(1) an adjunction space X; = X U; D" =X UD"/y e S ' ~ f(y) € X,
called the space obtained from X by attaching an n-cell using f.
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Figure 2, Attaching a cell

(2) a homology class f.[S™™'] € H,_;(X;Z) which generates a cyclic
subgroup of H,_1(X;Z): ay = (f.[S""Y]) C H,_1(X;Z).

We observe that the integral homology of the new space X Uy D" can be
computed in terms of H,(X;Z) and its subgroup ay.
Theorem 1. Let X; = X Uy D". Then the inclusion 7 : X — X
1) induces isomorphisms Hy(X;Z) — Hy(Xs; Z) for all k # r,r — 1;
2) fits into the short exact sequences
0—a; — H, 1(X;Z) > H, 1(X;Z) — 0
N . 0if |ag| = o0
0= H(XG2) = H (X5 Z) = { Z — 0if |ag| < oo.
Proof. Substituting in the homology exact sequence of the pair (X, X)
o Oif E#
Hk(XfaXaZ> - { T itk =r
and noticing that the boundary operator maps the generator of H, (X, X;Z)
=Z to f.[S""!], one obtains (1) and (2) of the Theorem.[]

Definition 1.1. Let X be a topological space. A cell-decomposition of
X is a sequence of subspaces Xg C X; C --- C X,,_1 C X,, = X so that

1) Xo consists of finite many points Xo = {p1, -, pi};

2) Xy = Xy_1 Uy, D™ where f; : D™ = S™~! — X} _; is a continuous
map.

Moreover, X is called a cell complex if a cell-decomposition of X exists.

Two comments are ready for the notion of cell-complex X.

(1) It can be build up using the simplest geometric objects D", n =
1,2,--- by repeatedly applying the same construction as “attaching cell”;

(2) Its homology can be computed by repeatedly applications of the single
algorithm (i.e. Theorem 1).

The concept of cell-complex was initiated by Ehresmann in 1933-1934.
Suggested by the classical work of H. Schubert in algebraic geometry in 1879



[Sch], Ehresmann found a cell decomposition for the complex Grassmannian
manifolds from which the homology of these manifolds were computed [Eh].
The cells involved are currently known as Schubert cells (varieties) [MS].

In 1944, Whitehead [Wh] described a cell decomposition for the real
Stiefel manifolds (including all real orthogonal groups) for the purpose to
compute the homotopy groups of these manifolds, where the cells were called
the normal cells by Steenrod [St] or Schubert cells by Dieudonné [D, p.226].
In terms of this cell decompositions the homologies of these manifolds were
computed C. Miller in 1951 [M]. We refer the reader to Steenrod [St] for the
corresponding computation for complex and quaternionic Stiefel manifolds.

While recalling the historical events that finding a cell decomposition of
a manifold was a classical approach to computing the homology, it should
be noted that it is generally a difficult and tedious task to find (or to de-
scribe) a cell-decomposition for a given manifold. We are looking for simpler
alternatives.

1-2. Attaching handles (Construction in manifolds)

“Attaching cells” is a geometric procedure to construct topological spaces
by using the elementary geometric objects D", r > 0. The corresponding con-
struction in manifolds are known as “attaching handles” or more intuitively,
“attaching thickened cells”.

Let M be an n-manifold with boundary N = M, and let f : S""! — N
be a smooth embedding of an (r — 1)-sphere whose tubular neighborhood in
N is trivial: T(S™1) = §™~! x D"™". Of course, as in the previous section,
one may form a new topological space My = M Uy D" by attaching an r-cell
to M by using f. However, the space My is in general not a manifold!
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Figure 3: Attaching cells using embedding
f: S+ oM CM



Nevertheless, one may construct a new manifold M  which contains the
space My as a “strong deformation retract” by the procedure below.
Step 1. To match the dimension of M, thicken the r-disc D" by taking
product with D"
D" x 0 C D" x D" (a thickened r-disc)
and note that (D™ x D"™) = S""! x DU D" x S" L,
Step 2. Choose a diffeomorphism
STl x DV (C D" x D" L T(ST) c M
that extends f in the sense that ¢ | S™™! x {0} = f;
Step 3. Gluing D" x D™" to M by using ¢ to obtain M = M Uy, D" X
D,
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Figure 4. Attaching handles (thickened cells):
the resulting space M’ is 2 manifold.

Step 4. Smoothing the angles [M3].

Definition 1.2. M’ is called the manifold obtained from M by adding
a thickened r—cell with core Mjy.

Remark. The homotopy type (hence the homology) of M depends on
the homotopy class [f] € m.—1(M) of f.

The diffeomorphism type of M depends on the isotopy class of the em-
bedding f (with trivial normal bundle), and a choice of ¢ € m,.(SO(n —r)).

Inside M' = M U, D™ x D" one find the submanifold M C M " as well
as the subspace M; = M Uy D" x {0} C M' = M U, D" x D™ in which the
inclusion j : My — M " is a homotopy equivalence. In particular, j induces
isomorphism in every dimension



Hy(My,Z) — Hp(M';Z), k > 0.
Consequently, the integral cohomology of the new manifold M’ can be ex-
pressed in terms of that of M together with the class f.[S""'] € H,_1(M;Z)
by Theorem 1.
Corollary. Let M’ be the manifold obtained from M by adding a thick-
ened r—cell with core M;. Then the inclusion i : M — M’
1) induces isomorphisms Hy(M;Z) — Hy(M';Z) for all k # r,r — 1;
2) fits into the short exact sequences
0—af— H,(M;Z) — H,_;(M';Z) — 0

. 2 0if fay| = oo
0— H.(M;Z) — H.(M ;Z) — { Z — 0if |a] < oo.

Definition 1.3. Let M be a smooth closed n-manifold (with or without
boundary). A handle decomposition of M is a filtration of submanifolds
MicM,C---CM,-1 CM,, =M so that
(2) My is a manifold obtained from M)}, by attaching a thickened ry-cell,
e < n.

If M is endowed with a handle decomposition, its homology can be com-
puted by repeatedly applications of the corollary
Now, Problem 1 can be stated in geometric terms.

Problem 2. Let M be a smooth manifold.

(1) Does M admits a handle decomposition?;

(2) If yes, find one.

2 Elements of Morse Theory

Using Morse function we prove, in this section, the following result which
answers (1) of Problem 2 affirmatively.

Theorem 2. Any closed smooth manifold admits a handle decomposi-
tion.

2-1. Study manifolds by using functions: the idea

Let M be a smooth closed manifold of dimension n and let f : M — R
be a non-constant smooth function on M. Put

a=min{f(z) |z € M}, b =max{f(x) | x € M}.
Then f is actually a map onto the interval [a, b].



Intuitively, f assigns to each point © € M a height f(x) € [a,b]. For a
¢ € (a,b), those points on M with the same height ¢ (i.e. L. = f(c)) form
the level surface of f at level c. It cuts the whole manifold into two parts

M= M-UM
with

M; ={x e M| f(z) < c} (the part below L.)

M ={xe M| f(z) > c} (the part above L.)
and with L, = M_ N M}.

T A
Figure 5. The level surface Le cuts M into two parts.

In general, given a sequence of real numbers a =¢; < --- < ¢, = b, the
m — 2 level surfaces L.,, 2 <i < m — 1, defines a filtration on M
(A) M1CM2C"'CMm_1CMm:M,
with M; = M.

Our aim is to understand the geometric construction of M (rather than
the functions on M). Naturally, one expects to find a good function f as
well as suitable reals a = ¢; < ¢ < -+- < ¢, = b so that

(1) each M; is a smooth manifold with boundary Le,;

(2) the change in topology between each adjoining pair My C My is as
simple as possible.

If this can be done, we may arrive at a global picture on the construction of
M.

Among all smooth functions on M, Morse functions are the ones suitable

for this purpose.

2-2. Morse functions

Let f : M — R be a smooth function on a n-dimensional manifold M
and let p € M be a point. In a local coordinates (x1,--- ,x,) centered at p
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(i.e. a Euclidean neighborhood around p) the Taylor expansion of f near p
reads
floy, o mp) =a+ ¥ b+ X cymizy+o(|z]),
1<i,j<n

1<i<n

Figure 6 a Euclidean neighborhood around

a point pEM
in which
a = f(0);
bi = 52-(0), 1 <@ < n; and

Let T,M be the éangent space of M at p. The n x n symmetric matrix,
Ho(f) = (¢ij) : T,M x T,M — R (resp. T,M — T,,M)

called the Hessian form (resp. Hessian operator) of f at p, can be brought

into diagonal form by changing the linear basis {8%1, cee %} of T,M

Ho(f) = (cij) ~0s® (—1.) & (Ly), s+r+t=n.

Definition 2.1. p € M is called a critical point of f if at where b; =0
for all 1 <¢ <n. Write Xy for the set of all critical points of f.

A critical point p € Xy is called non-degenerate if at where s = 0. In this
case the number r is called the index of p (as a non-degenerate critical point
of f), and will be denoted by r = Ind(p).

f is said to be a Morse function on M if its all critical points are non-
degenerate.

The three items “critical point”, “non-degenerate critical point” as well
as the “index” of a nondegenerate critical point specified in the above are
clearly independent of the choice of local coordinates centered at p. Two
useful properties of a Morse function are given in the next two lemmas.

Lemma 2.1. If M is closed and if f is a Morse function on M, then X
is a finite set.

Proof. The set ¥; admits an intrinsic description without referring to
local coordinate systems.

The tangent map T'f : TM — R of f gives rise to a cross section oy :
M — T*M for the cotangent bundle 7 : T"M — M. Let 0 : M — T*M
be the zero section of w. Then ¥y = o7 '[o(M)]. f is a Morse function is
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equivalent to the statement that the two embeddings oy, 0 : M — T M have
transverse intersection.[]

Lemma 2.2 (Morse Lemma, cf. [H; p.146]). If p € M is a non-
degenerate critical point of f with index r, there exist local coordinates
(21, ,x,) centered at p so that

fly- o) = f0)= 3 x 24 L a2

r<i<n
(i.e. the standard nondegenerate quadratic function of index r).

Proof. By a linear coordinate change we may assume that

2
(2(0) = (=) & ().
Applying the fundamental Theorem of calculus twice yields the expansion

B)  f(z1, @) = f(0)+ lgg;‘,gnxiijij(m)

in which

fo 0 895 895 (stxy, .-, stx,)dtds.
The famlly of matrix B(z) = (b;;(z)), € U, may be considered as a smooth
map
B:U —R" 2 (=the vector space of all n x n symmetric matrices).
with B(0) = (=1,) ® (I,—), where U C M is the Euclidean neighborhood
centered at p. It follows that
“there is a smooth map P : U — GL(n) so that in some neighborhood
Vof 0eU,
B(x) = P(x){(=1;) ® (In—)} P(x)" and P(0)
With this we infer from (B) that, for x = (21, ,z,)
f() = £(0) + 2B(x)a” = £(0) + 2P(@){(~1,)
It implies that if one makes the coordinate change
(yh T 7yn) = (xlv T ,xn)P(x)
on a neighborhood of 0 € U then one gets

r<i<n

o
® (I )} Py

2-3. Geometry of gradient flow lines

The first information we can derive directly from the definition of a Morse
function f : M — R consists of

(1) the set ¥ of critical points of f;

(2) the index function Ind : ¥y — Z.

Equip M with a Riemannian metric so that the gradient field of f
v=grad(f): M — TM,
is defined. One of the very first thing that one learns from the theory of
ordinary differential equations is that, for each x € M, there exists a unique
smooth curve ¢, : R — M subject to the following constraints
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(1) the initial condition: ¢,(0) = x;
(2) the ordinary differential equation:d%p = v(p.(t));
(3) ¢, varies smoothly with respect to z € M in the sense that

‘the map ¢ : M x R — M by (z,t) — ¢.(t) is smooth and, for every
t € R, the restricted function ¢ : M x {t} — M is a diffeomorphism.”

Definition 2.2. For x € M let J, = Im ¢, C M, and call it the gradient
flow line of f through x.

7

B

Figure 7  Gradient field and its flow lines

An alternative description for J, is the following. It is the image of the
parameterized curve ¢(t) in M that satisfies

1) passing through z at the time ¢ = 0;

2) at any point y € J,, the tangent vector Cfl—f to J, at y agrees with the
value of v at y.

We build up the geometric picture of flow lines in the result below.

Lemma 2.3 (Geometry of gradient flow lines).

(1) z € ¥y & J, consists of a point;

(2) Vx,y € M we have either J, = J, or J,NJ, =0;

(3) if x ¢ 3y, then J, meets level surfaces of f perpendicularly; and f is
strictly increasing along the directed curve J,;

(4) if = ¢ Xy, the two limits tl’}linoogor(t) exist and belong to X .

Figurc 8

Geometry of gradient flow lines:
traveling between critical points and
perpendicular to regular level surfaces
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Proof. (2) comes from the fact that ¢, ) (s) = @, (t + s).
(3) is verified by
@e=t) — (grad f, %20 = |grad f|* > 0.
Since the function fy,(t) is bounded a < fo,(t) < b and is monotone in ¢,
the limits tlirin f.(t) exist. It follows from (3) that tliin |lgrad,,, ) f > =o0.

This shows (4).0

The most important notion subordinate to flow lines is:
Definition 2.3. For a p € ¥; we write

S(p) = U(t:JxU{p}; T(p) = U prU{p}-

m a ) im s (t)=

These will be called respectively the descending cell and the ascending cell
of f at the critical point p.

The term “cell” appearing in Definition 2.3 is justified by the next result.

Lemma 2.4. If p € ¥y with Ind(p) = r, then (S(p),p) = (R",0),
(T'(p),p) = (R™7,0), and both meet transversely at p.

Proof. Let (R",0) C (M,p) be an Euclidean neighborhood centered at
p so that

f(z,y) = f(0) — 2> + [y[* (cf. Lemma 2.2),

where (z,y) € R" =R" @ R"". We first examine S(p) NR™ and T'(p) N R™.

On R™ the gradient field of f is easily seen to be grad f = (—2x,2y). The
flow line J,, through a point z¢y = (a,b) € R" = R" & R"" is

o (t) = (ae™?,be?),t € R.

Now one sees that

zo € S(p) NR" <= tligfn Ouo(t) = 0(p)<= b = 0;

=0
g € T(p) NR" «—= tlir_n Vi (t) = 0(p)<=a = 0.
It follows that
(C) Sp)NR*"=R" @ {0} CR™; T(p) NR*={0} R " C R"
and both sets meet transversely at 0 = p.

B Tip

Figure 9 Sp~U flow lines converge to p

Tip=U flow lines departing from p
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Let S™! be the unit sphere in R and put
S_=S(p)nS™! (resp. S, =T(p)nS"1).
Then (C) implies that S_ = S"! (resp. Sy = S" "~ 1). Furthermore, (2) of
Lemma 2.3 implies that, for any z € S(p), J, = J, for some unique v € S_
because of p,(t) € S(p) N R™ for sufficient large ¢t with tginoogox(t) =p.

Therefore
S(p)= U J,U{p} (resp. T(p) = U J,U{p}).
veES_ ’UES+

That is, S(p) (resp. T'(p)) is an open cone over S_ (resp. S, ) with vertex
p.d

Summarizing, at a critical point p € Xy,

(1) the flow lines that growing to p (as t — oo) form an open cell of
dimension Ind(p) = r centered at p which lies below the critical level L ()

(2) those flow lines that growing out of from p (as ¢ — oo) form an open
cell of dimension Ind(p) = n — r centered at p which lies above the critical
level L f(p)-

2-4. Decomposition of a manifold

Our proof of Theorem 2 indicates that the set of descending cells {S(p) C
M | p € 3¢} of a Morse function on M furnishes M with the structure of a
cell complex.

Proof of Theorem 2. Let f : M — [a,b] be a Morse function on a
closed manifold M with critical set X and index function Ind : ¥ — Z. By
Lemma 2.1 the set X, is finite and we can assume that elements in ¥, are
ordered as {pi, - ,pm} by its values under f

a= f(p1) < f(p2) <+ < f(Pm-1) < f(pm) = b [My, section 4].
Take a ¢; € (f(pi), f(pis1)), ¢ < m — 1. Then ¢; is a regular value of f.
As a result M; = f'[a,¢;] € M is a smooth submanifold with boundary
OM; = L.,. Moreover we get a filtration on M by submanifolds
MyCcMyC---CMyuq CM,=M.
We establish theorem 2 by showing that
2) For each k there is an embedding g : S"! — OM;, so that
Mk U S(pkH) = Mk Ug l)r7 r =Ind (pk—i—l);
3) Myt1 = M UD" x D" with core M U, D".

1) Let R™ be an Euclidean neighborhood around p; so that
flxy, -+, 2,) = a+ 322,
here we have made use of the fact Ind(p;) = 0 (because f attains its absolute
minimal value a at p;) as well as Lemma 2.2. Since ¢; = a + ¢ we have
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fH o, e ={z e R" | |lz|* <e} = D"
2) With the notation introduced in the proof of Lemma 2.4 we have
(D) Soer) = U Jo UAprs}
where S_ = S™! r = Ind(py.1), and where J, is the unique flow line ¢, (t)
with ¢,(0) = v and with t1i+m ©o(t) = Pra1-
For av € S_, lim 0u(t) € {p1, - ,px} C Int(My) by (4) and (3) of

Lemma 2.3. So J, must meet M, at some unique point. The map g :
S_ — OMj such that g(v) = J, N OM} is now well defined and must be an
embedding by (2) of Lemma 2.3. We get M, US(pr41) = MU, D" form (D).

PR+]

M

Figure 10 S,y intersects My at an
embedded sphere

3). In [M;y, p.33-34], Milnor demonstrated explicitly two deformation
retractions
r My 5 My U D™ x D" 5 MU S (pras)
where R; does not change the diffeomorphism type of My, and where D" x
D"~ " is a thickening of the r-cell corresponding to S(pg1).0)

3 Morse functions via Euclidean geometry

Our main theme is the effective computation of the additive homology or
the multiplicative cohomology of a given manifold M. Recall from section 1
that if M is furnished with a cell decomposition, the homology H.(M) can
be accessed by repeatedly application of Theorem 1. We have seen further in
section 2 that a Morse function f on M well indicates a cell-decomposition
on M with each critical point of index r corresponds to an r-cell in the
decomposition. The question remains to us is
How to find a Morse function on a given manifold?
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3-1. Distance function on a Euclidean submanifold

By a classical result of Whitney, every n-dimensional smooth manifold
M can be smoothly embedded into Euclidian space of some dimension less
than 2n 4 1. Therefore, it suffices to assume that M is a submanifold in an
Euclidean space E.

A point a € E gives rise to a function f, : M — R by f,(x) = ||z — a|*.

M
g
a
Figure 11 Distance function (from a point) on

a Euclidean submanifold M.

Let ¥, be the set of all critical points of this function. Two questions are:
(a) How to specify the critical set of f,?
(b) For which choice of the point a € E, f, is a Morse function on M?

For a point x € M let T,M C FE be the tangent plane to M at z (an

affine plane in £ with dimension n). Its orthonormal complement
Y. ={veE|vLl M}

is called the normal plane to M at x. We state the answers to questions (a)
and (b) in

Lemma 3.1. Let f, : M — R be as above.

(1), ={xeM|a—x€n};

(2) For almost all a € E, f, is a Morse function.

Proof. The function g, : £ — R by x — ||z — a|* has gradient field
grad, ¢, = 2(x — a). Since f, =g, | M, for a x € M,

grad, f, =the orthonormal projection of 2(z — a) to T, M.
So x € ¥, (i.e. grad, f, =0) is equivalent to 2(z —a) L T, M. This shows
(1).

Let A C E be the focal set of the submanifold M C E. It can be shown
that f, is a Morse function if and only if a € E\A. (2) follows from the fact
that A has measure 0 in F (cf. [My, p.32-38]). O
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3-2. Examples of submanifolds in Euclidean spaces

Many manifolds important in geometry are already sitting in Euclidean
spaces in some ready-made fashion. We present such examples.

Let F be one of R (the field of reals), C (the field of complex) or H (the
division algebra of quaternions). Let E be one of the following real vector
spaces:

the space of n x n matrices over F: M (n;F);

the space of complex Hermitian matrices:

S$(n;C) = {w € M(n;C) | a7 = a};
the space of complex symmetric matrices
S5T(n;C) ={z € M(n;C) | 2™ =7}
the space of real skew symmetric matrices:
S™(2n;R) = {x € M(2n;R) | 27 = —x}.
Their dimensions as real vector spaces are respectively
dimg M (n;F) = dimg F - n?;
dimg S(n; C) = n(n + 1);
dimg ST(n;C) =n(n —1)
dimg S~ (2n;R) = n(2n — 1).
Further, F is an Euclidean space with the metric specified by
(z,y) = Re[I'r(z"y)], =,y € E,
where * means transpose followed by conjugation.

Consider in E the following submanifolds
O(n;F) ={x € M(n;F) | z*x = 1,,}
Gur={r € ST(n;C) | 2? = I, l(x) = k};
LG, ={x € S(n;C) | Tz = I, };
CS,={z €S (2n;R) | 2* = — L5, },
where [(z) means “the number of negative eigenvalues of z”and where I,
is the identity matrix. The geometric interests in these manifolds may be

illustrated in
O(n) if F = R: the real orthogonal group of rank n;

O(n;F) =< U(n) if F = C: the unitary group of rank n;
Sp(n) if F = H: the symplectic group of rank n;

Gt the Grassmannian of k-subspaces in C*;

LG, the Grassmannian of Largrangian subspaces in C";

CS,,: the Grassmannian of complex structures on R?";

3-3.Morse functions via Euclidean geometry

Let 0 < Ay < --- < A\, be a sequence of n reals, and let a € E be the
point with
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“TY NTe N, T = (1) Bl),ifM:(CSn.
With respect to the metric on E specified in 3-2, the function
fo: M — R, fo(z) = ||z —al?
admits a simple-looking expression
fa((xij>) - <(L’,ZL’> + <(l7 CL> -2 <CL, I’)
Y Re(zy) if M = G, O(n;F), LG,; and
E)\ixgi_lyzi if M = CSn
For a subsequence I = [iy, - ,i,] C[1,---,n], denote by o; € E the point
or = diag{€1>"' ,€n} lfM%CSm
' elJ®---@e,J if M =CS,,
where ¢, = —1if k € I and ¢, = 1 otherwise.

= const — 2

Theorem 3. In each of the above four cases, f, : M — R is a Morse
function on M. Further,
(1) the set of critical points of f, is
5 _{ {o0, ore M | I C[1,---,n|}if M # Gpy;
| {oereM|IC[L,--,n] with|I| =k} if M = Gy
(2) the index functions are given respectively by
dimgF - (iy + -+ +1i,) — 7 if M = O(n; F);
Ind(osy..;.) =4 2(i14+---+i —7r)if M =CS,;
i1+ -+, if M = LGy;
Ind(oyy ... i) = 21§§§k(i8 — )it M = G-
3-4. Proof of Theorem 3

We conclude Section 3 by a proof of Theorem 3.
Lemma 3.2. For a x € M one has
{ue E|ru=—ux} for M =G, ; CS,
T.M =< {ueFlE|z'u=—u*z} for M =O(n;F)
{u € F|Tu = —uzx} for M = LG,,.
Consequently
{u e E|zu=ux}for M =G,y CS,
YoM =< {u€ E | x*u=u*x} for M = O(n;TF)
{u € FE|zu=1ux} for M = LG,.
Proof. We verify Lemma 3.2 for the case M = G, as an example.
Consider the map h : ST(n;C) — ST(n;C) by z — 2. Then
(1) »Y(I,)= U le;

1<t<n—
(2) the tangent map of h at a point z € S*(n;C) is

T h(u) = Pr%w = ur + zu.
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It follows that, for a x € G, ,
T.Gni C KerTyh = {u € ST(n;C) | ux + zu = 0}.
On the other hand dim¢ KerT,h = k(n—k) (= dim¢ 7,G,, k). So the dimen-
sion comparison yields
T,Gnp ={ue ST(n;C) | zu = —ux}.
For any « € G, the ambient space £ = S™(n;C) admits the orthogonal
decomposition
ST(n;C) =A{u| zu=—uzr} ®&{u | ru = ux}
in which the first summand has been identified with T,G), ; in the above
computation. It follows that v,G, , = {u | zu = uz}.
The other cases can be verified by the same method.[]

Lemma 3.3. Statement (1) of Theorem 3 holds true.
Proof. Consider the case G, C ST(n;C).
r €Y, r—ac G, (by (1) of Lemma 3.1)
& (r —a)r = z(x — a) (by Lemma 3.2)
& ra = ax.
Since a is diagonal with the distinguished diagonal entries Ay < --- < A\, x
is also diagonal. Since z? = I,, with [(z) = k, we must have z = o, ... ;, for
some [i1, -+, 1] C[1,---,n].
Analogous computations verify the other cases.[]

To prove Theorem 3 we need examining the Hessian operator H,,(f,) :
T,,M — T,,M at a critical point zy € ¥,. The following formulae will be
useful for this purpose.

(ua —au)xy for M = G i; CSy;

Lemma 3.4. H, (f,)(u) =< (u*a —au*)zy for M = O(n; F);

(ua — auw)zg for M = LG,,.

Proof. As a function on the Euclidean space F, f, has gradient field
2(xz — a). However, the gradient field of the restricted function f, | M is the
orthogonal projection of 2(z — a) in T, M.

In general, for any x € M, a vector u € F has the “canonical” decompo-
sition

w=q s=tur gt if M — O(n; F);
U=SUE  MET if M = LG,
with the first component in the T, M and the second component in v, M by
Lemma 3.2. Applying these to u = 2(x — a) yields respectively that
(xax — a) for M = G, ; CSy;
grad, f, = ¢ (z%ax —a) for M = O(n; F);
(Tax — a) for M = LG,,.
Finally, the Hessian operator can be computed in term of the gradient as
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t
As an example we consider the case M = G,, . We have
limgradz0+tu Ja—grad,  fo lim [(xo+tu)a(xo+tu)—al—[xoazo—al
t—0 t t—0 t
= uaxy + roau = uaxy + axou (because a and xy are diagonal)
= (ua — au)x
(because vectors in T, Gy, anti-commute with ¢ by Lemma 3.2).0]

Ha () () = i =0t 5080y € 7,01,

Proof of Theorem 3. In view of Lemma 3.3, Theorem 3 will be com-
pleted once we show

(a) f, is non-degenerate at any zy € 3,; and

(b) the index functions on ¥, is given as that in (2) of Theorem 3.
These can be done by applying Lemma 3.2 and Lemma 3.4. We verify these
for the cases M = G, O(n) and LG, in detail, and leave the other cases
to the reader.

Case 1. M =G, C ST(n;C).

(1) The most convenient vectors that span the real vector space S*(n;C)
are

{bst |1 <s,t<n}U{cs: |1 <s#t<n},

where by, has the entry 1 at the places (s,t), (¢,s) and 0 otherwise, and
where ¢, ; has the pure imaginary ¢ at (s,t), —i at the (¢, s) and 0 otherwise.

(2) For a xy = o7 € %,, those by, csy that “anti-commute” with
belong to TGy, by Lemma 3.2, and form a basis for T,,,G), &

TooGng = {bstscse | (s,t) € I x J},

where J is the complement of [ in [1,--- , n].

(3) Applying the Hessian (Lemma 3.4) to the by, ¢t € Ty Grx vields

Hmo(fa)(bs,t) = (>\t - )\s>bs,t;
Hoo(fa)(Cst) = (At — Ag)csr.

That is, the by, cs € T,,G 1 are precisely the eigenvectors for the operator
H,,(f.). These indicate that H,,(f,) is nondegenerate (since A\; # A for all
s # 1), hence f, is a Morse function.

(4) It follows from the formulas in (3) that the negative space for H,,(f,)
is spanned by {bs+, ¢t | (s,t) € I x J,t < s}. Consequently

Ind(or) =2#{(s,t) e I x J |t < s} = 21<§<k(i8 —5).

Case 2. M =O(n) C M(n;R).
(1) A natural set of vectors that spans the space M(n;R) is
{bsp [1<s<t<n}U{Bs|1<s<t<n},
where by, is as case 1, and where (3,; is the skew symmetric matrix with
entry 1 at the (s,t) place, —1 at the (¢, s) place and 0 otherwise;
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(2) For a xy = o1 € 3, those by, fs that “anti-commute” with xq yields
precisely a basis for
T O(n) = {Bos | (s,8) €I x I, J x Jys <t} U{bss | (s,t) €1 xJ}
by Lemma 3.2, where J is the complement of [ in [1,---,n].

(3) Applying the Hessian operator (Lemma 3.4) to bst, G5+ € T,,,0(n)

tells
=N X)Bsp i (s,t) € I x I, s < t;
H%“M@ﬂ—{(&+&mwﬁ@@engs<t
Hoo(fa)(bst) = (A — Ag)bs s if (s,8) € I x J.
This implies that the by, 851 € Ty,Gn i are precisely the eigenvectors for the
operator H, (f.), and the f, is a Morse function.
(4) It follows from the computation in (3) that
Ind(o;) = #{(s,t) € I x I | s <t} +#{(s,t) €[ x J |t < s}
=142+ 4+ —-D+[(i1—1)+(i2—2) 4+ + (ir —7)]
=i, — 1.

Case 3. M = LG, C S(n;C).
(1) Over reals, the most natural vectors that span the space S(n;C') are
{bst |1 <s,t <n}U{ibs;|1<s,t<n},
where b, ; is as that in Case 1 and where ¢ is the pure imaginary;
(2) For a xy = o7 € ¥, those “anti-commute” with xy yields precisely a
basis for T,,LG),
T LG, ={bst | (s,t) e I x JUJ x I}
{ibs¢ | (s, t) e I xTUJx J}
where J is the complement of [ in [1,--- , n].
(3) Applying the Hessian to by, tbs: € Ty, LG, (cf. Lemma 3.4) tells
. = A)ibg g if (s, t) e I x T
mdﬁm%ﬁ—{(&+Amgﬂﬂaweij’
(At — As)bs if (s,t) € I x J
Hao(Fa)Bst) =\ (0 = A)buo if (s,8) € T x T °
It follows that the bs,, ibs; € T,,Gy ; are precisely the eigenvectors for the
operator H, (f.), and f, is a Morse function.
(4) It follows from (2) and (3) that
Ind(or) =#{(s,t) e I x I |t <s}+#{(s,t) e [ x J |t <s}
=i+ 450

Remark. Let E be one of the following matrix spaces:
the space of n x k matrices over F: M(n x k;F);
the space of symmetric matrices S*(n;F) = {x € M(n;F) | 2™ = T}.
Consider in E the following submanifolds:
Vak(F)={z e M(n x ;;F) |77z = I };
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Gui(F)={z € ST(n;F) | 2* = I, l(z) = k}.

These are known respectively as the Stiefel manifold of orthonormal k-frames
on F” (the n-dimensional F-vector space) and the Grassmannian of k-dimen-
sional F-subspaces in F”. Results analogous to Theorem 3 hold for these two
family of manifolds as well [D4], [Do].

Remark. In [VD, Theorem 1.2], the authors proved that the function
foon M =G, (F), LG, CS, is perfect Morse function (without specifying
the set 3, as well as the index function Ind: ¥, — 7Z).

4 Morse functions of Bott-Samelson type

We recall the original construction of Bott-Samelson cycles in 4-1 and explain
its generalization due to Hsiang-Palais-Terng [HPT] in 4-2.

In fact, the Morse functions concerned in Theorem 3 are all Bott-Samelson
type (cf. Theorem 6). The induced action of Bott-Samelson cycles enables
one to resolve the multiplication in cohomology into the multiplication of
symmetric functions of various types (Theorem 7).

4-1. Morse functions on flag manifolds (cf. [BS;,BS,]).

Let G be a compact connected semi-simple Lie group with the unit e € GG
and a fixed maximal torus 7" C G. The tangent space L(G) = T.G (resp.
L(T) = T.T) is canonically furnished with the structure of algebras, known
as the Lie algebra (resp. the Cartan subalgebra) of G. The exponential map
induces the commutative diagram

L(T) — L(G)
exp | | exp
T — G

where the horizontal maps are the obvious inclusions. Equip L(G) (hence
L(T)) an inner product invariant under the adjoint action of G on L(G).
For a v € L(T) let C(v) be the centralizer of exp(v) € G. The set of
singular points in L(7T') is the subspace of the Cartan subalgebra L(T):
I'={ve(T)|dimC(v) >dimT}.
Lemma 4.1. Let m = %(dim G —dim T). There precisely m hyperplanes
Ly,---, L, C L(T) through the origin 0 € L(T') so that I' = 1<%J<mLi.D

The planes Ly,---, L, are known as the singular planes of G. It di-

vide L(T) into finite many convex hulls, known as the Weyl chambers of G.
Reflections in these planes generate the Weyl group W of G.
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Fix a regular point a € L(T'). The adjoint representation of G gives rise
to amap G — L(G) by g — Ad,(a), which induces an embedding of the flag
manifold G/T = {¢T | g € G} of left cosets of T'in G into L(G). In this way
G/T becomes a submanifold in the Euclidean space L(G).

Consider the function f, : G/T — R by f,(z) = ||z — a]|*>. The following
result was shown by Bott and Samelson in [BS;,BS,].

Theorem 4. f, is a Morse function on G/T" with critical set

Yo ={w(a) e L(T) |we W}
(the orbit of the W-action on L(T") through the point a € L(T)).

The index function Ind: ¥, — 7Z is given by

Ind(w(a)) = 2#{L; | Li N [a, w(a)] # 0],

where [a,w(a)] is the segment in L(T) from a to w(a).

Moreover, Bott and Samelson constructed a set of geometric cycles in
G/T that realizes an additive basis of H.(G/T;Z).

For a singular plane L; C L(T) let K; C G be the centralizer of exp(L;).
The Lie subgroup K; is very simple in the sense that T" C K, is also a
maximal torus with the quotient K;/T diffeomorphic to the 2-sphere S2.

For a w € W assume that those singular planes that meet the directed
segments [a, w(a)] are given in the order Ly, -, L,. Put 'y, = Ky Xp -+ Xp
K,, where the action of T"x --- x T (r-copies) acts on Kj X --- x K, from
the left by

(kp, oo ko) (ty, oo o ty) = (koty, 1] Yhate, -+t Koty).
The map K; X --- x K, — G/T by (ky, -+ k) — Adg,..k,(w(a)) clearly
factors through the quotient manifold I',,, hence induces a map
9w Tw— G/T.

Theorem 5. The homology H.(G/T;Z) is torsion free with the additive
basis {gw«[['w] € H(G/T;Z) | w € W}.

Proof. Let e € K;(C G) be the group unit and put e = [e, - - - ,e] € T,
It were actually shown by Bott and Samelson that

(1) g, *(w(a)) consists of the single point €;

(2) the composed function f, o g, : ', — R attains its maximum only at
e;

(3) the tangent map of g, at € maps the tangent space of I, at € isomor-
phically onto the negative part of Hy(fa)-

The proof is completed by Lemma 4.2 in 4.2.0]

Remark. It was shown by Chevalley in 1958 [Ch] that the flag manifold
G /T admits a cell decomposition G/T = UWXw indexed by elements in W,
we

with each cell X, an algebraic variety, known as a Schubert variety on G/T.
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Hansen [Han] proved in 1971 that g, (I'y) = Xy, w € W. So the map g, is
currently known as the “Bott-Samelson resolution of X,,”.

4-2. Morse function of Bott-Samelson type

In differential geometry, the study of isoparametric submanifolds began by
E. Cartan in 1933. In order to generalize Bott-Samelson’s above cited results
these spaces Hsiang, Palais and Terng introduced the following notation in
their work [HPT]'.

Definition. A Morse function f : M — R on a smooth closed manifold
is said to be of Bott-Samelson type over Zs(resp. Z) if for each p € 3 there
is a map (called a Bott-Samelson cycle of f at p)

gp: Ny — M
where N, is a closed oriented (resp. unoriented) manifold of dimension Ind(p)
and where

(1) g,'(p) = {P} (a single point);

(2) f o g, attains absolute maximum only at p;

(3) the tangent map Tyg, : TN, — T,M is an isomorphism onto the
negative space of Hy(f).

Ps
B
i
1
P2

P

Figure 12 Bott— Samelson cycles of dimension 1

in double torus.

The advantage that one can get from a Morse function of Bott-Samelson
type can be seen from the next result [HPT].

Lemma 4.2. If f: M — R is a Morse function of Bott-Samelson type
with Bott-Samelson cycles {g, : N, — M | p € ¥}, then H,(M;Z) (resp.
H,.(M;Zs)) has the additive basis

{gp:[Np] € H(M:Z) | p € Ef}
(vesp. {gp:[Np]2 € Ho(M; Zs) | p € Xy}),

n fact, the embedding G/T C L(G) described in 4-1 defines G/T as an isoparametric
submanifold in L(G) [HPT].
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where g, : H,(N,;Z) — H,.(M;Z) is the induced homomorphism and where
[Ny] € H.(Ny; Z) (resp. [Np|a € H.(Ny;Zs)) is the orientation class (resp.
Zo-orientation class).

Proof. Without loss of generality we can assume (as in the proof of
Theorem 2) that ¥y = {p1,- -+, pm} and that f(px) < f(pr11), 1 <k € m—1.
Consider the filtration on M: My C My C --- C M,,, = M defined by f and
Y s such that Mj1\ M}, contains pj, for every 1 <k <m — 1.

It suffices to show, if we put p = pgi1, m = Ind(p), then

H,.(My;Z) if r # m;
(A) Hr(Mk-i-l;Z) = { HTEMk;ZgEBZifT:m,
where the summand Z is generated by gp.[N,).

The Bott-Samelson cycle g, : N, — M (cf. the Definition) is clearly
a map into My,1. Let r : My,1 — My U D™ be the strong deformation
retraction from the proof of Theorem 2, and consider the composed map

g:N, & My 5 MU D™,
The geometric constraints (1)-(3) on the Bott-Samelson cycle g, imply that
there is an Euclidean neighborhood U C D™ centered at p =0 € D™ so that
if one puts g~ }(U) = V, then g restricts to a diffeomorphism g | V : V — U.
The proof of (A) (hence of Lemma 4.2) is clearly done by the exact ladder
induced by the “relative homeomorphism” g : (N, N)\V') — (MUD™, MU
D™\U)
P

0— Hm(Np) = Hm(sz Np\v) - Hd—l(Np\V) o
g« | g« |=
0 — Hd(Mk) — Hd((Mk U Dm) — Hd((Mk U Dm, Mk) — Hd—l(Mk> — v
.0

4-3. Bott-Samelson cycles and resolution of Schubert varieties

Let M be one of the following manifolds
O(n;F): orthogonal (or unitary, or symplectic) group of rank n;
CS,,: the Grassmannian of complex structures on R??;
Gk the Grassmannian of k-linear subspaces on C"
and
LG,,: the Grassmannian of Lagrangian subspaces on C".
Let f, : M — R be the Morse function considered in Theorem 3 of §3.
Theorem 6. In each case f, is a Morse function of Bott-Samelson type
which is
(1) over Z for M = U(n), Sp(n), CS,, Gpx;
(2) over Zs for M = O(n) and LG,,.
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Instead of giving a proof of this result I'd like to show the geometric
construction of the Bott-Samelson cycles required to justify the theorem,
and to point out the consequences which follow up (cf. Theorem 7).

Let RP™ ! be the real projective space of lines through the origin 0 in
R™: CP™ ! the complex projective space of complex lines through the origin
0 in C", and let Go(R?") be the Grassmannian of oriented 2-planes through
the origin in R?". -

Construction 1. Resolution h : M — M of M. .

(1) If M = SO(n) (the special orthogonal group of order n) we let M =
RP™ 1 x ... x RP"! (n/-copies, where n’ = 2[%]) and define the map h :
M — M to be

h(ly, -+ bw) = Ih<icw R(L),
where [; € RP™! and where R(l;) is the reflection on R" in the hyperplane
I+ orthogonal to [;.
(2) If M =G, we let
M={(ly, - ,lt) € CP" ! x ... x CP" ' | I; LI;} (k-copies)
and define the map h : M — M to be h(ly, -+ lg) = (I, - ,ly), where [; €
CP" ! and where (ly,-- - ,lx) means the k-plane spanned by the Iy, - -, .
(3) If M = CS,, we let
M ={(Ly, -, L,) € Go(R™) x - -- x Go(R*) | L; L L;} (n-copies)
and define the map h : M — M to be h(Ly, -, Ly) = i<i<,7(L;), where
L; € G3(R*") and where 7(L;) : R*™ — R is the isometry which fixes

points in the orthogonal complements L; of L; and is the % rotation on L;
in accordance with the orientation.

Construction 2. Bott-Samelson cycles for the Morse function f, : M —
R (cf. [section 3, Theorem 3]).

(1) If M = SO(n) then 3, = {og, 01 € M | I C[1,---,n],|I| <n'}. For
each I = (iy,---,4,) C[l,---,n] we put

RP[I] = RPx --- x RP? x RP% x -+ x RP (n/-copies).

Since RP|[I] C M we may set hy = h | RPII].

The map hy : RP[I] — SO(n) is a Bott-Samelson cycle for f, at oy.

(2) If M = Gy then ¥, ={o; € M | I = (iy,--- i) C[1,---,n]}. For
each I = (iy,---,ix) C[1,---,n| we have

CP x -+ x CP#* M C CP™ ! x -+ x CP"(k-copies).
So we may form the intersection CP[I] = CP" x - -- x CP* N\ M in CP"! x
-+ x CP" ! and set hy = h | CP[I].

The map hy : CP[I] — G, is a Bott-Samelson cycle for f, at o.
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4-4. Multiplication in cohomology
-Geometry encounters with combinatorics

Up to now we have plenty examples of Morse functions of Bott-Samelson
type. Let f: M — R be such a function with critical set X¢ = {p1,--- , P}
From the proof of Lemma 4.2 we see that each descending cell S(p;) C M
forms a closed cycle on M and all of them contribute an additive basis for
the homology

{IS(pi)] € Hy,(M;Z or Z)| 1 <@ <m,r; = Ind(p;)},
where the coefficients in homology depending on whether the Bott-Samelson
cycles orientable or not.

Many pervious work on Morse functions stopped at this stage, for people
were content by finding Morse functions on manifolds whose critical points
contribute to an additive basis for homology (such functions are normally
called perfect Morse functions).

However, the difficult task that we have experienced in topology is not to
find an additive basis for homology, but is to understand the multiplicative
rule among basis elements in cohomology. More precisely we let

{[Qpi)] € H*(M;Z or Zy) | 1 <i <m, r; = Ind(p;)}
be the basis for the cohomology Kronecker dual to the [S(p;)] as

()], [S(p,)]) = 6.
Then we must have the expression

[2(p:)] - [2py)] = Dag[QApw)]
in the ring H*(M;Z or Z,), where af’j € 7 or Zy depending on whether
the Bott-Samelson cycles orientable or not, and where - means intersection
product in Algebraic Geometry and cup product in Topology.

Problem 4. Find the numbers afj for each triple 1 < 1,7,k < m.

To emphasis Problem 4 we quote from N. Steenrod [St, p.98]:

“the cup product requires a diagonal approximation dy : M — M x M.
Many difficulties experienced with the cup product in the past arose from the
great variety of choices of dyx, any particular choice giving rise to artificial
looking formulas”.

We advise the reader to consult [Lal, [K], and [S] for details on multiplicative
rules in the intersection ring of G, ; in algebraic geometry, and their history.

Bott-Samelson cycles provide a way to study Problem 4. To explain this
we turn back to the constructions in 4-3. We observe that

(i) The resolution M of M are constructed from the most familiar mani-
folds as

RP" ! =the real projective space of lines through the origin in R™;
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CP" ! =the real projective space of lines through the origin in C";
G2(R?") =the Grassmannian of oriented 2-dimensional subspaces in R*"
and whose cohomology are well known as
H*(RP" Zy) = Zyt] /1™ H*(CP" ', Z) = Z[z]/z";
. oy Zly,v]/ ("™ — 2z - v,v?) if n = 1mod 2;
H'(Go(R™);Z) = { Zly,v]/ (" — 2z - v,v* — 2" 1 - v)if n = 0mod 2
where

(a) t(e HY(RP"';Z,)) is the Euler class for the canonical real line bundle
over RP" 1

(b) z(e H*(CP"';Z)) is the Euler class of the real reduction for the
canonical complex line bundle over CP™1;

(c) y(€ H*(Go(R?™);Z)) is the Euler class of the canonical oriented real
2-bundle v over Go(R?"), and where if s € H*"2(G5(R*");Z) is the Euler
class for the orthogonal complement v of v in G5(R?*") x R?", then

v=3(y" " +s) € H*2(Go(R*™); Z)%.

(ii) the manifolds M are simpler than M either in terms of their geometric
formation or of their cohomology

H*(M:Z) = Lolty, - tw]/ (t7,1 < i < n') if M = SO(n);

H*(M;Z) = Zlwy, -+ 2]/ (i, 1 <0 < k) if M = Gy and

if M = CS,,, where p; is the component of the formal polynomial

[I d+z)™

1<s<i
in degree 2(n — i + 1) (cf. [D3, Theorem 1]), and where e;(y, -, y2) is the
j elementary symmetric function in the y,-- - y2.

(iii) Bott-Samelson cycles on M can be obtained by restricting h : M —
M to appropriate subspaces of M (cf. Construction 2).

We infer from (iii) the following result.
Theorem 7. The induced ring map
h*: H*(M;Z or Zy) — H*(M;Z or Z5)
is injective. Furthermore
(1) if M = SO(n), then
h*(Q(I>> = m[(tl, cee ,tn/),
where my(t1,- - ,t,) is the monomial symmetric function in ty,--- ,t, as-
sociated to the partition I ([Ds));
(2) it M = G, , then
h*(Q(I>> = S[(ZL’l, c ,xk),

2The ring H*(G2(R?");Z) is torsion free. The class y"~! + s is divisible by 2 because
of wa,_2(v) = s = y" ! mod 2, where w; is the i*" Stiefel-Whitney class.
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where S;(xq,- - ,x) is the Schur S Symmetric function in xy,-- -,z asso-
ciated to the partition I ([D4]);
(3) if M = CS,, then
(1)) = Pr(ya, 5 yn),
where Pr(y1,- - ,yn) is the Schur P symmetric function in yy, - - - , ¥y, associ-
ated to the partition /.[]
(For definitions of these symmetric functions, see [Ma]).

Indeed, in each case concerned by Theorem 7, it can be shown that the
Q(I) are the Schubert classes [Ch, BGG].

It was first pointed by Lesieur in 1947 that multiplicative rule of Schubert
classes in Gy, formally coincides with that of Schur functions [L], and by
Pragacz in 1986 that multiplicative rule of Schubert classes in CS,, formally
agree with that of Schur P functions [P, §6]. Many people asked why such
similarities could possibly occur [S]|. For instance it was said by C. Lenart
[Le| that

“No good explanation has been found yet for the occurrence of Schur
functions in both the cohomology of Grassmanian and representation theory
of symmetric groups”.

Theorem 7 provides a direct linkage from Schubert classes to symmetric
functions. It is for this reason combinatorial rules for multiplying symmetric
functions of the indicated types (i.e. the monomial symmetric functions,
Schur S symmetric functions and Schur P symmetric functions) correspond
to the intersection products of Schubert varieties in the spaces M = SO(n),

Gn 1 and CS,.
4-5. A concluding remark

Bott is famous for his periodicity theorem, which gives the homotopy
groups of the matrix groups O(n;F) with F = R, C or H in the stable range.
However, this part of Bott’s work was improved and extended soon after its
appearance [Ke|, [HM], [AB].

It seems that the idea of Morse functions of Bott-Samelson type appearing
nearly half century ago [BS;, BSy] deserves further attention. Recently, an
analogue of Theorem 7 for the induced action

g+ HH(G/T) — H*(T,,)
of the Bott-Samelson cycle g, : 'y, — G/T (cf. Theorem 5) is obtained in
[Dy, Lemma 5.1], from which the multiplicative rule of Schubert classes and
the Steenrod operations on Schubert classes in a generalized flag manifold
G/H [Ch, BGG]| have been determined [Dy], [DZ;], [DZ,], where G is a
compact connected Lie group, and where H C G is the centralizer of a one-
parameter subgroup in G.
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