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Chapter 1

Galois theory

Galois theory is a language to speak about various phenomena in algebra, arithmetic and
geometry. It helps to deal with the problems of solving polynomial equations and possibility
of geometric constructions.

1.1 Fields

Definition 1.1. A field F is an abelian group (addition) such that the set F∗ = {x ∈ F | x 6=
0} is equipped with a structure of an abelian group (multiplication) which distributes over
addition.

Definition 1.2. A field F is a commutative ring without nontrivial ideals.

Definition 1.3. A field F is a commutative division ring.

Examples 1.4. 1. Q ⊂ R ⊂ C

2. Q(
√
D), where D is not a perfect square, that is the equation x2 = D has no rational

solutions. In another words Q(
√
D) is the smallest field containing Q and

√
D ∈ R,C.

All even powers of
√
D belong to Q, and all odd powers of

√
D are nontrivial multiples

of
√
D. Thus for every polynomial f ∈ Q[X] we have f(

√
D) = a+b

√
D, where a, b ∈ Q.

The inverse of an element a+ b
√
D, a, b ∈ Q is given by

1
a+ b

√
D

=
a

a2 − b2D
− b

a2 − b2D
√
D,

so in fact for every rational function f ∈ Q(X) we have f(
√
D) = a + b

√
D, where

a, b ∈ Q.

3. Rational functions in one variable Q(X), and in n variables Q(X1, . . . , Xn).

4. Fp - classes of integers modulo prime p. There exist also a field Fpn for every n > 0, of
pn elements, unique up to isomorphism and all finite fields are of this form.

1.2 Morphisms of fields

Definition 1.5. A morphism of fields φ : F→ F′ is a homomorphism of rings.
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Morphism of fields φ : F→ F′ is always injective, because

1F′ = φ(1F) = φ(xx−1) = φ(x)φ(x−1) = φ(x)φ(x)−1,

so φ(x) 6= 0 for every x ∈ F.
There is always a ring homomorphism φ : Z→ F. We have two cases

1. φ is injective: then φ(Z) ⊂ F generates a subfield isomorphic to Q, and we say that F
has characteristic 0, char(F) = 0.

2. φ is not injective: then there exists the smallest positive integer p > 0 such that
φ(p) = 0. It is a prime number, because if p = ab, 1 < a, b < p then we would have

0 = φ(p) = φ(a)φ(b) 6= 0.

In this case φ(Z) ⊂ F generates a subfield isomorphic to Fp, and we say that F has
characteristic p, char(F) = p.

Definition 1.6. A field E is an extension of the field F if F is a subfield of E.

We write E/F or draw
E

F

Corollary 1.7. If E is an extension of F then

• char(E) = char(F),

• E is a vector space over F.

Definition 1.8.

1. The degree [E : F] of an extension E/F is defined as dimF(E).

2. E is a finite extension of F if [E : F] <∞.

Examples 1.9. 1. [Q(
√
D) : Q] = 2 with {1,

√
D} as basis over Q.

2. [C : R] = 2 with {1, i} as basis over R.

3. [Q(x) : Q] =∞ with {1, x, x2, . . .} being an infinite linearly independent system.

4. [R : Q] = ∞ with {1, e, e2, . . .} being an infinite linearly independent system, where
e ≈ 2.72 . . . is the Euler number.

Linear dependence of powers of e ∈ E over F ⊂ E is nothing else but a polynomial equation

a0 + a1x+ a2x
2 + . . .+ anx

n = 0.

Note that in the first two examples the degree is equal to the minimal degree of a polynomial
equation satisfied by the adjoint element

√
D : x2 −D = 0, i : x2 + 1 = 0.
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1.3 Polynomials

Denote by F[X] the ring of polynomials in one variable X. It is an integral domain, that is
if f(X), g(X) ∈ F[X] are nonzero polynomials, then f(X)g(X) 6= 0. It is also a Euclidean
domain, that is for all f(X), g(X) ∈ F[X] there are unique polynomials q(X), r(X) ∈ F[X]
such that

f(X) = g(X)q(X) + r(X),

where either r(X) = 0 or deg(r(X)) < deg(g(X)).

Corollary 1.10. For any two nonzero polynomials f(X), g(X) ∈ F[X] there is their greatest
common divisor

gcd(f(X), g(X)) = a(X)f(X) + b(X)g(X).

Corollary 1.11. Every ideal in F[X] is principal, that is of the form (f(X)).

Corollary 1.12. Every nonconstant polynomial f(X) ∈ F[X] can be factored as

f(X) = uf1(X) . . . fk(X),

where fi(X) are monic, irreducible, and u ∈ F∗. This factorisation is essentially unique.

There is an important construction of field extensions from irreducible polynomials.

Proposition 1.13. Let f(X) ∈ F[X] be an irreducible of degree d. Then

E := F[X]/(f(X))

is an extension of degree d.

Proof. First we prove that the classes of 1, x, x2, . . . , xd−1 form a basis of E over F. Every
polynomial g(X) ∈ F[X] can be presented as

g(X) = f(X)q(X) + r(X),

where r(X) = 0 or deg(r(X)) < d. Thus g(X) is a combination of 1, x, . . . , xd−1, and classes
of 1, x, . . . , xd−1 generate E.

Every linear combination of classes of 1, x, . . . , xd−1 is a polynomial of degree less than
d = deg(f(X)), so classes of 1, x, . . . , xd−1 are linearly independent. Observe that E is an
integral domain - it is a consequence of the unique factorisation property for F[X] and an
assumption that f is irreducible.

The proof will be finished if we prove the following lemma

Lemma 1.14. Every finite dimensional commutative F-algebra E which is an integral domain
is a field.

Proof. Take e ∈ E∗. There exists a linear dependence among elements 1, e, e2, . . . since E is
of finite dimension over F. We can divide by the monomial of the lowest degree to obtain

1 + f1e+ f2e
2 + . . .+ fne

n = 0,

e(−f1 − f2e− . . .− fnen−1) = 1,

so e has an inverse.
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Corollary 1.15 (Kronecker). Let f(X) ∈ F[X] be any nonconstant polynomial. Then there
exists an extension E/F in which f(X) has a root.

Proof. We can assume that f(X) is irreducible. Then take

E = F[X]/(f(X))

The root of f(X) in E is the class of X ∈ F[X].

Definition 1.16. Let e ∈ E be algebraic over F. Then the monic irreducible polynomial
fe(X) ∈ F[X] such that fe(e) = 0 is determined uniquely (as the monic generator of the ideal
{f(X) ∈ F[X] | f(e) = 0}) and is called the minimal polynomial of e.

Lemma 1.17. Let e ∈ F be algebraic over F. Then the canonical map

ϕ : F[X]/(fe(X))→ F(e) ⊂ E, x 7→ e

is an isomorphism.

Proof. Because fe(e) = 0 the map ϕ is well defined. It is enough to prove that

dimF (F[X]/(fe(X))) = dimF (F(e))

By definition
dimF (F[X]/(fe(X))) = deg(fe(X)).

Also
dimF (F(e)) = deg(fe(X)),

because fe(x) is a monic polynomial of lowest degree vanishing at e.

1.4 Automorphisms of fields

If G ⊂ Aut(E) is a subgroup then EG ⊂ E is a subfield.

Definition 1.18. Let G = {g1, . . . , gn} ⊂ Aut(E). We define a trace

TrG : E→ EG, TrG(e) =
∑
g∈G

g(e).

Trace TrG is an EG-linear map.

Theorem 1.19 (Dedekind). If g1, . . . , gn are pairwise distinct automorphisms of E, they are
linearly independent over E as E-valued functions on E.

Proof. Induction by n. If n = 1 then g1 6= 0 since it is an automorphism.
Take pairwise distinct automorphisms g1, . . . , gn+1. If they were linearly dependent then

for instance
gn+1 = e1g1 + . . .+ engn

with at least one ei 6= 0. We would have

gn+1(e)(e1g1(e′) + . . .+ engn(e′)) = gn+1(e)gn+1(e′) = gn+1(ee′) =

= e1g1(ee′) + . . .+ engn(ee′) = e1g1(e)g1(e′) + . . .+ engn(e)gn(e′).
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Hence
e1gn+1(e)g1 + . . .+ engn+1(e)gn = e1g1(e)g1 + . . . engn(e)gn.

But g1, . . . , gn are linearly independent so

gn+1(e)e1 = e1g1(e), . . . , gn+1(e)en = engn(e),

g1e1 = gn+1e1, . . . , gnen = gn+1en

which means that for at least one i we would have gi = gn+1, contradiction.

Corollary 1.20. If |G| <∞ then TrG 6= 0.

Proof. If TrG = 0, that is TrG(e) = 0 for all e ∈ E then by definition

∑
g∈G

g(e) =

∑
g∈G

g

 (e) = 0

that is
∑

g∈G g = 0, which contradicts linear independence.

Theorem 1.21. Let G be a group of automorphisms of E. Assume that at least one of
numbers |G|, [E : EG] is finite. Then they are equal.

Proof.

1. Assume |G| < ∞, G = {g1, . . . , gn}. Take e1, . . . , em ∈ E, where m > n. Let
(e′1, . . . , e

′
m) be a nonzero solution of the system

n∑
j=1

g−1
i (ej)e′j = 0.

We can assume that TrG(e′1) 6= 0. Then

n∑
i=1

m∑
j=1

ejgi(e′j)︸ ︷︷ ︸
=

∑n
j=1 ej TrG(e′j)

=
n∑
i=1

gi

 m∑
j=1

g−1
i (ej)e′j

 = 0,

so e1, . . . , em are linearly dependent over EG if m > n which means that [E : EG] ≤ n =
|G|.

2. Assume [E : EG] < ∞. Take a basis e1, . . . , eN of E over EG. Let (e′1, . . . , e
′
M ), N <

M ≤ G be a nonzero solution of the system of equations

M∑
j=1

e′jgj(ei) = 0.

Then for all e ∈ E
M∑
j=1

e′jgj(e) = 0,

M∑
j=1

e′jgj = 0

which contradicts Dedekind theorem (1.19). Thus [E : EG] ≥ |G|.
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Together 1 and 2 give [E : EG] = |G|.

Definition 1.22. An algebraic extension E/F is called Galois if there exists a subgroup
G ⊂ Aut(E) such that F = EG.

Theorem 1.23. Let E/F be an algebraic extension. Then it is Galois if and only if F =
EGal(E/F).

Proof. Assume that there exists group G such that EG = F. Then

G ⊂ Gal(E/F) +3 EG ⊃ EGal(E/F)

F = EGal(E/F)

so EG = EGal(E/F).

Remark 1.24. This G may not be equal Gal(E/F).

Corollary 1.25. If [E : F] is finite then it is Galois if and only if |Gal(E/F)| = [E : F].

Proof. If F = EGal(E/F) then

|Gal(E/F)| = |Gal(E/EGal(E/F))| = [E : EGal(E/F)] = [E : F].

If |Gal(E/F)| = [E : F] then F ⊂ EGal(E/F) ⊂ E.
To finish the proof we need the following:

Lemma 1.26. Assume F ⊂ E ⊂ D. Then provided finiteness

[D : E] = [D : E][E : F]

Proof. Let {d1, . . . , dn} be a basis of E/F. It is enough to show that {diej} is a basis of D/F.
Let

d =
∑
i

diẽi, ẽi =
∑
j

eifij .

Then
d =

∑
i,j

diejfij ,

so {diej} span D/F. If
∑

i,j diejfij = 0 then

∑
i

di

∑
j

ejfij


︸ ︷︷ ︸

∈E

= 0

which gives a contradiction.

Now

[EGal(E/F) : F] =
[E : F]

[E : EGal(E/F)]
= 1,

so EGal(E/F) = F.
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Definition 1.27. A field extension E/F is normal if E contains all roots of minimal polyno-
mials of all elements in F which are algebraic over F.

Lemma 1.28. Let E/F be algebraic i.e. F ⊂ E ⊂ F, and let E/F be normal. Then for every
embedding over F

E
ϕ // F

F

^^>>>>>>>>

@@�������

,

one has ϕ(E) = E.

Proof. Take e ∈ E, f(e) = 0, so f(ϕ(e)) = 0. Hence ϕ maps the set of roots of every
f(X) ∈ F[X] in E into the set of all roots of f(X). Thus E = F(roots(family of polynomials)).
The homomorphism ϕ transforms roots of this family into the roots of its image.

ϕ(E) = ϕ(F(roots(family of polynomials)))
= F(ϕ(roots(family of polynomials)))
= F(roots(family of polynomials))
= E.

Definition 1.29. A field extension E/F is separable if every e ∈ F is a single root of its
minimal polynomial.

Definition 1.30. An extension E/F is a splitting field of f(X) ∈ F[X] if

f(X) = c(X − e1) . . . (X − en) ∈ E[X]

and such decomposition is impossible in F′[X] for any proper subfield F ⊂ F′ ⊂ E.

All splitting fields of a given polynomial are isomorphic over F.

1.5 Extending isomorphisms

Lemma 1.31. Let σ0 : F1 → F2 be an isomorphism of fields. Let f1(X) ∈ F1[X] be irreducible
and E1 = F1(e1), where f1(e1) = 0. Let E2 = F2(e2), where f2(e2) = 0 for f2(X) =
σ0(f1(X)). Then σ0 extends to a unique isomorphism σ : E1 → E2 with σ(e1) = e2.

Proof. Extend σ0 to σ0 : F1[X] → F2[X]. The polynomial f1(X) is irreducible if and only if
f2(X) is irreducible. By the Kronecker theorem (1.15)

Fi[X]/(fi)(X) ∼= Fi(ei) = Ei, i = 1, 2.

Lemma 1.32. Let σ0 : F1 → F2 be an isomorphism. Let f1(X) ∈ F1[X] and f2(X) =
σ0(f1(X)) ∈ F2[X]. Let Ei be splitting field of fi(X). Then σ0 extends to an isomorphism of
σ : E1 → E2.
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Proof. Factor f1(X) into k irreducibles in F1[X] and consider d := deg(f1(X))−k. The proof
goes by induction on d. If d = 0, then f1(X) is a product of linear factors, E1 = F1, E2 = F2,
and σ = σ0.

Suppose d > 0. Then f1(X) has an irreducible factor of degree > 1. Take a root e1 ∈ E1

of g1(X) ∈ F1[X], and a root e2 ∈ E2 of σ0(g1(X)) ∈ F2[X]. Then Fi(ei) ∈ Ei, i = 1, 2, and
by the previous lemma (1.31) there is an isomorphism

σ̃0 : F1(e1)→ F2(e2)

with σ̃0

∣∣
F1

= σ0 and σ̃0(e1) = e2. Take now F̃1 := F1(e1) instead of F1. Consider f̃i(X) =
fi(X) ∈ F̃i[X]. Now g1(X) ∈ F1[X] has a linear factor (X − e1). Thus f̃1(X) has k̃ > k
irreducible factors in F̃1[X]. Thus d̃ = deg f̃1(X)− k̃ < d. Now Ei is still a splitting field of
a polynomial f̃i(X) ∈ F̃i[X], so σ̃0 extends to some σ : E1

∼= E2.

Theorem 1.33. An algebraic extension E/F is Galois if and only if it is normal and sepa-
rable.

Proof.

• Assume that E/F is Galois, that is there exists group G < Aut(E) such that F = EG.
It is enough to prove that the minimal polynomial fe(X) ∈ F[X] of any e ∈ E splits
into pairwise distinct linear factors in E[X].

Because fe(e) = 0 we have for all g ∈ G that fe(g(e)) = gfe(e) = 0, so |Ge| < ∞
as the number of roots is finite. Say Ge = {g1(e), . . . , gr(e)}. Define f(X) := (X −
g1(e)) . . . (X − gr(e)). For all g ∈ G we have g(f(X)) = f(X), so f(X) ∈ F[X]. Since
all roots of f are pairwise distinct roots of fe we have that f |fe. But fe is monic
irreducible, so f = fe. This implies that fe splits as desired.

• Assume now that E/F is separable and normal. Take e ∈ E \ F and its minimal
polynomial fe(X). In E fe(X) splits as fe(X) = (X − e1) . . . (X − er). Assume that
e1 := e /∈ F, so deg(fe(X)) > 0. There must be another root e2 6= e1 of fe(X). There
is an isomorphism F(e1) → F(e2) which is id on F and sends e1 to e2. It extends
to F(e1) = F → F = F(e2) (nonconstructive axiom of choice). Since E/F is normal
this isomorphism restricts to g ∈ Gal(E/F) such that g(e1) = e2 6= e1. There are no
elements of E \ F which are fixed by Gal(E/F), so EGal(E/F) = F and E/F is a Galois
extension.

Corollary 1.34. Extension E/F is finite Galois if and only if it is a splitting field of a
separable polynomial f(X) ∈ F[X].

Proof. We know that E/F is finite Galois if and only if it is finite, normal, and separable.
In fact E/F is finite and normal if and only if E is a splitting field of some f(X) ∈ F[X].
Indeed, if E/F is finite and normal, then we can take all roots of a family of polynomials
and choose a linearly independent (finite) subset of roots generating E/F. They are roots of
some finite number of polynomials f1(X), . . . , fn(X) ∈ F[X]. Then E is a splitting field of
f(X) = f1(X)·. . .·fn(X). The reverse implication is obvious from the definition of normality.
Finally E/F is separable if and only if f(X) = f1(X) · . . . · fn(X) is separable.
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1.6 The fundamental theorem of Galois theory

Theorem 1.35. Let E/F be a finite Galois extension, G = Gal(E/F). Then

1. There is a one-to-one correspondence between intermediate fields F ⊂ F′ ⊂ E and
subgroups G ⊃ G′ ⊃ {1} given by

F′ := EG
′

2. Extension F′/F is normal if and only if G′ is a normal subgroup of G. This is the case
if and only if F′/F is Galois. In this case Gal(F′/F) ∼= G/G′.

3. For each F ⊂ F′ ⊂ E

[F′ : F] = [G : G′]
[E : F′] = |G′|

Remark 1.36.

1. If F ⊂ F′ ⊂ F′′ ⊂ E then G′ ⊃ G′′.

2. Extension E/F′ is always Galois with Gal(E/F′) = G′.

3. If an extension E/F is separable then F′/F is separable. Thus F′/F is normal if and
only if it is Galois.

4. From the proof we will get that if Gal(E/F) = G, then G/G′ = Gal(F′/F) in the case
F′/F is Galois.

Proof.

1. Define a map

φ : {subgroups of G} → {intermediate fields}

G′ 7→ EG
′

• φ is injective: G′ 6= G′′ =⇒ EG′ 6= EG′′

Lemma 1.37. Gal(E/EG′) = G′.

Proof. EG′ = EGal(E/EG′ ) because E/EG′ is Galois. Furthermore

|G′| = [E : EG
′
] = [E : EGal(E/EG′ )] = |Gal(E/EG

′
)|

and G′ ⊂ Gal(E/EG′), so G′ = Gal(E/EG′).

By lemma if EG′ ⊂ EG′′ then G′′ = Gal(E/EG′) ⊂ G′. Hence if EG′ = EG′′ then
G′ = G′′.

• φ is surjective. Indeed, let F ⊂ F′ ⊂ E, G′ = Gal(E/F′) ⊂ Gal(E/F) = G. If E/F
is Galois then E is a splitting field of a separable polynomial with coefficients in
F, f(X) ∈ F[X] ⊂ F′[X]. Thus E is a splitting field of f(X) ∈ F′[X], so E/F′ is
Galois and F′ = EG′ .
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2. Suppose G′ /G, F′ := EG′ . Then E/F′ is a Galois extension. Take g ∈ Gal(E/F). Then
g(F′) = EgGg−1

= EG′ = F′. This gives the restriction map

Res: Gal(E/F) = G→ Gal(F′/F)
g 7→ g|F′

ker(Res) = Gal(E/F′) = G

im(Res) = G/G′

We want to prove that Res is onto. Let g̃ ∈ Gal(F′/F). We know that E is a splitting
field of some polynomial f(X) ∈ F′[X], so g̃ : F′ → F′ extends to g : E '−→ E, g|F = id.
Thus g ∈ Gal(E/F) and g|F′ = g̃ and Res is onto. Hence Gal(F′/F) ' G/G′.
Suppose the converse, that is F′/F is Galois. Then F′ is a splitting field of some separable
polynomial f(X) ∈ F[X] with roots (distinct by separability) e1, . . . , en ∈ F′ ⊂ E and
F′ = F(e1, . . . , en) ⊂ E. Take g ∈ Gal(E/F) = G. We have g(f(X)) = f(X), so g
permutes the set of roots {e1, . . . , en}. Hence EG′ = F′ = g(F′) = EgG′g−1

. By 1,
G′ = gG′g−1, so G′ / G.

3. If E/F′ is Galois extension, then

[E : F′] = |Gal(E/F′)| = |G′|,

[E : F] = [E : F] · [F′ : F], |G| = |G′| · [G : G′].

Hence [F′ : F] = [G : G′] and [E : F′] = |G′|.

Corollary 1.38. If
F′

@@@@@@@@

F

~~~~~~~~

@@@@@@@@ E

F′′

~~~~~~~~

are field extensions, then the following are equivalent

1. g(F′) = F′′ for some g ∈ Gal(E/F)

2. gGal(E/F′)g−1 = Gal(E/F′′)

Definition 1.39. An abstract group G acts transitively on a set S if for all elements s, s′ ∈ S
there is g ∈ G such that s′ = g(s).

Proposition 1.40. Let E/F be finite Galois extension, so E is a splitting field of a separable
polynomial f(X) ∈ F[X]. Then G = Gal(E/F) is isomorphic to a subgroup of the permutation
group on the roots of f(X). If f(X) is irreducible then this action is transitive.

Proof. Take the set of roots of f(X), S := {e1, . . . , en}. Let g ∈ G such that g(f(X)) = f(X),
so g permutes S. We have E = F(e1, . . . , en), and if for all i g(ei) = ei, then g = id. This
means that G embeds in the group of permutations of S.

Take now ei 6= ej . If f(X) is irreducible then there exists an isomorphism σ0 : F(ei)
'−→

F(ej), such that σ0|F = id, σ0(ei) = ej . Hence σ0 extends to g : E → E, g|F = id, so there
exists an element g ∈ Gal(E/F) such that g(ei) = ej .
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1.7 The normal basis theorem

We know that if E/F is finite Galois then [E : F] = |Gal(E/F)|.

Definition 1.41. If E/F is finite Galois then a basis {e1, . . . , en} is called normal if there
exists e ∈ E such that ei = gi(e) for {g1, . . . , gn} = Gal(E/F).

Theorem 1.42 (Normal Basis theorem). If F is infinite and E/F is finite Galois then E has
a normal basis over F.

The proof uses some additional results.

Lemma 1.43. If E/F is a Galois extension of degree n, Gal(E/F) = {g1, . . . , gn}, then
{e1, . . . , en} ⊂ E is a basis over F if and only if the matrix {gi(ej)} is nonsingular.

Proof. If {e1, . . . , en} is a basis of E/F, then if for some (c1, . . . , cn) 6= 0 ∈ Fn and all
j = 1, . . . , n

n∑
i=1

cigi(ej) = 0

we get that for all e ∈ E
n∑
i=1

cigi(e) = 0,

which contradicts Dedekind theorem (1.19).
On the other hand if

∑n
j=1 cjej = 0 is a nontrivial linear dependence then for all i

n∑
i=1

cjgi(ej) = 0

which means that {gi(ej)} is singular.

Lemma 1.44. Let F be infinite, E/F an extension. If f(c1, . . . , cn) = 0 for all (c1, . . . , cn) ∈
Fn and f(X1, . . . , Xn) ∈ E[X1, . . . , Xn], then f(X1, . . . , Xn) = 0.

Proof. Induction by n. If f(e1) = 0 for infinitely many e1, then f(X1) = 0.
Let n > 1. Then we can write

f(X1, . . . , Xn) =
n∑
k=0

fk(X1, . . . , Xn−1)Xk
n.

Take (c1, . . . , cn−1) such that f(c1, . . . , cn−1, Xn) = 0. Then for all k we have fk(c1, . . . , cn−1) =
0, and by the inductive step fk(X1, . . . , Xn−1) = 0, so f(X1, . . . , Xn) = 0.

The next result we need is a generalization of the Dedekind theorem, provided F is infinite.

Theorem 1.45. Let F be infinite, E/F finite extension, Gal(E/F) = {g1, . . . , gn}. Then
g1, . . . , gn are algebraically independent i.e. for all e ∈ E if for some f(X1, . . . , Xn) ∈
E[X1, . . . , Xn] we have f(g1(e), . . . , gn(e)), then f(X1, . . . , Xn) = 0.
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Proof. Let {e1, . . . , en} be a basis of E over F. By the first lemma {gi(ej)} is nonsingular.
Let e =

∑n
j=1 cjej , so gi(e) =

∑n
j=1 cjgi(ej). Suppose f(g1(e), . . . , gn(e)) = 0 for all e ∈ E.

After substitution

f(. . . ,
n∑
j=1

cjgi(ej), . . .) = 0,

for all e ∈ E, so from the second lemma

f(. . . ,
n∑
j=1

Xjgi(ej), . . .) = 0.

Since Xi 7→
∑n

j=1Xjgi(ej) is an automorphism of E[X1, . . . , Xn] we get that f(. . . , Xi, . . .) =
0.

Proof. (of the Normal Basis Theorem (1.42)) Let Gal(E/F) = {g1, . . . , gn}. Take a matrix

Aij = Xk if gigj = gk.

Denote its determinant by d(X1, . . . , Xn) := det(Aij) ∈ E[X1, . . . , Xn]. Then d(1, . . . , 1) =
±1 6= 0 because eachXk appears only once in every row and every column. Hence d(X1, . . . , Xn) 6=
0.

Let ej := gj(e), Aeij := gk(e) if gigj = gk. Then Aeij = gigj(e) = gi(ej), and det(Aeij) =
d(g1(e), . . . , gn(e)). By the previous theorem there exists e ∈ E such that

d(g1(e), . . . , gn(e)) 6= 0.

By the first lemma {e1, . . . , en} is a normal basis.

1.8 Hilbert’s 90 theorem

Definition 1.46. Let E/F be finite Galois, G = Gal(E/F).

• The norm NE/F : E→ F is given by

NE/F(e) :=
∏
g∈G

g(e).

• The trace TrE/F : E→ F is given by

TrE/F :=
∑
g∈G

g(e).

Theorem 1.47. Let E/F be a finite Galois extension with cyclic Galois group Gal(E/F)
generated by g ∈ Gal(E/F). Then the following sequences of abelian groups

1.
E∗ ∂−→ E∗

NE/F−−−→ F, ∂(e) =
e

g(e)

2.
E ∂−→ E

TrE/F−−−→ F, ∂(e) = e− g(e)
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are exact.

Proof.

1. By the Dedekind theorem {g, g2, . . . , gn−1, gn = 1} are linearly independent over E. For
every (e1, . . . , en) ∈ En there exists ˜̃e ∈ E such that

ẽ :=
n∑
i=1

eig
i(˜̃e) 6= 0.

Take {
ei := eg(e) . . . gi−1(e), i = 1, . . . n− 1,
en := 1 = NE/F(e)

We have

eg(ei) = eg(e) . . . gi(e) = ei+1, i = 1, . . . , n− 1
eg(en) = e = e1

eg(ẽ) =
n∑
i=1

eg(ei)gi+1(˜̃e)

=
n−1∑
i=1

eg(ei)︸ ︷︷ ︸
ei+1

gi+1(˜̃e) + eg(en)︸ ︷︷ ︸
e1

gn+1︸︷︷︸
g

(˜̃e)

=
n−1∑
i=1

ei+1g
i+1(˜̃e) + e1g(˜̃e)

=
n∑
i=2

eig
i(˜̃e) + e1g(˜̃e)

=
n∑
i=1

eig
i(˜̃e)

= ẽ.

Hence e = ẽ
g(ẽ) .

2. By the Dedekind theorem (1.19) there is ˜̃e ∈ E such that TrE/F(˜̃e) = 1.

ẽ := eg(˜̃e) + (e+ g(e))g2(˜̃e) + . . .+ (e+ g(e) + . . .+ gn−2(e))gn−1(˜̃e)

ẽ− g(ẽ) = e(˜̃e+ g(˜̃e) + . . .+ gn−1(˜̃e)︸ ︷︷ ︸
=TrE/F(˜̃e)=1

)− (e+ g(e) + . . .+ gn−1(e)︸ ︷︷ ︸
=TrE/F(e)=0

)˜̃e

= e.
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Chapter 2

Hopf-Galois extensions

2.1 Canonical map

Theorem 2.1. Let E/F be a finite Galois extension, G = Gal(E/F). Then

can: E⊗F E→ Map(G,E),
e1 ⊗ e2 7→ (g 7→ e1g(e2))

is bijective.

Proof. Let G = {g1, . . . , gn}. Observe that can is left E-linear and

dimE(E⊗F E) = dimF(E) = [E : F],

dimE(Map(G,E)) = |G|.

By Galois theory these dimensions are equal. It is enough to prove that can is injective. Let∑
ẽi ⊗ ei ∈ ker(can), where {e1, . . . , en} is a basis of E/F. After applying the canonical map

we get that for all gj ∈ G
n∑
i=1

ẽigj(ei) = 0.

By the Dedekind theorem (1.19) gj(ei) are nonsingular, so all ẽi are zero, and ker(can) =
{0}.

Theorem 2.2. If E/F is a finite Galois extension, G < Gal(E/F), then

can: E⊗F E→ Map(G,E),

e1 ⊗ e2 → (g 7→ e1g(e2))

is well defined, and the following implication holds:

can is bijective =⇒ F = EG.

Proof. We have
dimF(E⊗F E)︸ ︷︷ ︸

[E:F]2

= dimF(Map(G,E))︸ ︷︷ ︸
|G|[E:F]

Hence [E : F] = |G| = [E : EG]. If F ⊂ EG, then [E : F] = [E : EG][EG : F], so [EG : F] = 1,
that is F = EG.
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Corollary 2.3. If E/F is a finite extension, G < Gal(E/F), then E/F is Galois if and only
if can is bijective.

What algebraic structures are involved in can?
On E⊗F E there is a structure of a bimodule over E

e(e1 ⊗ e2) = ee1 ⊗ e2

(e1 ⊗ e2)e = e1 ⊗ e2e

If one wants can to be a bimodule map, then Map(G,E) has to be equipped with the following
bimodule structure

(eϕ)(g) = eϕ(g)
(ϕe)(g) = ϕ(g)g(e)

2.2 Coring structure

Definition 2.4. (C,∆, ε) is called a coring over E if C is a bimodule over E equipped with
bimodule maps ∆: C → C ⊗EC (a comultiplication), and ε : C → E (a counit) such that the
following diagrams commute

C
∆ //

∆
��

C ⊗E C

id⊗∆
��

C ⊗E C
∆⊗id// C ⊗E C ⊗E C

C
∆ //

∆
��

id

&&LLLLLLLLLLLLL C ⊗E C

id⊗ε
��

C ⊗E C
ε⊗id // C

On E⊗F E there is a coring structure given by

∆(e1 ⊗ e2) := (e1 ⊗ 1)⊗ (1⊗ e2) ∈ (E⊗F E),
ε(e1 ⊗ e2) := e1e2.

The following diagrams commute

E⊗F E ∆ //

∆

��

(E⊗F E)⊗E (E⊗F E)

id⊗∆

��
(E⊗F E)⊗E (E⊗F E) ∆⊗id // (E⊗F E)⊗E (E⊗F E)⊗E (E⊗F E)

E⊗F E ∆ //

∆

��

id

))SSSSSSSSSSSSSSSSSSSSSSS (E⊗F E)⊗E (E⊗F E)

id⊗ε

��
(E⊗F E)⊗E (E⊗F E) ε⊗id // E⊗F E
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so (E⊗F E,∆, ε) is a coring.
On Map(G,E) there is also a canonical comultiplication ∆ induced by the group law

G×G→ G.

Map(G,E) ∆ //_____________

((QQQQQQQQQQQQ
Map(G,E)⊗E Map(G,E)

'ttiiiiiiiiiiiiiiii

Map(G×G,E)

The isomorphism Map(G,E)⊗E Map(G,E)→ Map(G×G,E) is given by

ϕ1 ⊗ ϕ2 7→ ((g1, g2) 7→ ϕ1(g1)g1(ϕ2(g2))).

The counit is induced by the neutral element g0 ∈ G

ε : Map(G,E)→ E, ϕ 7→ ϕ(g0).

Altogether these give a coring structure on Map(G,E).

Proposition 2.5. The canonical map can: E ⊗F E → Map(G,E) is a homomorphism of
corings over E.

Proof. We have to check compatibility with comultiplication, that is commutativity of the
diagram

E⊗F E can //

∆

��

Map(G,E)

��
Map(G×G,E)

��
(E⊗F E)⊗E (E⊗F E) can⊗ can// Map(G,E)⊗E Map(G,E)

We have
e1 ⊗ e2

� //
_

��

(g 7→ e1g(e2))
_

��
((g1, g2) 7→ e1g1g2(e2))

((g1, g2) 7→ e1g1(g2(e2)))

(e1 ⊗ 1)⊗ (1⊗ e2) � // (g1 7→ e1)⊗ (g2 7→ g2(e2))
_

OO

Next we check the compatibility with the counit that is commutativity of the diagram

E⊗F E can //

ε

��

Map(G,E)

ε

��
E // E
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We have
e1 ⊗ e2

� //
_

��

(g 7→ e1g(e2))
_

��
e1e2

� // e1e2 = e1g0(e2)

We will use the Sweedler notation for comultiplication ∆: C → C ⊗E C

∆(c) =
∑
i

c1i ⊗ c2i =: c(1) ⊗ c(2).

Proposition 2.6. Let (C,∆, ε) be a coring over E. Then HomE(C,E) is a ring with multi-
plication given by

(ϕ1ϕ2)(c) := ϕ1(c(1)ϕ2(c(2)))

and unit ε.

Examples 2.7.

1. HomE(E ⊗F E,E) = HomF(E,E) = EndF(E) with composition of morphisms as multi-
plication, and identity as the unit.

2. For finite G
E oG

'−→ HomE(Map(G,E),E)∑
g∈G

egxg 7→ (ϕ 7→
∑
i

eiϕ(gi)), xge = g(e)xg

Corollary 2.8. The canonical map of corings can: E ⊗F E → Map(G,E) induces a ring
homomorphism

HomE(can,E) : E oG→ EndF(E).

Proposition 2.9. Let E/F be a finite extension, G ⊂ Gal(E/F). Then E/F is Galois if and
only if HomE(can,E) is bijective.

Proof. If E/F is Galois, then can is bijective, so Hom(can,E) is bijective.
Apllying Hom(−,E) to Hom(can,E) we obtain can again by finite dimension over F.

Remark 2.10. EndF(E) is a matrix algebra with entries in F. If E/F is Galois then E oG is
Morita equivalent to F = EG (i.e. the category EG−Mod is equivalent to EoG−Mod). It is
the cornerstone of noncommutative geometry. If G is not finite, then EG can be pathological
and then one can take its noncommutative replacement E oG.

Example 2.11. Let E = C((X)) be the field of rational complex functions. Take G = Z
generated by g(X) := 2X. Each e ∈ E can be written as

e =
a−n
xn

+
a−n+1

xn−1
+ . . .+ a0 + a1x+ . . .

If g fixes e, then ai = 0 for i 6= 0, so EG = C. On the other hand E oG = C((X)) oG.
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2.3 Hopf-Galois field extensions

Assume [E : F] <∞, G < Gal(E/F). Then

Map(G,E) = E⊗F Map(G,F).

Map(G,F) is an F-algebra with pointwise multiplication and it is also a coalgebra with co-
multiplication

Map(G,F) ∆ //_____________

((QQQQQQQQQQQQ
Map(G,F)⊗F Map(G,F)

'ttiiiiiiiiiiiiiiii

Map(G×G,F)

ϕ1 ⊗ ϕ2 7→ ((g1, g2) 7→ ϕ1(g1)ϕ2(g2))

ε : Map(G,F)→ F, ϕ 7→ ϕ(g0).

There is also a coinverse map

S : Map(G,F)→ Map(G,F), ϕ 7→ (g 7→ ϕ(g−1))

Fact 2.12. The comultiplication, counit, and coinverse are homomorphisms of (commutative)
F-algebras.

This fact motivates the following definition:

Definition 2.13. An F-algebra H is called Hopf algebra if it has a coassociative counital
comultiplication ∆, and the coinverse S such that the following diagram is commutative

H

��

∆

{{wwwwwwwww
∆

##GGGGGGGGG

H⊗H

S⊗id

��

H⊗H

id⊗S

��

F

��

H⊗H

m
##GGGGGGGGG H⊗H

m
{{wwwwwwwww

H

The action of G in E defines the coaction of Map(G,F) on E, i.e.

E 7→ E⊗F Map(G,F) = Map(G,E)
e 7→ (g 7→ g(e))

compatible as follows with the comultiplication ∆

E ∆ //

∆
��

E⊗F Map(G,F)

id⊗∆
��

E⊗F Map(G,F) // E⊗F Map(G,F)⊗F Map(G,F)
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Remark 2.14. For any K ⊂ F ⊂ E, F/K finite, one can take another Hopf algebra Map(G,K)
and obtain

can: E⊗F E→ E⊗K Map(G,K).

In the coring approach there is one canonical coring Map(G,E) related to the action of G on
E, which in the Hopf approach can be realized by many Hopf algebras Map(G,K) defined
over subfields F ⊂ F. Even when we fix K = F after replacing Map(G,F) by an arbitrary
abstract Hopf algebra over F theory is not as complete as in the group case.

For every group G

Map(G,F) = HomF(FG,F),

where FG is the group algebra of G. FG is also a Hopf algebra with comultiplication obtained
from the diagonal map G 7→ G×G, g 7→ (g, g),

∆: FG→ FG⊗ FG, g 7→ g ⊗ g,

counit ε : FG → F sending all group elements to 1 ∈ F, and coinverse obtained from group
inverse g 7→ g−1.

Dualization Hom(−,F) transforms the coalgebra structure of FG into the algebra structure
of Map(G,F). If |G| <∞ then

FG ∼= HomF(Map(G,F),F)

transforms the coalgebra structure of Map(G,E) into the algebra structure of FG. From the
point of view of FG the canonical map looks like

can: E⊗F E→ HomF(FG,E)
e1 ⊗ e2 7→ (h 7→ e1he2),

where FG acts on E in the following way

h(e1e2) := h(1)(e1)h(2)(e2).

Fixed subfield can also be defined in terms of this action

EFG := {e ∈ E | ∀ h ∈ FGhe = ε(h)e} = EG

Replacing FG by an arbitrary Hopf algebra H we obtain

can: E⊗F E→ HomF(H,E)
e1 ⊗ e2 7→ (h 7→ e1he2).

where H acts on E in the same manner

h(e1e2) := h(1)(e1)h(2)(e2).

To extend the Galois theory to this case we need a notion of a Hopf subalgebra of H.

Definition 2.15. H′ ⊂ H is a Hopf subalgebra of H if the inclusion is a homomorphism of
Hopf algebras.
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Theorem 2.16 (Chase-Sweedler). Let E/F be Hopf-Galois with respect to the action of a
cocommutative Hopf algebra H. Then

φ : {H′ ⊂ H | H′ is Hopf subalgebra of H} → {F′ | F ⊂ F′ ⊂ E subfield}

H′ 7→ EH
′

is injective and inclusion reversing.

Note that the claim is about injectivity only. Another distinction comparing with classical
Galois theory is that the Hopf algebra making a given extension Hopf-Galois is not unique.

Example 2.17 (Greither-Pareigis). Let F = Q, E = Q(4
√

2), ω :=4
√

2

H := Q[c, s]/(c2 + s2 − 1, cs)

with the comultiplication

∆: H → H⊗F H
c 7→ c⊗ c− s⊗ s
s 7→ c⊗ s+ s⊗ c,

counit

ε : H → F
c 7→ 1
s 7→ 0,

and coinverse

S : H → H
c 7→ c

s 7→ −s.

The action H⊗F E→ E is given in a table

1 ω ω2 ω4

c 1 0 −ω2 0
s 0 −ω 0 ω3

Then E/F is H-Galois.

Example 2.18. Let F = Q, E = Q( 4
√

2), ω := 4
√

2

H̃ := Q[c̃, s̃]/(c̃2 + s̃2 − 1, c̃s̃)

with the comultiplication

∆: H̃ → H̃ ⊗F H̃
c̃ 7→ c̃⊗ c̃− 1

2 s̃⊗ s̃
s̃ 7→ c̃⊗ s̃+ s̃⊗ c̃,
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counit

ε : H → F
c̃ 7→ 1
s̃ 7→ 0,

and coinverse

S : H → H
c̃ 7→ c̃

s̃ 7→ −s̃.

The action H̃ ⊗F E→ E is given in a table

1 ω ω2 ω4

c̃ 1 0 −ω2 0
s̃ 0 ω3 0 −2ω

Then E/F is H̃-Galois.

Example 2.19. Note that Q( 4
√

2)/Q is not normal, because the minimal polynomial of 4
√

2 is
X4 − 2, and it has imaginary roots ±i 4

√
2 /∈ Q( 4

√
2) ⊂ R. Hence it is not Galois in a classical

sense. However it is Hopf-Galois.

Example 2.20. There are separable field extensions which are not Hopf-Galois at all. For
example no field extension E/F, [E/F] = 5 with Gal(Ẽ/F) = 5 (where Ẽ denotes the normal
closure of F ⊂ E ⊂ F) can be Hopf-Galois.

What can be said about separable Hopf-Galois extensions?

Definition 2.21. If S is a set, then a subgroup of Perm(S) is called regular if it is transitive
with trivial stabilizers.

Let Ẽ be a normal closure of E in F, so Gal(Ẽ/E) ⊂ Gal(Ẽ/F). Denote

S := Gal(Ẽ/E)/Gal(Ẽ/F) (left cosets)

Theorem 2.22. The following conditions are equivalent:

1. There is a Hopf F-algebra H such that E/F is H-Hopf-Galois.

2. There is a regular subgroup N ⊂ Perm(S) such that Gal(Ẽ/F) = Perm(S) normalizes
N .

Proposition 2.23. The following conditions are equivalent:

1. There exists a Galois extension F′/F such that F′ ⊗F E is a field containing Ẽ.

2. There exists a Galois extension F′/F such thae F′ ⊗F E = Ẽ.

3. Gal(Ẽ/E) has a normal complement N ⊂ Gal(Ẽ/F).

4. There exists a normal subgroup N ⊂ Gal(Ẽ/F) which is regular in Perm(S).
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Definition 2.24. If E/F is finite and one of the conditions (1)-(4) is fulfilled then this
extension is called almost classical.

Theorem 2.25 (Greither-Pareigis). If E/F is almost classicaly Galois, then there is a Hopf
algebra H such that E/F is H-Hopf-Galois and the map

φ : {H′ ⊂ H | H′ is Hopf subalgebra of H} → {F′ | F ⊂ F′ ⊂ E subfield}, H′ 7→ EH
′

is bijective.

However, even for classical Galois extensions one cannot expect that for such H, making
this extension Hopf-Galois, the image of φ contains all intermediate subfield.

Theorem 2.26 (Greither-Pareigis). Any classical Galois extension E/F can be endowed with
an H-Galois structure such that the image of φ consists of normal intermediate extensions
F ⊂ F′ ⊂ E.

Example 2.27. Let F = Q, E = Q(ω, ξ), where ω = 3
√

2 and ξ =
√

3+i
2 . It is known that the

extension E/F is Galois with Gal(E/F) = S3. But there exists a Hopf algebra

H := Q〈c, s, t〉︸ ︷︷ ︸
noncommutative variables

/(c(c− 1)(c+ 1), 2c2 + st+ ts− 2, cs, sc, ct, tc, s2, t2)

The comultiplication is given by

∆: H → H⊗F H
c 7→ c⊗ c+ 1

2(s⊗ t+ t⊗ s)
s 7→ c⊗ s+ s⊗ c+ 1

2 t⊗ t
t 7→ c⊗ t+ t⊗ c+ s⊗ s

H is a Hopf algebra making E/F Hopf-Galois, where action H⊗F E→ E is given in the table

1 ω ξ

c 1 0 ξ2

s 0 ω2 0
t 0 0 0

In the image of φ one obtains only normal intermediate extensions.

2.4 Torsors

Let G be a group, X a set, X × G → X right action (x, g) 7→ xg. We assume that neutral
element acts trivially xg0 = x, and that x(g1g2) = (xg1)g2.

Example 2.28.

1. X = ∅ or X = ∗, a one element set.

2. X = G, G×G→ G group composition.

3. X = {1, 2, . . . , n}, G = Sn acting by permutations.
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Definition 2.29. A G-torsor is a G-set which is isomorphic to G in the category of G-sets.

Theorem 2.30. The following conditions are equivalent

1. X is a G-torsor.

2. For all x, y ∈ X there is a unique g ∈ G such that xg = y.

3. For all x ∈ X the map g 7→ xg gives an isomorphism G ∼= X of G-sets.

4. The map X ×G→ X ×X, (x, g) 7→ (x, xg) is bijective.

We are mainly interested in algebraic sets.

Definition 2.31. If I =
√
I / F[X1, . . . , Xn] is a radical ideal of an algebraic set X ⊂ Fn,

then we form a coordinate ring of X

O(X) = F[X1, . . . , Xn]/I

Definition 2.32. If F ⊂ E is an algebraic field extension then X(E) is the set of E-points of
X.

Fact 2.33. If X,Y are algebraic sets corresponding to F-algebras O(X), O(Y ) respectively
then

O(X ×F Y ) = O(X)⊗F O(Y )

(X ×F Y )(E) = X(E)× Y (E)

Example 2.34. Let O(X) := R[X,Y ]/(X2 + Y 2 − 1). The real points X(R) form a circle
in R2. But an algebraic set can have complex points, which are the complex solutions of
X2 + Y 2 = 1.

Definition 2.35. A morphism of algebraic sets X → Y over F is a homomoprhism of F-
algebras O(Y )→ O(X).

This gives a map X(E)→ Y (E) for every algebraic extension E/F.

Example 2.36. GLn(E) - set of E-points of general linear group over F.

O(GLn) = F[X11, . . . , Xij , . . . , Xnn; det([Xij ]ni,j=1)−1]

A linear algebraic group G ⊂ GLn is defined by polynomial relations f1(X), . . . , fr(X),
X = [Xij ]ni,j=1. A matrix A ∈ G(E) if and only if f1(A) = 0, . . . , fr(A) = 0. Here are the
examples of linear algebraic groups:

1. GLn, f1(X) = 0.

2. SLn, f1(X) = det(X)− 1.

3. On, {ATA = I}.

4. UTn, fij(X) = Xij for i > j.

25



If G is an algebraic group, then H = O(G) is a Hopf algebra with the pointwise multipli-
cation and comultiplication induced by the composition in G,

∆: O(G)→ O(G)⊗F O(G) ' O(G×F G).

If E/F is any field extension then an F-homomorphismO(G)→ E is determined by a subgroup
G(E) ⊂ GLn(E).

Consider a group action of G on X. The compatibility conditions can be shown using
diagrams

X ×F G×F G //

��

X ×F G

��
X ×F G // X

X × ∗

�� ##HHHHHHHHH

X ×F G // X

These diagrams can be dualized

O(X)⊗F O(G)⊗F O(G) O(X)⊗F O(G)oo

O(X)⊗F O(G)

OO

O(X)oo

OO
O(X)⊗ ∗

�� ''OOOOOOOOOOO

O(X)⊗F O(G)

OO

O(X)

ggOOOOOOOOOOO
oo

Algebraic G-action on an algebraic set induces a coaction of the Hopf algebra O(G) on an
algebra O(X). Then X is a G-torsor if the map

O(X)⊗F O(X) // O(X)⊗F O(X)

O(X ×F X) O(X ×F G)

is induced by the canonical map

X ×F X ← X ×F G

On E-points it is given by

(X ×F X)(E) (X ×F G)(E)oo

X(E)×X(E) X(E)×G(E)

(x, xg) (x, g)�oo

Example 2.37. If E/F is a finite Galois extension then the algebraic setX over F corresponding
to an F-algebra E = O(X) is a G-torsor where G is a linear algebraic group corresponding
to an F-algebra O(G) = Map(Gal(E/F),F). Note that X(F) = ∅, X(E) is a finite set of
cardinality equal to the degree of the extension [E : F]. If E is a splitting field of f(X) ∈ F[X],
then X(E) is the set of roots of f .
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2.5 Crossed homomorphisms and G-torsors

Let E/F be a finite Galoios extension, and G linear algebraic group over F.

Definition 2.38. A crossed homomorphism is a map

ϕ : Gal(E/F)→ G(E)

satisfying ϕ(g1g2) = ϕ(g1)g1(ϕ(g2)). Two crossed morphisms ϕ, ϕ′ are said to be equivalent
if ϕ′(g) = ψϕ(g)ψ−1 for some ψ ∈ G(E).

A crossed homomorphism ϕ gives rise to a torsor as follows. On E ⊗F O(G) we have an
obvious Gal(E/F)-action, and we define a ϕ-twisted action by

g · (e⊗ h) := g(e)⊗ ϕ(g−1)∗h ∈ E⊗F O(G)

Then the fixed F-subalgebra (E⊗FO(G))Gal(E/F) is a coordinate ring O(X) for a G-torsor X
with the G-action induced by the restriction O(X)→ O(X)⊗FO(G) of the comultiplication

E⊗F O(G)→ (E⊗F O(G))⊗E (E⊗F O(G)).

Definition 2.39. W say that the extension E/F trivializes a G-torsor X if after the base
extension E/F we have an isomorphism.

E⊗F O(X) ' E⊗F O(G).

Theorem 2.40. The isomorphism classes of G-torsors over F trivializable by the extension
E/F correspond bijectively to the equivalence classes of crossed homomorphisms Gal(E/F)→
G(E).

Example 2.41. Let G = GL1 = F∗ (invertible elements). Then the set of nonzero vectors in
any one dimensional vector space over F is a G-torsor X over F. Then the set of isomor-
phism classes of such torsors correspond bijectively to the set of isomorphism classes of one
dimensional vector spaces over F.

The set of equivalence classes of crossed homomorphisms Gal(E/F)→ G(E) is H1(Gal(E/F); E∗),
which is 0 by the Hilbert’s 90’th theorem (1.47).

Example 2.42. Let F = C, O(G) = C[g, h, g−1, h−1],

O(X) = C〈x, y, x−1, y−1〉/(xy = qyx), q ∈ C∗.

2.6 Descent theory

Let E/F be a field extension. Given an algebraic object A defined over F (vector space,
quadratic space, algebra, coalgebra, Hopf algebra etc.) one can construct an algebraic object
E ⊗F A defined over E. The aim of descent theory is to say something about what happens
when we go in the opposite direction. For example given aE ∈ AE := E⊗FA we can ask what
conditions guarantee that aE = 1⊗ aF.

Example 2.43. If E/F is finite Galois extension then taking AF = F we obtain AE = E⊗F F =
E. The answer in this case is: this happens if and only if g(a) = a for all g ∈ Gal(E/F).

Another problem consists in the question when a given AE defined over E is of the form
AE = E⊗F AF. This is called a problem of forms of algebraic structures.
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Definition 2.44. A′F is called E-form of AF if E⊗F A
′
F ' E⊗F AF.

Example 2.45. Let F = R, E = C, H = RZ (group algebra). Define

H′ := R[c, s]/(c2 + s2 − 1)
∆(c) = c⊗ c− s⊗ s
∆(s) = c⊗ s+ s⊗ c

Then
a := 1⊗ c+ i⊗ s = c+ is ∈ E⊗F H′

is invertible with inverse a−1 = c− is ∈ E⊗F H′. Hence c, s ∈ E⊗F H′, and

E⊗F H′ = C[a, a−1] ∼= CZ ∼= E⊗F H

Note that H and H′ are not isomorphic over R, because their groups of real points are
different:

Hom(H,R) ∼= R∗

with only two elements of finite order {1,−1}, and

Hom(H′,R) ∼= U(1)

with infinitely many elements of finite order.

Theorem 2.46 (Haggenmüller-Pereigis). Let Γ be a finitely generated group with finite iso-
morphism group G. Then there is a bijection between the set of isomorphism classes of
G-Galois extensions of F and the set of Hopf algebra forms of H = FΓ. This associates with
each G-Galois extension E of F the Hopf algebra

H′ :=

∑
γ∈Γ

cγγ ∈ EΓ | ∀ g ∈ G
∑
γ∈Γ

g(cγ)g(γ) =
∑
γ∈Γ

cγγ


which is an E-form of EΓ by the isomorphism

E⊗F H′ → E⊗F H = EΓ

e⊗
∑
γ∈Γ

cγγ 7→
∑
γ∈Γ

ecγ ⊗ γ

Example 2.47. Let G = Z/2, g-generator, C ↪→ H = {z0 + z1j | jz = z̄j, j2 = −1}.

g(z0 + z1j) := z0 − z1j = i(z0 + z1j)i−1

Then HG = C ⊂ H, and
can: H⊗C H ∼= Map(G,H)

q1 ⊗ q2 7→ (g 7→ q1g(q2))
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