The Baum-Connes conjecture, localisation of categories and quantum groups

Ralf Meyer

Notes by
Paweł Witkowski

March 2008

Contents

1 Noncommutative algebraic topology 3
1.1 What is noncommutative (algebraic) topology? 3
1.1.1 Kasparov KK-theory 5
1.1.2 Connection between abstract and concrete description 6
1.1.3 Relation with K-theory 8
1.2 Equivariant theory 9
1.2.1 Tensor products 10
1.3 KK as triangulated category 12
1.4 Axioms of a triangulated categories 14
1.5 Localisation of triangulated categories 22
1.6 Index maps in K-theory and K-homology 35
1.7 Mayer-Vietoris sequences 36
1.8 Localisation of functors 39
1.9 Towards an analogue of the Baum-connes conjecture for quantum groups 40
1.10 Quantum groups 42
1.11 The Baum-Connes conjecture 44

Chapter 1

Noncommutative algebraic topology

1.1 What is noncommutative (algebraic) topology?

We can distinguish three stages of noncommutative algebraic topology:

1. K-theory of C^{*}-algebras.
2. Topological invariants of C^{*}-algebras.
3. Bivariant K-theory - KK-theory.

In this section we will deal with the second point. A topological invariant for C^{*}-algebras is a functor F on the category of C^{*}-algebras and ${ }^{*}$-morphisms, with certain formal properties. These properties are
(H) Homotopy invariance. If $f_{0}, f_{1}: A \rightarrow B$ are two ${ }^{*}$-morphisms, then a homotopy between them is a *-homomorphism $f: A \rightarrow C([0,1], B)$ such that $\mathrm{ev}_{t} \circ f=f_{t}$. Homotopy invariance states that if f_{0}, f_{1} are homotopic, then $F\left(f_{0}\right)=F\left(f_{1}\right)$.
(E) Exactness. For any C^{*}-algebra extension

$$
\begin{equation*}
I \mapsto E \rightarrow Q \tag{1.1}
\end{equation*}
$$

the sequence

$$
\begin{equation*}
F(I) \rightarrow F(E) \rightarrow F(Q) \tag{1.2}
\end{equation*}
$$

is exact.
Since KK-theory does not have this property we also allow functors that are semi-split exact, that is, a sequence (1.2) is exact only for semi-split extensions. We say that the extension (1.1) is semi-split if it has completely positive contractive section $s: Q \rightarrow E$. Recall that a map $s: Q \rightarrow E$ is positive if and only if $x \geq 0$ implies $s(x) \geq 0$. It is completely positive if and only if $M_{n}(s): M_{n}(Q) \rightarrow M_{n}(E)$ is positive for all $n \geq 0$. A map $s: Q \rightarrow E$ is called contractive if $\|s\| \leq 1$.

Theorem 1.1. The extension $I \mapsto E \rightarrow Q$ with Q nuclear is semi-split.
Theorem 1.2 (Stinespring). If $s: Q \rightarrow E$ is a completely positive contractive map, then there exists a C^{*}-morphism $\pi: Q \rightarrow B(\mathcal{H})$, and adjointable contractive isometry $T: E \rightarrow \mathcal{H}_{E}\left(\mathcal{H}_{E}\right.$ is a Hilbert E-module) such that $s(q)=T^{*} \pi(q) T$.

We say that a functor F is split-exact if for every split extension

$$
\begin{equation*}
\digamma P \stackrel{s}{\longleftrightarrow} Q \tag{1.3}
\end{equation*}
$$

The sequence

$$
F(I) \longrightarrow F(E) \stackrel{F(s)}{\longrightarrow} F(Q)
$$

is exact, that is $F(E) \simeq F(I) \oplus F(Q)$.
K-theory is homotopy invariant, exact and split-exact.
Proposition 1.3. Let F be a homotopy invariant and (semi-split) exact functor. Then for any (semi-split) extension $I \rightarrow E \rightarrow Q$ there is a natural long exact sequence

$$
\begin{equation*}
\ldots \rightarrow F\left(S^{2} Q\right) \rightarrow F(S I) \rightarrow F(S E) \rightarrow F(S Q) \rightarrow F(I) \rightarrow F(E) \rightarrow F(Q) \tag{1.4}
\end{equation*}
$$

where $S A:=C_{0}((0,1), A)$ is the suspension functor.
(M) Morita equivalence or \mathbf{C}^{*}-stability. The third condition for a topological invariant is Morita equivalence. It is of different nature than homotopy invariance and exactness. It is a special feature of the non-commutative world.
For all C^{*}-algebras A the corner embedding

$$
A \rightarrow \mathcal{K}\left(l^{2} \mathbb{N}\right) \otimes A
$$

induces an isomorphism $F(A) \simeq F(\mathcal{K} \otimes A)$.
We say that two C^{*}-algebras A, B are Morita equivalent if there exists a two sided Hilbert module ${ }_{A} \mathcal{H}_{B}$ over $A^{o p} \otimes B$ such that

$$
\begin{aligned}
& \left({ }_{A} \mathcal{H}_{B}\right) \otimes_{B}\left({ }_{B} \mathcal{H}_{A}^{*}\right) \simeq{ }_{A} A_{A} \\
& \left({ }_{B} \mathcal{H}_{A}^{*}\right) \otimes_{A}\left({ }_{A} \mathcal{H}_{B}\right) \simeq{ }_{B} B_{B}
\end{aligned}
$$

Theorem 1.4 (Brown-Douglas-Rieffel). Two separable C^{*}-algebras A, B are Morita equivalent, $A \sim_{M} B$, if and only if $A \otimes \mathcal{K} \simeq B \otimes \mathcal{K}$.

Definition 1.5. A topological invariant for C^{*}-algebras is a functor $F: C *-\mathbf{A l g} \rightarrow \mathbf{A b}$ which is C^{*}-stable, split exact, semi-split exact and homotopy invariant.

Theorem 1.6 (Higson). If $F: C *-\mathbf{A l g} \rightarrow \mathbf{A b}$ is C^{*}-stable and split exact then it is homotopy invariant.

Alse if $F: C *-\mathbf{A l g} \rightarrow \mathbf{A b}$ is semi-split exact and homotopy invariant then it is split exact.
Actually, any topological invariant has many more formal properties like Bott periodicity, Pimsner-Voiculescu exact sequence for crossed product by \mathbb{Z}, Connes-Thom isomorphism for crossed products by \mathbb{R}, Mayer-Vietoris sequences.

Bott periodicity states that $F\left(S^{2} A\right) \simeq F(A)$ with a specified isomorphism. To prove it one can use two extensions

$$
\mathcal{K} \longmapsto \mathcal{T} \rightarrow C(\mathrm{U}(1)) \quad \text { (Toeplitz extension) }
$$

$$
\begin{array}{rl}
C_{0}((0,1)) \rightarrow C_{0}((0,1]) & \xrightarrow{\text { ev } 1} \mathbb{C} \quad(\text { cone extension }) \\
\mathcal{K} & \mathcal{T} \\
\subset \uparrow & C(\mathrm{U}(1)) \\
& \subset \uparrow \\
\mathcal{T}_{0} & \longrightarrow C_{0}(\mathrm{U}(1) \backslash\{1\})
\end{array}
$$

From the long exact sequence in proposition (1.4) we get boundary maps

$$
F\left(S^{2} A\right) \rightarrow F(\mathcal{K} \otimes A) \simeq F(A)
$$

The theorem is that this natural map is invertible for any topological invariant.
Corollary 1.7. For any topological invariant F, and any split extension

$$
I \hookrightarrow E \rightarrow Q
$$

there is a cyclic six-term exact sequence

If F is a topological invariant, $A \mathrm{C}^{*}$-algebra, then $D \mapsto F(A \otimes D)$ is also a topological invariant. Therefore Bott periodicity is equivalent to the fact, that $F(\mathbb{C}) \simeq F\left(C_{0}\left(\mathbb{R}^{2}\right)\right)$ for all topological invariants F.

1.1.1 Kasparov KK-theory

The reason why topological invariants have these nice properties is bivariant K-theory (also called KK-theory or Kasparov theory). Both functors $B \mapsto \operatorname{KK}(A, B)$ and $A \mapsto \operatorname{KK}(A, B)$ are topological invariants.

There is a natural product

$$
\begin{aligned}
\mathrm{KK}(A, B) \otimes \mathrm{KK}(B, C) & \rightarrow \mathrm{KK}(A, C) \\
(x, y) & \mapsto x \otimes_{B} y
\end{aligned}
$$

This turnes Kasparov theory into a category KK.
We can characterize KK using the universal property.
Definition 1.8. $C *-\mathbf{A l g} \rightarrow \mathbf{K K}$ is the universal split exact, C^{*}-stable (homotopy) functor.
This means that the functor $C *-\mathbf{A l g} \rightarrow \mathbf{K K}$, which maps a *-homomorphism $A \rightarrow B$ into its class in $\operatorname{KK}(A, B)$, is split exact, and C^{*}-stable. Moreover, for any other functor F from (separable) C^{*}-algebras to some additive category \mathbf{C} there is a unique factorisation through KK

This abstract point of view explains why KK-theory is so important. It is the universal topological invariant. To be useful, we need existence and a concrete description of KK.

We will describe cycles for A, B. Then homotopies will be cycles in $\mathrm{KK}_{0}(A, C([0,1], B))$. Next we define $\operatorname{KK}_{0}(A, B)$ as the set of homotopy classes of cycles. Cycles consist of

- a Hilbert B-module \mathcal{E} that is $\mathbb{Z} / 2$-graded, $\mathcal{E}=\mathcal{E}^{+} \oplus \mathcal{E}^{-}$
- a^{*}-homomorphism $\varphi: A \rightarrow B(\mathcal{E})^{\text {even }}$
- an adjointable operator $F \in B(\mathcal{E})^{\text {odd }}$
such that
- $F=F^{*}($ or $(F-F *) \varphi(a) \in \mathcal{K}(\mathcal{E})$ for all $a \in A)$
- $F^{2}=1\left(\right.$ or $\left(F^{2}-1\right) \varphi(a) \in \mathcal{K}(\mathcal{E})$ for all $\left.a \in A\right)$
- $[F, \varphi(a)] \in \mathcal{K}(\mathcal{E})$ for all $a \in A$.

Addition is the direct sum.
For the odd case we can take

$$
\operatorname{KK}_{1}(A, B) \simeq \operatorname{KK}_{0}(A, S B) \simeq \operatorname{KK}_{0}(S A, B)
$$

or more concretely drop $\mathbb{Z} / 2$-grading in the definition of K_{0}.
Kasparov uses Clifford algebras to unify KK_{0} and KK_{1} and the extend the definition to the real case. We do not treat the real case here but mention the following result

Theorem 1.9. Let $A^{\mathbb{R}}$ and $B^{\mathbb{R}}$ be real C^{*}-algebras and let $A^{\mathbb{C}}=A^{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}, B^{\mathbb{C}}=B^{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ be their complexifications. Then there is a map

$$
\operatorname{KK}^{\mathbb{R}}\left(A^{\mathbb{R}}, B^{\mathbb{R}}\right) \rightarrow \operatorname{KK}^{\mathbb{C}}\left(A^{\mathbb{C}}, B^{\mathbb{C}}\right), \quad f^{\mathbb{R}} \mapsto f^{\mathbb{C}}
$$

Moreover $f^{\mathbb{R}}$ is invertible if and only if $f^{\mathbb{C}}$ is invertible. In particular $B^{\mathbb{R}} \sim 0$ if and only if $B^{\mathbb{C}} \sim 0$.

1.1.2 Connection between abstract and concrete description

Take a cycle $X=(\mathcal{E}, \varphi, F)$ for $\operatorname{KK}_{1}(A, B)$. Form $E_{X}=\mathcal{K}(\mathcal{E})+\varphi(A)\left(\frac{1+F}{2}\right)$. This is a C^{*} algebra because, modulo $\mathcal{K}(\mathcal{E}), P:=\frac{1+F}{2}$ is a projection which commutes with $\varphi(A)$. By construction there is an extension

$$
\mathcal{K}(\mathcal{E}) \mapsto E_{X} \rightarrow A^{\prime}
$$

with $\varphi: A \rightarrow A^{\prime}, \mathcal{K}(\mathcal{E}) \sim_{M} I \triangleleft B$. We can assume \mathcal{E} is full and $\varphi(A)$ is injective as a map to $B(\mathcal{E}) / \mathcal{K}(\mathcal{E})$. Even $\mathcal{E}=l^{2} \mathbb{N} \otimes B$ is possible by Kasparov's Stabilisation Theorem

$$
\mathcal{E} \oplus\left(l^{2} \mathbb{N} \otimes B\right) \simeq l^{2} \mathbb{N} \otimes B
$$

After simplifying using $\mathcal{K}\left(l^{2} \mathbb{N} \otimes B\right) \simeq \mathcal{K}\left(l^{2} \mathbb{N}\right) \otimes B$ we get a C^{*}-extension

$$
\mathcal{K} \otimes B \mapsto E_{X} \rightarrow A
$$

which is semi-split by $a \mapsto P \varphi(a) P$.
Conversely, this process can be inverted using Stinespring's Theorem, and any semi-split extension

$$
\mathcal{K} \otimes B \mapsto E \rightarrow A
$$

gives a class in $\mathrm{KK}_{1}(A, B)$.

Thus we can describe $\mathrm{KK}_{1}(A, B)$ as the set of homotopy classes of semi-split extensions of A by $\mathcal{K} \otimes B$. A deep result of Kasparov replaces homotopy invariance by more rigid equivalence relation: unitary equivalence after adding split extensions. Two extensions are unitarily equivalent if there is a commuting diagram

with $u \in \mathcal{K} \otimes B$ unitary.
Corollary 1.10. For any topological invariant F there is a map

$$
\mathrm{KK}_{1}(Q, I) \otimes F_{k}(Q) \rightarrow F_{k+1}(I),
$$

where $F_{k}(A):=F\left(S^{k} A\right)$.
Proof. Use the boundary map from proposition (1.3) for the extension associated to a class in $\mathrm{KK}_{1}(Q, I)$.

Similar construction works in even case. We take

$$
\mathcal{E}=\mathcal{E}^{+} \oplus \mathcal{E}^{-}, \quad \varphi=\varphi^{+} \oplus \varphi^{-}, \quad F=\left(\begin{array}{cc}
0 & u * \\
u & 0
\end{array}\right)
$$

with u unitary.

$$
\begin{aligned}
\varphi: A \rightarrow & B\left(\mathcal{E}^{+}\right), \quad \operatorname{Ad}(u) \circ \varphi^{-}: A \rightarrow B\left(\mathcal{E}^{+}\right) \\
& \varphi^{+}(a)-\operatorname{Ad}(u) \varphi^{-}(a) \in \mathcal{K}\left(\mathcal{E}^{+}\right)
\end{aligned}
$$

for all $a \in A$. From a split extension $\mathcal{K}\left(\mathcal{E}^{+}\right)+\varphi^{+}(A)$ we get an extension

$$
\mathcal{K}\left(\mathcal{E}^{+}\right) \mapsto E \rightarrow A
$$

that splits by φ^{+}and $\operatorname{Ad}(u) \circ \varphi^{-}$.
Let F be a topological invariant, then

$$
\begin{gathered}
F(E) \simeq F(B) \oplus F(A), \\
F\left(\varphi^{+}\right)-F\left(\operatorname{Ad}(u) \circ \varphi^{-}\right): F(A) \rightarrow F(B) \subset F(E) .
\end{gathered}
$$

Hence we get a map

$$
\mathrm{KK}_{0}(A, B) \otimes F(A) \rightarrow F(B) .
$$

Consider two extensions

$$
C \hookrightarrow E_{2} \rightarrow B, \quad B \mapsto E_{1} \rightarrow A
$$

These give a map

$$
F(A) \rightarrow F\left(S^{-2} C\right) \simeq F(C) .
$$

The miracle of the Kasparov product is that this composite map is described by a class in $\mathrm{KK}_{0}(A, C)$.

Definition 1.11. Operator F is Fredholm if $\operatorname{ker}(F)$ and $\operatorname{coker}(F)$ have finite dimension.

The operator F in the definition of Kasparov cycles is something like a Fredholm operator. A cycle in $\mathrm{KK}_{0}(\mathbb{C}, \mathbb{C})$ consists of a Hilbert space $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$and an operator $F: \mathcal{H}_{+} \rightarrow \mathcal{H}_{-}$, $F F^{*}-\mathrm{id} \in \mathcal{K}, F^{*} F-\mathrm{id} \in \mathcal{K}$, so F is Fredholm.

The index map gives an isomorphism

$$
\begin{aligned}
\text { Index: } \mathrm{KK}_{0}(\mathbb{C}, \mathbb{C}) & \simeq \\
\operatorname{Index}(F) & =\operatorname{dim}(\operatorname{ker} F)-\operatorname{dim}(\operatorname{coker} F)
\end{aligned}
$$

In the odd case we have $\mathrm{KK}_{1}(\mathbb{C}, \mathbb{C})=0$.
A pair of *-homomorphisms $f, g: A \rightarrow B$ with $(f-g)(A) \subset \mathcal{K}$ ideal in B gives a morphism $q A \rightarrow \mathcal{K}$.

$$
\mathrm{KK}(A, B)=[q A, B \otimes \mathcal{K}] \quad \text { (homotopy classes of *-homomorphisms) }
$$

Here $q A$ is the target of the universal quasi-homomorphism.

1.1.3 Relation with K-theory

KK-theory is very close to K-theory. If some construction gives a map $\mathrm{K}_{*} A \rightarrow \mathrm{~K}_{*} B$ it probably gives a class in $\mathrm{KK}_{*}(A, B)$.

Theorem 1.12. $\mathrm{KK}_{*}(\mathbb{C}, A) \simeq \mathrm{K}_{*}(A)$.
The proof requires the concrete description of KK.
Hence there is a canonical map

$$
\gamma: \mathrm{KK}_{*}(A, B) \rightarrow \operatorname{Hom}\left(\mathrm{K}_{*} A, \mathrm{~K}_{*} B\right) .
$$

In many cases, this map is injective and has kernel $\operatorname{Ext}^{1}\left(K_{*} A, K_{*+1} B\right)$.
Take $\alpha \in \operatorname{KK}_{1}(Q, I), \alpha=[I \multimap E \rightarrow Q]$. Assume $\gamma(\alpha)=0$. There is an exact sequence

We get an extension of $\mathbb{Z} / 2$-graded abelian groups.

$$
\mathrm{K}_{*}(I) \multimap \mathrm{K}_{*}(E) \rightarrow \mathrm{K}_{*}(Q) .
$$

This defines a natural map

$$
\operatorname{KK}_{*}(A, B) \supset \operatorname{ker} \gamma \rightarrow \operatorname{Ext}^{1}\left(\mathrm{~K}_{*+1}(A), \mathrm{K}_{*}(B)\right) .
$$

In many cases this map and γ provide the Universal Coefficient Sequence (1.5)

Theorem 1.13. Let \mathbf{B} be the smallest category of separable C^{*}-algebras closed under suspensions, semi-split extensions, KK-equivalence, tensor products, and containing \mathbb{C}. Then there exists a natural exact sequence

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(K_{*+1} A, K_{*} B\right) \mapsto \mathrm{KK}_{*}(A, B) \rightarrow \operatorname{Hom}\left(\mathrm{K}_{*} A, \mathrm{~K}_{*} B\right) \tag{1.5}
\end{equation*}
$$

for $A, B \in \mathbf{B}$
Corollary 1.14. Let X and Y be locally compact spaces. If $\mathrm{K}^{*}(X \backslash\{x\}) \simeq \mathrm{K}^{*}(Y \backslash\{y\})$ then $F\left(C_{0}(X \backslash\{x\})\right) \simeq F\left(C_{0}(Y \backslash\{y\})\right)$ for any topological invariant for C^{*}-algebras.

Proof. Denote $\widetilde{X}:=X \backslash\{x\}, \widetilde{Y}:=Y \backslash\{y\}$.

$$
\alpha: \mathrm{K}^{*}(X \backslash\{x\}) \simeq \mathrm{K}^{*}\left(C_{0}(X \backslash\{x\})\right) \xrightarrow{\simeq} \mathrm{K}^{*}\left(C_{0}(Y \backslash\{y\})\right)
$$

By the universal coefficients theorem, α lifts to $\widehat{\alpha} \in \mathrm{KK}_{0}\left(C_{0}(\widetilde{X}), C_{0}(\widetilde{Y})\right)$. Because $\operatorname{Ext}^{1} \circ \operatorname{Ext}^{1}=$ 0 we know that $\widehat{\alpha}$ is invertible. Since KK is universal, $F(\widehat{\alpha})$ is invertible for any topological invariant F.

There are analogies and contrasts between homotopy theory and noncommutative topology. We will summarize them in a table:

Homotopy theory

Spaces
Stable homotopy category
Stable homotopy groups of spheres $\pi_{*}^{s}\left(S^{0}\right)=\operatorname{Mor}_{*}(\mathrm{pt}, \mathrm{pt})$

Homology $\mathrm{H}_{*}(-)$
Adams spectral sequence Always works but complicated Interesting topology - no analysis

Noncommutative topology

C*-algebras
KK
Morphisms from \mathbb{C} to \mathbb{C} in KK
$\mathrm{KK}^{*}(\mathbb{C}, \mathbb{C})=\mathbb{Z}\left[\beta, \beta^{-1}\right], \operatorname{deg}(\beta)=2$
Bott periodicity
K-theory $\mathrm{K}_{*}(-)$
Universal coefficients theorem for KK
Not always works, but it is easy when it works
Simple topology - interesting analysis

1.2 Equivariant theory

In equivariant bivariant Kasparov theory additional symmetries create interesting topology, making tools from homotopy theory more relevant.

What equivariant situations are being considered?

- Group actions (of locally compact groups)
- Bundles of C^{*}-algebras $\left(A_{x}\right)_{x \in X}$ over some space X
- Locally compact groupoids
- locally compact quantum group actions (Baaj-Skandalis)
- C*-algebras over non-Hausdorff space (Kirchberg)

In each case, there is an equivariant K-theory with similar properties as the nonequivariant one, with a similar concrete description - add equivariance condition - and an universal property.

Proposition 1.15. If G is a group, then $\mathrm{KK}^{G}(\mathbb{C}, \mathbb{C})$ is a graded commutative ring, and the exterior product coincides with composition product. Furthermore $\mathrm{KK}^{G}(\mathbb{C}, \mathbb{C})$ acts on $\mathrm{KK}^{G}(A, B)$ for all $A, B \in \mathbf{C}^{*}-\operatorname{alg}_{G}$ by exterior product.

Let \mathcal{G} be a groupoid, and A a C^{*}-algebra. Then we say that \mathcal{G} acts on $A, \mathcal{G} \curvearrowright A$, if A is a bundle over $\mathcal{G}^{0}, \mathcal{G}$ acts fiberwise on this bundle. Continuity of the action is expressed by the existence of a bundle isomorphism $\alpha: s^{*} A \rightarrow r^{*} A$, where r, s are the range and source maps of \mathcal{G}.

$$
\begin{gathered}
\mathcal{G}^{1} \xrightarrow[s]{\longrightarrow} \mathcal{G}^{0}, \quad s^{*} A \xrightarrow{\alpha} r^{*} A, \quad\left(s^{*} A\right)_{y}=A_{x} . \\
g: x \rightarrow y \Longrightarrow \alpha_{g}: A_{x} \rightarrow A_{y} \text { *-isomorphism }
\end{gathered}
$$

We fix some category of C^{*}-algebras with symmetries, equivariant ${ }^{*}$-homomorphisms. We denote it $\mathbf{C}^{*}-\operatorname{alg}_{G}$. We study functors F from $\mathbf{C}^{*}-\boldsymbol{\operatorname { a l g }}_{G}$ to an additive category, such that if

is a split extension in $\mathbf{C}^{*}-\operatorname{alg}_{G}$, then

$$
F(I) \longrightarrow F(E) \longleftrightarrow F(Q)
$$

Split exactness is considered for equivariant *-homomorphisms in extensions, and the section is supposed to be also equivariant.

Let A be an object of $\mathbf{C}^{*}-\operatorname{alg}_{G}$ and \mathcal{H} a G-equivariant full Hilbert module over A. Then F is stable if both maps

$$
A \rightarrow \mathcal{K}(\mathcal{H} \oplus A) \leftarrow \mathcal{K}(\mathcal{H})
$$

coming from inclusions of Hilbert modules $A \hookrightarrow \mathcal{H} \oplus A \hookleftarrow \mathcal{H}$ become isomorphisms after applying F

$$
F(A) \rightarrow F(\mathcal{K}(\mathcal{H} \otimes A)) \leftarrow F(\mathcal{K}(\mathcal{H}))
$$

In the cases mentioned above, KK^{G} is the universal split-exact stable functor on $\mathbf{C}^{*}-\operatorname{alg}_{G}$ (separable), that is, any other functor with this properties factors uniquely through KK^{G}.

1.2.1 Tensor products

The following discussion also shows how the universal property of KK can be used to construct functors between KK-categories and to prove adjointness relations between such functors.

The minimal tensor product of two G - C^{*}-algebras is again a G - C^{*}-algebra if G is a groupoid. Here we use the diagonal action of the groupoid. This yields a functor

$$
\otimes: \mathbf{C}^{*}-\operatorname{alg}_{G} \times \mathbf{C}^{*}-\operatorname{alg}_{G} \rightarrow \mathbf{C}^{*}-\operatorname{alg}_{G}, \quad(A, B) \mapsto A \otimes B
$$

For a group(oid) diagonal action of G on $A \otimes B$, if G acts on A, B. This descends to

We will provide the concrete description. Let $\beta \in \mathrm{KK}^{G} *\left(B_{1}, B_{2}\right), \alpha \in \mathrm{KK}^{G}\left(A_{1}, A_{2}\right)$. The tensor product is given by

$$
\begin{aligned}
& \alpha \otimes \beta=\left(\alpha \otimes \operatorname{id}_{B_{2}}\right) \circ\left(\mathrm{id}_{A_{1}} \otimes \beta\right) \\
&=\left(\mathrm{id}_{A_{2}} \otimes \beta\right) \circ\left(\alpha \otimes \mathrm{id}_{B_{1}}\right) . \\
& A_{1} \otimes B_{1} \xrightarrow{\operatorname{id}_{A_{1}} \otimes \beta} A_{1} \otimes B_{2} \\
& \alpha \otimes \operatorname{id}_{B_{1}} \left\lvert\, \begin{array}{l}
\downarrow \\
A_{2}
\end{array}\right. \\
& \otimes B_{1} \xrightarrow[\operatorname{id}_{A_{2}} \otimes \beta]{ } A_{2} \otimes B_{2}
\end{aligned}
$$

In the abstract approach we fix A and consider functor

$$
\begin{gathered}
\mathbf{C}^{*}-\mathbf{a l g}_{G} \rightarrow \mathbf{C}^{*}-\mathbf{a l g}_{G} \rightarrow \mathrm{KK}^{G} \\
B \mapsto A \otimes B \mapsto A \otimes B
\end{gathered}
$$

which is split-exact, stable. The functor $\mathrm{KK}^{G} \rightarrow \mathrm{KK}^{G}$ exists by the universal property.
In general, if $F_{1}, F_{2}: \mathbf{C}^{*}-\operatorname{alg}_{G} \rightarrow \mathbf{A b}$ are split exact and stable, and $\Phi: F_{1} \rightarrow F_{2}$ is a natural transformation, then there exist $\overline{F_{1}}, \overline{F_{2}}: \mathrm{KK}^{G} \rightarrow \mathbf{A b}$ and a natural transformation $\bar{\Phi}: \overline{F_{1}} \rightarrow \overline{F_{2}}$ such that the following diagram commutes for $\alpha \in \operatorname{KK}^{G}\left(A_{1}, A_{2}\right)$

The diagram above commutes for α, β KK-morphisms provided it commutes for α, β equivariant *-homomorphisms. This is a part of the universal property of KK^{G}.

If A, B are \mathcal{G} - C^{*}-algebras, then $A \otimes B$ gives a tensor product in $\mathrm{KK}^{\mathcal{G}}$. Descent functor $\mathrm{KK}^{\mathcal{G}} \rightarrow \mathrm{KK}$ is obtained by taking crossed products on objects and ${ }^{*}$-homomorphisms.

The functor

$$
A \mapsto G \ltimes_{r} A
$$

is split-exact, stable, so it descends to KK^{G}

$$
\mathrm{KK}^{G}(A, B) \rightarrow \mathrm{KK}\left(G \ltimes_{r} A, G \ltimes_{r} B\right)
$$

If $H \leq G$ is a closed subgroup, $H \curvearrowright A$, then $\operatorname{Ind}_{H}^{G} A \curvearrowleft G$, where

$$
\operatorname{Ind}_{H}^{G} A:=\left\{f \in C_{0}(G, A) \mid f(g h)=\left(\alpha_{h} f\right)(g),\|f\| \in C_{0}(G / H)\right\}
$$

(On the level of spaces the induction is $\operatorname{Ind}_{H}^{G}: X \mapsto G \times{ }_{H} X$). It induces

$$
\operatorname{Ind}_{H}^{G}: \mathrm{KK}^{H} \rightarrow \mathrm{KK}^{G}
$$

The composition

becomes a natural isomorphism in $\operatorname{KK}\left(H \ltimes_{r} A, G \ltimes_{t} \operatorname{Ind}_{H}^{G} A\right)$ for H-equivariant *-homomorphisms or for KK^{H}-morphisms (equivalent by the universal property of KK^{H}).

For open $H \leq G$

$$
\operatorname{KK}^{G}\left(\operatorname{Ind}_{H}^{G} A, B\right) \simeq \operatorname{KK}^{H}\left(A, \operatorname{Res}_{H}^{G} B\right)
$$

the following compositions

$$
\begin{gathered}
\operatorname{Ind}_{H}^{G} \operatorname{Res}_{G}^{H} A \simeq C_{0}(G / H) \otimes A \hookrightarrow \mathcal{K}\left(l^{2}(G / H)\right) \otimes A \sim_{M . E .} A . \\
B \mapsto \operatorname{Res}_{G}^{H} \operatorname{Ind}_{H}^{G} B
\end{gathered}
$$

are natural for *-homomorphisms, hence KK-morphisms.

1.3 KK as triangulated category

The category KK is additive, but not abelian. However it can be triangulated. This notion is motivated by examples in homological algebra: derived category of an abelian category, homotopy category of chain complexes over an additive category, homotopy category of spaces.

The additional structure in a triangulated category consists of

- translation/suspension functor. In $\mathrm{KK}^{\mathcal{G}}$:

$$
A[-n]:=C_{0}\left(\mathbb{R}^{n}\right) \otimes A, \quad \text { for } n \geq 0
$$

- exact triangles

$$
A \rightarrow B \rightarrow C \rightarrow A[1] .
$$

Merely knowing the KK-theory class of i, p in a C^{*}-algebra extension

$$
\stackrel{i}{\stackrel{i}{\longrightarrow}} E \xrightarrow{p} Q
$$

does not determine the boundary maps. This requires a class in $\mathrm{KK}_{1}(Q, I)$.
Definition 1.16. A diagram

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]
$$

in KK^{G} is called an exact triangle if there are KK-equivalences α, β, γ such that the following diagram commutes

where $A^{\prime} \mapsto B^{\prime} \rightarrow C^{\prime}$ is a C^{*}-algebra semi-split extension, and δ is its class in $\mathrm{KK}_{1}(C, A)$.
Proposition 1.17. With this additional structure KK_{G} is a triangulated category.
In general the structure of a triangulated category consists of an additive category \mathcal{T}, an automorphism $\Sigma: \mathcal{T} \rightarrow \mathcal{T}$, and a class $\mathcal{E} \subseteq \operatorname{Triangles}(\mathcal{T})$ of exact triangles.

Example 1.18. Homotopy category of chain complexes over A

$$
\Sigma\left(C_{n}, d_{n}\right)=\left(C_{n-1},-d_{n-1}\right), \quad \Sigma\left(f_{n}\right)=f_{n-1}\left(f_{n^{-}} \text {chain map }\right)
$$

Triangle is exact if it is isomorphic to an exact triangle

where I, E, Q are chain complexes, i, p are chain maps, s is a morphism in A. Define

$$
\delta_{s}: Q \rightarrow I[1], \quad \delta_{s}=d^{E} \circ s-s \circ d^{Q}
$$

Then

$$
I \xrightarrow{i} E \xrightarrow{p} Q \xrightarrow{\delta_{s}} I[1]
$$

is an extension triangle. However the diagram

is not commutative.
It is easier to work with mapping cone triangles instead of extension triangles. Let $f: A \rightarrow$ B be a *-homomorphism. Then we define its cone as the algebra

$$
\begin{gathered}
C_{f}:=\left\{(a, b) \in A \oplus C_{0}([0,1]) \otimes B \mid f(a)=b(1)\right\} \\
S B
\end{gathered}
$$

is a C^{*}-algebra semi-split extension.
On the level of spaces, if $f: X \rightarrow Y$ is a map, then

$$
C_{f}=x \times[0,1] \amalg Y /(x, 0) \sim\left(x^{\prime}, 0\right) \sim(*, t),(x, 1) \sim f(x)
$$

$\mathrm{K}_{*}\left(C_{f}\right)$ gives a relative K-theory for f. The Puppe exact sequence for F is a long exact sequence

$$
\ldots \rightarrow F\left(S C_{f}\right) \rightarrow F(S A) \rightarrow F(S B) \rightarrow F\left(C_{f}\right) \rightarrow F(A) \xrightarrow{F(f)} F(B)
$$

Long exact sequence, say for KK, are often estabilished by first checking exactness of the Puppe sequence, then getting other extensions from that.

Definition 1.19. A mapping cone triangle is a triangle that is isomorphic to

$$
S B \rightarrow C_{f} \rightarrow A \xrightarrow{f} B
$$

for some f in KK^{G}.
Theorem 1.20. A triangle in KK^{G} is exact (isomorphic to an exact triangle) if and only if it is isomorphic to a mapping cone triangle.

Proof. Consider extension

Exact sequences for KK are estabilished by showing that $I \hookrightarrow C_{p}$ is a KK-equivalence if the extension is semi-split.

Cuntz-Skandalis: exact triangles are isomorphic to mapping cone triangles.
Conversely, consider a mapping cylinder for a ${ }^{*}$-homomorphims $f: A \rightarrow B$, that is

$$
Z_{f}:=A \oplus_{B} B \otimes C([0,1]),
$$

and two extensions

where $j: A \rightarrow Z_{f}$ is a homotopy equivalence. If the triangle

$$
C[-1] \rightarrow A \rightarrow B \rightarrow C
$$

is exact, then it is isomorphic to

$$
S Y \rightarrow C_{f} \rightarrow X \xrightarrow{f} Y .
$$

Next we get an extension triangle

$$
S X \xrightarrow{-S f} S Y \mapsto C_{f} \rightarrow X,
$$

so the triangle

$$
B[-1] \xrightarrow{-w} C[-1] \xrightarrow{u} A \xrightarrow{v} B
$$

is exact.

1.4 Axioms of a triangulated categories

Triangulated category consists of an additive category with suspension automorphism and a class of exact triangles. These are supposed to satisfy the following axioms (TR0-TR4)
(TR0) If a triangle is isomorphic to an exact triangle, then it is exact. Triangles of the form

$$
0 \rightarrow A \xrightarrow{\mathrm{id}} A \rightarrow 0
$$

are exact.
(TR1) Any morphism $f: A \rightarrow B$ can be embedded in an exact triangle

$$
\Sigma B \rightarrow C \rightarrow A \xrightarrow{f} B
$$

(we will see that this triangle is unique up to isomorphism and call C a cone for f).

The best proof of this for KK uses extension triangles. Let $f \in \mathrm{KK}_{0}(A, B) \simeq \mathrm{KK}_{1}(\Sigma A, B) \simeq$ $\operatorname{Ext}(\Sigma A, B)$. Hence f generates a semi-split extension

$$
\underbrace{B \otimes \mathcal{K}}_{\mathcal{K}\left(\mathcal{H}_{B}\right)} \mapsto E \rightarrow \mathcal{G} A,
$$

which yields an extension triangle

Now rotate this sequence to bring f to the right place.
(TR2) The triangle

$$
\Sigma B \xrightarrow{u} C \xrightarrow{v} A \xrightarrow{w} B
$$

is exact if and only if the triangle

$$
\Sigma A \xrightarrow{-\Sigma w} \Sigma B \xrightarrow{-u} C \xrightarrow{-v} A
$$

is exact. We can get rid of some minus signs by taking

By applying three times we get that

$$
\Sigma^{2} B \xrightarrow{-\Sigma u} \Sigma C \xrightarrow{-\Sigma v} \Sigma A \xrightarrow{-\Sigma w} \Sigma B
$$

is exact. The reason for a sign is that the suspension of a mapping cone triangle for f is the mapping cone triangle for Σf but this involves a coordinate flip on \mathbb{R}^{2} on $\Sigma^{2} B=C_{0}\left(\mathbb{R}^{2}, B\right)$, which generates a sign.

Definition 1.21. A functor F from a triangulated category to an abelian category is called homological if

$$
F(C) \rightarrow F(A) \rightarrow F(B)
$$

is exact for any exact triangle

$$
\Sigma B \rightarrow C \rightarrow A \rightarrow B
$$

Example 1.22. If F is a semi-split exact, split exact, C^{*}-stable functor on $\mathbf{C}^{*}-\mathbf{a l g}$, then its extension to KK is homological.

Proposition 1.23. If F is homological, then any exact triangle yields a long exact sequence

$$
\ldots F_{n}(C) \rightarrow F_{n}(A) \rightarrow F_{n}(B) \rightarrow F_{n-1}(C) \rightarrow \ldots
$$

where $F_{n}(A):=F\left(\Sigma^{n} A\right), n \in \mathbb{Z}$.

Proof. Use axiom (TR2).
(TR3) Consider a commuting diagram with exact rows

There exists $\gamma: C \rightarrow C^{\prime}$ making the diagram commutative (but it is not unique).
We will proof (TR3) for KK. We may assume that rows are mapping cone triangles

We know that α is a KK-cycle for $A \rightarrow A^{\prime}, \beta$ is a KK-cycle for $B \rightarrow B^{\prime}$, and there exists a homotopy H from $\beta \circ f$ to $f^{\prime} \circ \alpha$ (because the classes $[\beta \circ f]=\left[f^{\prime} \circ \alpha\right]$ in KK).
Denote

$$
\begin{gathered}
\alpha=\left(\mathcal{H}_{A}^{\alpha}, \varphi^{\alpha}, F^{\alpha} \in B\left(\mathcal{H}^{\alpha}\right)\right), \\
\beta=\left(\mathcal{H}_{B}^{\beta}, \varphi^{\beta}, F^{\beta} \in B\left(\mathcal{H}^{\beta}\right)\right), \\
H=\left(\mathcal{H}_{C\left([0,1], B^{\prime}\right)}^{H}, \varphi^{H}, F^{H} \in B\left(\mathcal{H}^{H}\right)\right),
\end{gathered}
$$

such that

$$
\begin{aligned}
\left.H\right|_{0} & =\beta \circ f=\left(\mathcal{H}^{\beta}, \varphi^{\beta} \circ f, F^{\beta}\right), \\
\left.H\right|_{1}=f^{\prime} \circ \alpha & =\left(\mathcal{H}^{\alpha} \otimes_{f^{\prime}} B^{\prime}, \varphi^{\alpha} \otimes \operatorname{id}_{B^{\prime}}, F^{\alpha} \otimes \operatorname{id}_{B^{\prime}}\right) .
\end{aligned}
$$

Then

$$
\mathcal{H}^{\beta} \otimes C\left(\left[0, \frac{1}{2}\right]\right) \oplus_{\mathcal{H}^{\beta} \text { at } \frac{1}{2}} \mathcal{H}^{H} \oplus_{\mathcal{H}^{\alpha} \otimes_{f^{\prime}} B^{\prime}} \mathcal{H}^{\alpha}
$$

is a mapping cone of f^{\prime}. Now $\varphi^{\beta} \otimes C\left(\left[0, \frac{1}{2}\right]\right), \varphi^{H}, \varphi^{\alpha}$ glue to $\varphi^{\gamma}: A \rightarrow B\left(\mathcal{H}^{\gamma}\right)$. Similarly for F.

Many results use only axioms (TR0)-(TR3). The last one, (TR4) will be given at the end. Before that we will prove

Proposition 1.24. Let D be an object of a category \mathcal{T}. Then the functor $A \rightarrow \mathcal{T}(D, A)$ is homological. Dually $A \mapsto \mathcal{T}(A, B)$ is cohomological for every object B in \mathcal{T}.

Proof. Let

$$
\Sigma B \rightarrow C \rightarrow A \rightarrow B
$$

be an exact triangle in \mathcal{T}. We have to verify the exactness of

$$
\mathcal{T}(D, C) \rightarrow \mathcal{T}(D, A) \rightarrow \mathcal{T}(D, B)
$$

We use the fact that in an exact triangle, the composition $C \rightarrow A \rightarrow B$ is zero. Hence

Now we use (TR3) to complete diagram

with $\hat{f}: D \rightarrow C$.
Example 1.25. $\mathrm{KK}^{G}(-, D)$ is homological, and $\mathrm{KK}^{G}(D,-)$ is cohomological.
Lemma 1.26 (Five lemma). Consider morphism of exact triangles

If two of α, β, γ are invertible, then so is the third.
Proof. Assume α, β are invertible. Then $\mathcal{T}(D, \alpha), \mathcal{T}(D, \beta)$, and $\mathcal{T}(D, \Sigma \alpha), \mathcal{T}(D, \Sigma \beta)$ are invertible. We can use exact sequences from the proposition (1.24) and write a diagram

$$
\begin{aligned}
& \mathcal{T}(D, \Sigma A) \longrightarrow \mathcal{T}(D, \Sigma \beta) \longrightarrow \mathcal{T}(D, C) \longrightarrow \mathcal{T}(D, A) \longrightarrow \mathcal{T}(D, B) \\
& \mathcal{T}(D, \Sigma \alpha) \downarrow \simeq \quad \mathcal{T}(D, \Sigma \beta) \downarrow \simeq \quad \mathcal{T}(D, \gamma) \downarrow \quad \mathcal{T}^{(D, \alpha)} \downarrow \downarrow \simeq \quad \mathcal{T}(D, \beta) \downarrow \simeq \\
& \mathcal{T}\left(D, \mathcal{G} A^{\prime}\right) \longrightarrow \mathcal{T}\left(D, \Sigma B^{\prime}\right) \longrightarrow \mathcal{T}\left(D, C^{\prime}\right) \longrightarrow \mathcal{T}\left(D, A^{\prime}\right) \longrightarrow \mathcal{T}\left(D, B^{\prime}\right)
\end{aligned}
$$

Rows are exact chain complexes, so the five lemma yields $\mathcal{T}(D, \gamma)$ invertible.
Proposition 1.27. Let $f: A \rightarrow B$ be a morphism. There is up to isomorphism a unique exact triangle

$$
\Sigma B \rightarrow C \rightarrow A \xrightarrow{f} B
$$

Proof. Existence comes from (TR1). From the (TR3) we get γ in the following diagram

From the five lemma (1.26) we get that γ is invertible, which gives uniqueness.
Lemma 1.28. Let

$$
\Sigma B \xrightarrow{u} C \xrightarrow{v} A \xrightarrow{w} B
$$

be an exact triangle. Then

1. $B=0$ if and only if v is invertible
2. $u=0$ if and only if $C \rightarrow A \rightarrow B$ is a split extension $(A \simeq C \oplus B)$

Proof. 1. If v is invertible, then

$$
0 \rightarrow C \xrightarrow{v} A \rightarrow 0
$$

is an exact triangle by (TR0) and

For the converse we use long exact sequence for $\mathcal{T}(D,-)$. We have $\mathcal{T}(D, B)=0$ if and only if $\mathcal{T}(D, v)$ invertible. Then we use the Yoneda lemma.
2. If $A \rightarrow B$ is split epimorphism, then $B \rightarrow \Sigma^{-1} C$ vanishes because $A \rightarrow B \rightarrow \Sigma^{-1} C$ vanishes.
Assume $u=0$. We use exactness of

$$
\mathcal{T}(B, A) \rightarrow \mathcal{T}(B, B) \rightarrow \mathcal{T}\left(B, \Sigma^{-1} C\right)
$$

to get $s: B \rightarrow A$

$$
s \mapsto \mathrm{id}_{B} \mapsto 0
$$

which gives a section for $w: A \rightarrow B, w \circ s=\mathrm{id}_{B}$.
Exactness of

$$
\ldots \xrightarrow{0} \mathcal{T}(D, C) \rightarrow \mathcal{T}(D, A) \rightarrow \mathcal{T}(D, B) \xrightarrow{0} \ldots
$$

implies that $\mathcal{T}(D, v)$ and $\mathcal{T}(D, s)$ give isomorphism

$$
\mathcal{T}(D, C) \oplus \mathcal{T}(D, B) \rightarrow \mathcal{T}(D, A)
$$

for all D, so (s, v) give isomorphism $C \oplus B \xrightarrow{\leftrightharpoons} A$. Given B, C embed $B \oplus C \rightarrow B$ in an exact triangle

$$
\Sigma B \rightarrow D \rightarrow B \oplus C \rightarrow B
$$

Since $B \oplus C \xrightarrow{w} B$ is an epimorphism we have $u=0$. From the long exact sequence

$$
\ldots \xrightarrow{0} \mathcal{T}(X, D) \rightarrow \mathcal{T}(X, B \oplus C) \rightarrow \mathcal{T}(X, B) \xrightarrow{0} \ldots
$$

we get $\mathcal{T}(X, D) \simeq \mathcal{T}(X, C)$ for all $X \in \mathcal{T}$, so $D \simeq C$.
Proposition 1.29. If

$$
\Sigma B_{i} \rightarrow C_{i} \rightarrow A_{i} \rightarrow B_{i}
$$

are exact triangles for all $i \in I$, and direct sums exist, then

$$
\bigoplus_{i \in I} \Sigma B_{i} \rightarrow \bigoplus_{i \in I} C_{i} \rightarrow \bigoplus_{i \in I} A_{i} \rightarrow \bigoplus_{i \in I} B_{i}
$$

is exact. The same holds for products.
Definition 1.30. A square

is called homotopy Cartesian with differential $\gamma: \Sigma Y^{\prime} \rightarrow X$ if

$$
\Sigma Y^{\prime} \xrightarrow{\gamma} X \xrightarrow{\binom{\alpha}{\beta}} Y \oplus X^{\prime} \xrightarrow{\beta^{\prime},-\alpha^{\prime}} Y^{\prime}
$$

is exact.
Given α, β in the definition we get $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ unique up to isomorphism by embedding $\binom{\alpha}{\beta}$ in an exact triangle (homotopy pushout). Dually, given $\alpha^{\prime}, \beta^{\prime}$ there are α, β, γ unique up to isomorphism (homotopy pullback).

Definition 1.31. Let $\left(A_{n}, \alpha_{n}^{n+1}: A_{n} \rightarrow A_{n+1}\right)_{n \in \mathbb{N}}$ be an inductive system in a triangulated category. We define its homotopy colimit holim $\left(A_{n}, \alpha_{n}^{n+1}: A_{n} \rightarrow A_{n+1}\right)_{n \in \mathbb{N}}$ as the desuspended cone of the map

$$
\begin{gathered}
\bigoplus_{n \in \mathbb{N}} A_{n} \xrightarrow{\mathrm{id}-S} \bigoplus_{n \in \mathbb{N}} A_{n} \\
\left.S\right|_{A_{n}}=\alpha_{n}^{n+1}: A_{n} \rightarrow A_{n+1}
\end{gathered}
$$

It is unique up to isomorphism but not functorial.

$$
\bigoplus_{n \in \mathbb{N}} A_{n} \xrightarrow{\mathrm{id}-S} \bigoplus_{n \in \mathbb{N}} A_{n} \rightarrow \underset{\longrightarrow}{\operatorname{holim}}\left(A_{n}, \alpha_{n}^{n+1}\right) \rightarrow \bigoplus_{n \in \mathbb{N}} \Sigma^{-1} A_{n}
$$

Proposition 1.32. Let $F: \mathcal{T} \rightarrow \mathbf{A b}$ be homological and commuting with \oplus, then

$$
F\left(\operatorname{holim} A_{n}\right)=\underset{\longrightarrow}{\lim } F\left(A_{n}\right)
$$

If $\widetilde{F}: \mathcal{T} \rightarrow \mathbf{A b}^{\text {op }}$ is contravariant cohomological and $\widetilde{F}\left(\oplus A_{n}\right)=\Pi \widetilde{F}\left(A_{n}\right)$, then there is an exact sequence

$$
\lim ^{1} \widetilde{F}\left(A_{n}\right) \hookrightarrow \widetilde{F}\left(\operatorname{holim} A_{n}\right) \rightarrow \underset{\leftrightarrows}{\lim } \widetilde{F}\left(A_{n}\right)
$$

Proof. Apply F to the exact triangle defining holim

$$
\begin{gathered}
\bigoplus F_{n}\left(A_{m}\right) \xrightarrow{\mathrm{id}-S} \bigoplus F_{n}\left(A_{m}\right) \rightarrow F_{n}\left(\underset{\longrightarrow}{\operatorname{holim}} A_{n}\right) \rightarrow \bigoplus F_{n-1}\left(A_{m}\right) \mapsto \bigoplus F_{n-1}\left(A_{m}\right) \rightarrow \ldots \\
\operatorname{coker}(\mathrm{id}-S)=\underset{\longrightarrow}{\lim F_{n}\left(A_{m}\right), \quad \operatorname{ker}(\mathrm{id}-S)=0 .}
\end{gathered}
$$

Fact 1.33. If $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ is exact, then

$$
\operatorname{coker}(A \rightarrow B) \multimap C \rightarrow \operatorname{ker}(D \rightarrow E)
$$

is an extension.
Example 1.34. Let $e: A \rightarrow A$ be an idempotent morphism. Then holim $(A, e: A \rightarrow A)$, $A \xrightarrow{e} A \xrightarrow{e} A \xrightarrow{e} \ldots$ is a range object for e and $A \simeq e A \oplus(1-e) A$.

There are two questions concerning C^{*}-algebras:

1. Let

be a pullback diagram of C^{*}-algebras, so that

$$
X=\left\{\left(x^{\prime}, y\right) \in X^{\prime} \times Y \mid \alpha^{\prime}\left(x^{\prime}\right)=\beta^{\prime}(y)\right\} .
$$

When is this image in KK homotopy Cartesian?
2. Let $\left(A_{n}, \alpha_{n}\right)$ be an inductive system of C^{*}-algebras. Is $\xrightarrow{\lim }\left(A_{n}, \alpha_{n}\right)$ also a homotopy colimit?

Ad 1. Compare X to the homotopy pullback

$$
H=\left\{\left(x^{\prime}, y^{\prime}, y\right) \in X^{\prime} \times C(I, Y) \times Y \mid \alpha^{\prime}\left(x^{\prime}\right)=y^{\prime}(0), \beta^{\prime}(y)=y^{\prime}(1)\right\}
$$

H is a part of an extension

$$
\Sigma Y^{\prime} \mapsto H \rightarrow X^{\prime} \oplus Y
$$

which is semisplit. Its class in $\mathrm{KK}_{1}\left(X^{\prime} \oplus Y, \Sigma Y\right) \simeq \mathrm{KK}_{0}\left(X^{\prime} \oplus Y, Y^{\prime}\right)$ is $\left(\beta^{\prime},-\alpha^{\prime}\right)$, so H is a homotopy pullback.

Definition 1.35. The pullback square is admissible if $X \rightarrow H$ is a KK-equivalence.
Proposition 1.36. If α^{\prime} is a semisplit epimorphism then so is α, and the pullback square is admissible. Thus we get a long exact sequence

$$
\ldots \rightarrow F_{n}(X) \rightarrow F_{n}\left(X^{\prime}\right) \oplus F_{n}(Y) \rightarrow F_{n}\left(Y^{\prime}\right) \rightarrow \ldots
$$

for any semisplit-exact C^{*}-stable homotopy functor.

Proof. If α^{\prime} is semisplit epimorphism, then α is a semisplit epimorphism.

The map $X^{\prime} \rightarrow Z_{\alpha^{\prime}}$ is a homotopy equivalence, and $K \rightarrow C_{\alpha^{\prime}}$ is a KK-equivalence because the extension $K \rightarrow X^{\prime} \rightarrow Y^{\prime}$ is semisplit. Now use five lemma in KK to get that $X \rightarrow H$ is a KK-equivalence.

Ad 2. If all A_{n} are nuclear, then $\underset{\longrightarrow}{\lim }\left(A_{n}, \alpha_{n}\right)$ is a homotopy colimit.
There is a fourth axiom of triangulated categories which is about exactness properties of cones of maps.
(TR4)

Given solid arrows so that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right),\left(\beta_{1}, \beta_{2}, \beta_{3}\right),\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ are exact triangles, we can find exact triangle ($\delta_{1}, \delta_{2}, \delta_{3}$) making the diagram commute.
We should warn the reader that the arrows are reversed here compared to the previous convention.
There are equivalent versions of the axiom (TR4):
(TR4') Every pair of maps

can be completed to a morphism of exact triangles

such that the first square is homotopy Cartesian with differential $Y^{\prime} \rightarrow \Sigma X^{\prime}$.
(TR4") Given a homotopy Cartesian square

and differential $\delta: Y^{\prime} \rightarrow \Sigma X$, it can be completed to a morphism of exact triangles

Proposition 1.37. The axioms (TR4), (TR4'), (TR4") are equivalent.

1.5 Localisation of triangulated categories

Roughly speaking localisation enlarges a ring (or a category) by adding inversions of certain ring elements (or morphisms). However strange things can happen here due to noncommutativity. Actually in all examples we are going to study the localisation is just a quotient of the original category.

The motivating example is the derived category of an abelian category, which is defined as a localisation of its homotopy category of chain complexes. For any additive category A, the homotopy category of chain complexes in \mathbf{A} is a triangulated category. The suspension is a shift here.

Mapping cones for chain maps behave as in homotopy theory. If $f: K \rightarrow L$ is a chain map, then

$$
K \stackrel{f}{\rightarrow} L \rightarrow C_{f} \rightarrow K[1]
$$

is a mapping cone triangle. For C^{*}-algebras the contravariance of the functor Spaces \rightarrow $\mathbf{C}^{*}-\mathbf{a l g}, X \mapsto C(X)$ causes confusion about direction of arrows.

If $F: \mathbf{A} \rightarrow \mathbf{A}^{\prime}$ is additive functor, then the induced functor

$$
\operatorname{Ho}(F): \operatorname{Ho}(\mathbf{A}) \rightarrow \mathrm{Ho}\left(\mathbf{A}^{\prime}\right)
$$

is exact - preserves suspensions and exact triangles.
Example 1.38. Let $\Sigma: \mathcal{T} \rightarrow \mathcal{T}$ be a suspension functor, and

$$
A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A[1]
$$

an exact triangle. The triangle

$$
A[1] \xrightarrow{-u[1]} B[1] \xrightarrow{-v[1]} C \xrightarrow{-w[1]} A[2]
$$

could be non-exact. To correct it we use an isomorphism

$$
\Sigma(A[1]) \xrightarrow{-\mathrm{id}}(\Sigma A)[1]
$$

Passage to the derived category introduces homological algebra. The quasi-isomorphisms class, that is maps that induce an invertible maps on homology, is the class of morphisms which should be inverted in derived category.
Example 1.39. The following map is a quasi-isomorphism

Definition 1.40. The localisation of a category \mathbf{C} in a family of morphisms S is a category $\mathbf{C}[S]$ together with a functor $F: \mathbf{C} \rightarrow \mathbf{C}\left[S^{-1}\right]$ such that

1. $F(s)$ is invertible for all $s \in S$
2. F is universal among functors with this property, that is if $G: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is another functor with $G(s)$ invertible for all $s \in S$, then there is a unique factorisation

In good cases there are some "commutation relations". We can introduce also a calculus of fractions. The pair

In good cases:

- For all $f \in \mathbf{C}, s \in S$ there exist g, t such that $t f=g s \Longrightarrow f s^{-1}=t^{-1} g$
- $S \circ S \subseteq S$ - compositoin of morphisms in S is in S.
- $s \cdot t \in S \Longrightarrow t \in S$ - cancelation law.

In triangulated categories it is easier to specify which objects should become zero. Indeed for an exact triangle

$$
A \xrightarrow{f} B \rightarrow C \rightarrow A[1]
$$

if G is an exact functor, then $G(f)$ invertible implies $G(C) \simeq 0$.
Definition 1.41. A class \mathcal{N} of objects in a triangulated category \mathcal{T} is calles thick if it satisfies the following conditions

1. $0 \in \mathcal{N}$,
2. If $A \oplus B \in \mathcal{N}$ then $A, B \in \mathcal{N}$,
3. If the triangle $A \rightarrow B \rightarrow C \rightarrow A[1]$ is exact, and $A, B \in \mathcal{N}$, then $C \in \mathcal{N}$.

Notice that the object kernel $\{A \in \mathcal{T} \mid G(A) \simeq 0\}$ of an exact functor satisfies this.
Definition 1.42. Given a thick subcategory $\mathcal{N} \in \mathcal{T}$ an \mathcal{N}-equivalence is a morphism in \mathcal{T} which cone belongs to \mathcal{N}.

Denote

$$
\mathcal{T} / \mathcal{N}:=\mathcal{T}\left[\left(\mathcal{N}-\text { equivalences }^{-1}\right]\right.
$$

Theorem 1.43. Given a thick subcategory \mathcal{N} in a (small) triangulated category \mathcal{T}, the \mathcal{N} equivalences have a calculus of fractions, $\mathcal{T} / \mathcal{N}$ is again a trianguleated category, and $\mathcal{T} \rightarrow$ $\mathcal{T} / \mathcal{N}$ is an exact functor.

Definition 1.44. Left orthogonal complement of a class of objects \mathcal{N} in \mathcal{T}

$$
\mathcal{N}^{\perp}:=\{P \in \mathcal{T} \mid \mathcal{T}(P, N)=0 \forall N \in \mathcal{N}\}
$$

Definition 1.45. Two thick classes of objects \mathcal{P}, \mathcal{N} in \mathcal{T} are called complementary if

- $\mathcal{P} \subseteq \mathcal{N}^{\vdash}$
- For all $A \in \mathcal{T}$ there is an exact triangle

$$
P \rightarrow A \rightarrow N \rightarrow P[1], \quad P \in \mathcal{P}, N \in \mathcal{N}
$$

Theorem 1.46. Let $(\mathcal{P}, \mathcal{N})$ be complementary. Then

1. $\mathcal{P}=\mathcal{N}^{\vdash}, \mathcal{N}=\mathcal{P}^{\dashv}$
2. the exact triangle $P \rightarrow A \rightarrow N \rightarrow P[1]$ with $P \in \mathcal{P}, N \in \mathcal{N}$ is unique up to canonical isomorphism and functorial in \mathcal{A}
3. the functors $\mathcal{T} \rightarrow \mathcal{P}, A \mapsto P, \mathcal{T} \rightarrow \mathcal{N}, A \mapsto N$ are exact.
4. $\mathcal{P} \rightarrow \mathcal{T}$ to $\mathcal{T} / \mathcal{N}$ and $\mathcal{N} \rightarrow \mathcal{T} \rightarrow \mathcal{T} / \mathcal{P}$ are equivalences of categories.

Example 1.47. Take $\operatorname{Ho}(\mathcal{A}), \mathcal{A}$ abelian, $\mathcal{N}=\{$ exact complexes $\}$. If $P \in \mathcal{A}$ is projective, then homotopy classes of chain maps $P \rightarrow C \bullet$ (there is an inclusion $\mathcal{A} \hookrightarrow \operatorname{Ho}(\mathcal{A})$) are in bijection with maps $P \rightarrow \mathrm{Ho}\left(C_{\bullet}\right)$.

Notice that \mathcal{N}^{\vdash} is always thick and closed under direct sums. Subcategories with both properties are called localising.
Example 1.48. Let P_{0}, P_{1} be projective in \mathcal{A}, and $f: P_{1} \rightarrow P_{0}$. Then its cone

$$
C_{f}:=(\ldots \rightarrow 0 \rightarrow \underbrace{P_{1}}_{0} \stackrel{f}{\rightarrow} \underbrace{P_{0}}_{-1} \rightarrow 0 \rightarrow \ldots)
$$

Theorem 1.49 (Boekstadt-Neemann). Suppose that \mathcal{A} is abelian category with enough projectives and countable direct sums. Let $\mathcal{N} \subseteq \operatorname{Ho}(\mathcal{A})$ be the full subcategory of exact chain complexes, and let \mathcal{P} be the localising subcategory generated by the projective objects of $\mathcal{A} \hookrightarrow \operatorname{Ho}(\mathcal{A})$. Then $(\mathcal{P}, \mathcal{N})$ are complementary.

The functor $P: \operatorname{Ho}(\mathcal{A}) \rightarrow \mathcal{P}$ replaces a module by a projective resolution of the module

$$
P(M)=(\ldots \rightarrow \underbrace{P_{2}}_{3} \rightarrow \underbrace{P_{1}}_{2} \rightarrow \underbrace{P_{0}}_{1} \rightarrow \underbrace{M}_{0} \rightarrow 0 \rightarrow \ldots)
$$

Example 1.50. Let $\mathcal{T}=\mathrm{KK}, \mathcal{N}=\left\{A \in \mathrm{KK} \mid \mathrm{K}_{*}(A)=0\right\}$. Then $\mathbb{C} \in \mathcal{N}^{\vdash}$ because $\mathrm{KK}_{*}(\mathbb{C}, A)=\mathrm{K}_{*}(A)=0$ for $A \in \mathcal{N}$. Let \mathcal{B} be the localising subcategory generated by \mathbb{C}.

Theorem 1.51. $(\mathcal{B}, \mathcal{N})$ are complementary.
$P:$ KK $\rightarrow \mathcal{B}$ replaces a separable C^{*}-algebra by one in the bootstrap class with the same K-theory.

Let $(\mathcal{P}, \mathcal{N})$ be complementary subcategories. Then

1. $\mathcal{P}=\mathcal{N}^{\vdash}$. From the assumption $\mathcal{P} \subseteq \mathcal{N}^{\vdash}$. Take $A \in \mathcal{N}^{\vdash}$ and embed it into an exact triangle

$$
\underbrace{P}_{\in \mathcal{P}} \rightarrow A \xrightarrow{0} \underbrace{N}_{\mathcal{N}} \rightarrow P[1]
$$

There is a splitting $A \rightarrow P$, so A is a direct summand of P, hence $A \in \mathcal{P}$, because \mathcal{P} is thick.
2. Let $A, A^{\prime} \in \mathcal{T}, f: A \rightarrow A^{\prime}$. Then there is a map of exact triangles

with $P, P^{\prime} \in \mathcal{P}, N, N^{\prime} \in \mathcal{N}$.
We use long exact sequence

$$
\cdots \rightarrow \underbrace{\mathcal{T}\left(P, N^{\prime}\right)}_{=0} \rightarrow \mathcal{T}\left(P, P^{\prime}\right) \stackrel{\simeq}{\leftrightarrows} \mathcal{T}_{0}\left(P, A^{\prime}\right) \rightarrow \underbrace{\mathcal{T}\left(P, N^{\prime}\right)}_{=0} \rightarrow \cdots
$$

to get $P \xrightarrow{P_{f}} P^{\prime}$ in the diagram

Then use (TR3) to extend $\left(f, P_{f}\right)$ to a morphism of exact triangles by $N \xrightarrow{N_{f}} N^{\prime}$, which is unique making the diagram

commute.
3. \mathcal{P}, \mathcal{N} are exact.

From (TR1) there is X in the exact triangle

$$
P_{A} \rightarrow P_{B} \rightarrow X \rightarrow P_{A}[1]
$$

From (TR3) we can find $X \xrightarrow{f} C$ in the diagram

Thus $X=P_{C}$ and $\operatorname{Cone}(f)=N_{C}$ and f must be the canonical map $P_{C} \rightarrow C$.
$\mathcal{T}_{*}\left(Q, \pi_{A}\right)$ and $\mathcal{T}_{*}\left(Q, \pi_{B}\right)$ are invertible because $N_{A} \in \mathcal{N}, N_{B} \in \mathcal{N}$. Now we use the five lemma for

There is an isomorphism $P_{A}[1] \simeq P_{A[1]}$.
For an exact triangle

$$
P \xrightarrow{u} A \xrightarrow{v} N \xrightarrow{w} P[1]
$$

the triangle

$$
P[1] \xrightarrow{u} A[1] \xrightarrow{v} N[1] \xrightarrow{-w} P[2]
$$

is exact.
We have seen along the way that $\mathcal{T}\left(Q, P_{A}\right) \simeq \mathcal{T}(Q, A)$ for all $Q \in \mathcal{P}$, which means that the functor $P: \mathcal{T} \rightarrow \mathcal{P}$ is right adjoint to the embedding $\mathcal{P} \hookrightarrow \mathcal{T}$.

Define \mathcal{T}^{\prime} as the category with the same objects as \mathcal{T} and $\mathcal{T}^{\prime}(A, B):=\mathcal{T}\left(P_{A}, P_{B}\right)$. Let $F: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$ be the functor that is the identity on objects and P on morphisms. This satisfies the universal property of $\mathcal{T}\left[(\mathcal{N}-\text { equivalences })^{-1}\right]$. Notice that $P_{A} \simeq A$ if $A \in \mathcal{P}$. Also $P_{A} \rightarrow A$ is an \mathcal{N}-equivalence.

If the triangle

$$
A \xrightarrow{P_{u}} B \xrightarrow{P_{u}} C \xrightarrow{P_{w}} A[1]
$$

is exact in \mathcal{T}^{\prime}, then the triangle

$$
P_{A} \xrightarrow{P_{u}} P_{B} \xrightarrow{P_{u}} P_{C} \xrightarrow{P_{w}} P_{A}[1]
$$

is exact in \mathcal{T}.
P maps \mathcal{N}-equivalences to isomorphisms because $P(A)=0$ for $A \in \mathcal{N}$. If G maps \mathcal{N}-equivalences to isomorphisms we get

so $\mathcal{T}^{\prime}(A, B)$ gives a map $G(A) \rightarrow G(B)$.
Let \mathcal{T} be triangulated and monoidal, and let \mathcal{P}, \mathcal{N} be thick subcategories with $\mathcal{P} \otimes \mathcal{T} \subseteq \mathcal{P}$, $\mathcal{N} \otimes \mathcal{P} \subseteq \mathcal{N}$. If there is an exact triangle

$$
P \rightarrow \mathbf{1} \rightarrow N \rightarrow P[1],
$$

where $\mathbf{1}$ is the tensor unit, $P \in \mathcal{P}, N \in \mathcal{N}$, and $\mathcal{P} \subseteq \mathcal{N}^{\vdash}$, then $(\mathcal{P}, \mathcal{N})$ are complementary. Also for an arbitrary A the triangle

$$
P \otimes A \rightarrow \mathbf{1} \otimes A \rightarrow N \otimes A \rightarrow P \otimes A[1],
$$

is exact.
We expect that $\mathrm{KK}^{\mathcal{G}}$ has a (symmetric) monoidal structure also if \mathcal{G} is a quantum group.
Example 1.52. Let G be finite group, A, B algebras with G-coaction (grading). Then $A \otimes B$ carries a diagonal coaction

$$
(A \otimes B)_{g}=\bigoplus_{h \in G} A_{h} \otimes B_{h^{-1} g}
$$

We want to equip $A \otimes B$ with a multiplication that is equivariant for the canonical coaction of G on $A \otimes B$. The usual product does not work, because if $a \in A_{h}, b \in B_{g}$, then $a \cdot b=$ $b \cdot a \in(A \otimes B)_{h g}$ but we need $b \cdot a \in(A \otimes B)_{g h}$. We must therefore impose a commutation relation that is non-trivial. We define

$$
b_{g} \cdot a_{h}:=\alpha_{g}\left(a_{h}\right) \cdot b_{g}, \quad \text { for } a_{h} \in A_{h}, b_{g} \in B_{g},
$$

where $\alpha_{g}: A \rightarrow A$ for $g \in G$ is some linear map. Associativity dictates that $\alpha_{g}\left(a_{1} \cdot a_{2}\right)=$ $\alpha_{g}\left(a_{1}\right) \alpha_{g}\left(a_{2}\right)$, and $\alpha_{g_{1}} \alpha_{g_{2}}=\alpha_{g_{1} g_{2}}$. It is natural to require also $\alpha_{1}=\mathrm{id}_{A}$, so that α is an action of G on A by algebra automorphisms. Finally covariance dictates that $\alpha_{g}\left(A_{h}\right) \subseteq A_{g h g^{-1}}$ for all $g, h \in G$.

The extra structure α should always exist on a stabilisation $E_{A}:=\operatorname{End}(A \otimes \mathbb{C}[G])$ with the coaction of G induced by the tensor product coaction on $A \otimes \mathbb{C}[G] . A_{h} \otimes\left|\delta_{g}\right\rangle\left\langle\delta_{l}\right|$ maps $(A \otimes \mathbb{C}[G])_{x}$ to $A_{x l^{-1} h} \otimes \mathbb{C}[G]_{g} \subseteq(A \otimes \mathbb{C}[G])_{x l^{-1} h g}$, hence

$$
\left(E_{A}\right)_{g}=\sum_{x, y, z \in G, x^{-1} y z=g} A_{y} \otimes\left|\delta_{z}\right\rangle\left\langle\delta_{x}\right|
$$

Let G act on $A \otimes \mathbb{C}[G]$ by the regular representation. This induces an action $\alpha: G \times E_{A} \rightarrow E_{A}$ by conjugation. We check that if $x^{-1} y z=h$, then

$$
\alpha_{g}\left(A_{y} \otimes\left|\delta_{z}\right\rangle\left\langle\delta_{x}\right|\right)=A_{y} \otimes\left|\delta_{z g^{-1}}\right\rangle\left\langle\delta_{x g^{-1}}\right| \in\left(E_{A}\right)_{g x^{-1} y z g^{-1}}=\left(E_{A}\right)_{g h g^{-1}}
$$

Thus $E_{A} \otimes B$ carries a canonical algebra structure.
Even in homological algebra, in $\operatorname{Ho}(R-\operatorname{Mod})$ it is not obvious that the exact chain complexes are part of a complementary pair.

$$
\operatorname{Der}(R-\operatorname{Mod}):=\operatorname{Ho}(R-\operatorname{Mod}) /(\text { exact chain complexes })
$$

Recall $(\mathcal{L}, \mathcal{N})$ is complementary if

- $\operatorname{Hom}(\mathcal{L}, \mathcal{N})=0$
- For all $A \in \mathcal{T}$ there exist an exact triangle

$$
L \rightarrow A \rightarrow N \rightarrow L[1]
$$

With $L \in \mathcal{L}, N \in \mathcal{N}$.
We will explain a general method for doing homological algebra in a triangulated categories that also, eventually solves this problem.

Assume we want to understand a triangulated category \mathcal{T}. As a probe to explore it, we use some homological functor $F: \mathcal{T} \rightarrow \mathcal{A}$, where \mathcal{A} is some abelian category.

Examples 1.53.

- $\mathcal{T}=\operatorname{Ho}(\mathcal{A}), \mathcal{A}$ an abelian category, and F is a homology functor $\operatorname{Ho}(\mathcal{A}) \rightarrow \mathcal{A}^{\mathbb{Z}}$.
- $\mathcal{T}=\mathrm{KK}, F=\mathrm{K}_{*}: \mathrm{KK} \rightarrow \mathbf{A b}^{\mathbb{Z} / 2}$.
- $\mathcal{T}=\mathrm{KK}^{(C, \Delta)}$, where (C, Δ) is a quantum group, $F=\mathrm{K}_{*}: \mathrm{KK} \rightarrow \mathbf{A} \mathbf{b}^{\mathbb{Z} / 2}$.

In the examples above, the target category has its own translation (suspension) automorphism, and F intertwines these translation automorphisms, we call F stable if this happens.

Actually, all the relevant information about F is contained in its morphism-kernel

$$
(\operatorname{ker} F)(A, B):=\{\varphi: A \rightarrow B \mid F(\varphi)=0\}
$$

This is a finer invariant than the object kernel. ker F is called a homological ideal. Using homological ideal we can carry over various notions from homological algebra to our category \mathcal{T}.

Definition 1.54. Let $\left(C_{n}, d_{n}\right)$ be a chain complex in \mathcal{T}. We call it $\operatorname{ker} F$-exact in degree n if

$$
F\left(C_{n+1}\right) \rightarrow F\left(C_{n}\right) \rightarrow F\left(C_{n-1}\right)
$$

is exact at $F\left(C_{n}\right)$
Here F is exact, but it depends only on $\operatorname{ker} F$, so we call it $\operatorname{ker} F$-exact.
Definition 1.55. An object $A \in \mathcal{T}$ is $\operatorname{ker} F$-projective if the functor $\mathcal{T}(A,-)$ maps ker F exact chain complexes in \mathcal{T} to exact chain complexes.

Denote $\mathcal{J}:=\operatorname{ker} F$.
Lemma 1.56. The following statements are equivalent

1. an object $A \in \mathcal{T}$ is \mathcal{J}-projective
2. for all $f \in \mathcal{J}(B, C)$ the map $\mathcal{T}(A, B) \xrightarrow{f_{*}} \mathcal{T}(A, C)$ vanishes
3. for all $C \in \mathcal{T} \mathcal{J}(A, C)=0$

Definition 1.57. A projective resolution of $A \in \mathcal{T}$ is a \mathcal{J}-exact chain complex

$$
\ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0 \rightarrow \ldots
$$

with $P_{i} \mathcal{J}$-projective.
Now we can ask the following questions:

- What are the projective objects in examples?
- Are there many of them? That is does every object have a \mathcal{J}-projective resolution?

We use (partially defined) left adjoints to decide this. Let $F: \mathcal{T} \rightarrow \mathcal{A}$ be stable homological with $\operatorname{ker} F=\mathcal{J}$. Its left adjoint F^{\vdash} is defined on $B \in \mathcal{A}$ if there is $B^{\prime}:=F^{\vdash}(B)$ with $\mathcal{T}\left(B^{\prime}, D\right) \simeq \mathcal{A}(B, F(D))$ for all $D \in \mathcal{T}$, natural in D. This defines a functor on a subcategory of \mathcal{A}.

The functor $\mathcal{T}\left(F^{\vdash}(B),-\right)$ factors as follows

$$
\begin{gathered}
\mathcal{T} \xrightarrow{F} \mathcal{A} \xrightarrow{\mathcal{A}(B,-)} \mathbf{A b} \\
D \mapsto F(D) \mapsto \mathcal{A}(B, F(D))
\end{gathered}
$$

and therefore vanishes on $\mathcal{J}=\operatorname{ker} F$.
Examples 1.58. 1. Let $\mathcal{T}=\operatorname{Ho}(\mathcal{A}), F=\mathrm{H}_{*}: \operatorname{Ho}(\mathcal{A}) \rightarrow \mathcal{A}^{\mathbb{Z}}$. Assume that \mathcal{A} has enough projectives. Recall that if $P \in \mathcal{A}$ is projective, then $\mathcal{T}\left(P, C_{\bullet}\right)=\mathcal{A}\left(P, \mathrm{H}_{*}\left(C_{\bullet}\right)\right)$. Thus H_{*}^{\vdash} is defined on projective objects of \mathcal{A} or $\mathcal{A}^{\mathbb{Z}}$ and it produces a chain complex with vanishing boundary map.
2. Let $\mathcal{T}=\mathrm{KK}, F=\mathrm{K}_{*}: \mathrm{KK} \rightarrow \mathbf{A b}^{\mathbb{Z} / 2}$. Because

$$
\operatorname{KK}(\mathbb{C}, A)=\mathrm{K}_{*}(A)=\operatorname{Hom}\left(\mathbb{Z}, \mathrm{K}_{*}(A)\right)
$$

we have

$$
\mathrm{K}_{*}^{+}(\underbrace{\mathbb{Z}[0]}_{\mathbb{Z} \text { in degree } 0})=\mathbb{C}
$$

$$
\mathrm{K}_{*}^{\perp}(\mathbb{Z}[1])=\mathbb{C}[1]=C_{0}(\mathbb{R})
$$

Left adjoints commute with direct sums, hence K_{*}^{\vdash} is defined on free $\mathbb{Z} / 2$ graded abelian groups.
3. Let $\mathcal{T}=\mathrm{KK}^{\mathbb{Z}}$ be an equivariant KK -theory for integers, and $F: \mathrm{KK}^{\mathbb{Z}} \rightarrow \mathbf{A b}^{\mathbb{Z} / 2}$, $F(A, \alpha)=\mathrm{K}_{*}(A)$. If $A \in \mathrm{KK}, b \in \mathrm{KK}^{\mathbb{Z}}$ then

$$
\operatorname{KK}^{\mathbb{Z}}\left(C_{0}(\mathbb{Z}) \otimes A, B\right)=\operatorname{KK}(A, B)
$$

More generally, if $H \subseteq G$ is an open subgroup, then

$$
\mathrm{KK}^{G}\left(\operatorname{Ind}_{H}^{G} A, B\right) \simeq \mathrm{KK}^{H}\left(A, \operatorname{Res}_{G}^{H} B\right)
$$

Here we had $G=\mathbb{Z}, H=\{1\}$.
Since $(F \circ G)^{\vdash}=G^{\vdash} \circ F^{\vdash}$. F^{\vdash} is defined on all free $\mathbb{Z} / 2$-graded abelian groups, and given by

$$
F^{\vdash}(\mathbb{Z}[0])=C_{0}(G), \quad(G=\mathbb{Z})
$$

Proposition 1.59. Let $F: \mathcal{T} \rightarrow \mathcal{A}$ be a stable homological functor whose left adjoint is defined on all projective objects of an abelian category \mathcal{A}. If \mathcal{A} has enough projectives, then there are enough $\operatorname{ker} F$-projective objects in \mathcal{T}, and any $\operatorname{ker} F$-projective object is a retract of $F^{\vdash}(B)$ for some projective object $B \in \mathcal{A}$.

Proof. Let $D \in \mathcal{T}$, we need $B \in \mathcal{A}$ projective and a morphism $\pi \in \mathcal{T}\left(F^{\vdash}(B), D\right)$ such that $F(\pi)$ is an epimorphism. This is the beginning of a recursive construction of a projective resolution. We have

$$
\begin{aligned}
\mathcal{T}\left(F^{\vdash}(B), D\right) & \simeq \mathcal{A}(B, F(D)) \\
\rho * & \leftarrow \rho
\end{aligned}
$$

We claim that $F\left(\rho^{*}\right)$ is an epimorphism. There is a commutative diagram

where ε : $\mathrm{Id} \rightarrow F F^{\vdash}$ is a unit of adjointness.
Once we have \mathcal{J}-projective resolution, we get \mathcal{J}-derived functors. The question is how to compute them?

There are three conditions:

1. $F \circ F^{\vdash}=\mathrm{id}_{\mathrm{Proj}_{A}}$
2. $\operatorname{Proj}_{J} \xrightarrow{F} \operatorname{Proj}_{A}$
3.

$$
\left\{\begin{array}{c}
\mathcal{J}-\text { projective resolutions of } D \in \mathcal{T} \\
\text { up to isomorphism }
\end{array}\right\} \stackrel{\cong}{\leftrightarrows}\left\{\begin{array}{c}
\text { projective resolutions of } F(D) \\
\text { up to isomorphism }
\end{array}\right\}
$$

Example 1.60. Let $D \in \mathrm{KK}$, and there is a free resolution of its K-theory

$$
\ldots \rightarrow 0 \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} \mathrm{~K}_{*}(D) \rightarrow 0
$$

Then

$$
\mathrm{KK}\left(\mathrm{~K}_{*}^{\vdash}\left(P_{1}\right), \mathrm{K}_{*}^{\vdash}\left(P_{0}\right)\right)=\operatorname{Hom}_{\mathbf{A b}^{z / 2}}\left(P_{1}, P_{0}\right)
$$

By (2) we can lift d_{1} to $\widehat{d}_{1}: \mathrm{K}_{*}^{\vdash}\left(P_{1}\right) \rightarrow \mathrm{K}_{*}^{+}\left(P_{0}\right)$

$$
\begin{aligned}
\mathrm{KK}\left(\mathrm{~K}_{*}^{\perp}\left(P_{0}\right), D\right) & \simeq \mathrm{KK}\left(P_{0}, \mathrm{~K}_{*}(D)\right) \\
\widehat{d}_{0} & \mapsto d_{0}
\end{aligned}
$$

Then

$$
0 \rightarrow \mathrm{~K}_{*}^{\vdash}\left(P_{1}\right) \rightarrow \mathrm{K}_{*}^{\vdash}\left(P_{0}\right) \rightarrow 0 \rightarrow 0
$$

is an \mathcal{J}-projective resolution, $\mathcal{J}=\operatorname{ker}\left(\mathrm{K}_{*}\right)$. Both $\mathrm{K}_{*}^{\vdash}\left(P_{0}\right)$ and $\mathrm{K}_{*}^{\vdash}\left(P_{1}\right)$ are direct sums of \mathbb{C} and $C_{0}(\mathbb{R})$, and

$$
\mathrm{K}_{*}\left(\mathrm{~K}_{*}^{\vdash}\left(P_{j}\right)\right)=P_{j}
$$

Hence we have lifted a projective resolution in $\mathbf{A b}{ }^{\mathbb{Z} / 2}$ to one in KK .
In the nice case where (2) and hance (1) and (3) hold, the derived functors with respect to \mathcal{J} are the same as derived functors in the abelian category \mathcal{A} because resolutions are the same.

Proposition 1.61. Assuming (1), any homological functor, $H: \mathcal{T} \rightarrow \mathcal{C}$ induces a right-exact functor $\bar{H}: \mathcal{A} \rightarrow \mathcal{C}$, and $\mathbb{L}_{p}^{j} H=\mathbb{L}_{p}^{j} \bar{H} \circ F$

$$
\operatorname{Ext}_{(\mathcal{T}, \mathcal{J})}^{n}(D, E) \simeq \operatorname{Ext}_{\mathcal{A}}^{n}(F(D), F(E))
$$

Example 1.62. Because

$$
\operatorname{Ext}_{\left(\mathrm{KK}, \operatorname{ker}\left(\mathrm{~K}_{*}\right)\right)}^{n}(D, E)=\operatorname{Ext}_{\mathbf{A b}^{\mathbb{Z} / 2}}^{n}\left(\mathrm{~K}_{*}(D), \mathrm{K}_{*}(E)\right)
$$

for all $n \geq 1$, we have

$$
\operatorname{Ext}_{\left(\mathrm{KK}, \operatorname{ker}\left(\mathrm{~K}_{*}\right)\right)}^{0}=\operatorname{Hom}, \quad \operatorname{Ext}_{\left(\mathrm{KK}, \operatorname{ker}\left(\mathrm{~K}_{*}\right)\right)}^{n}=0
$$

There is a canonical map

$$
\mathcal{T}(D, E) / \mathcal{J}(D, E) \longmapsto \operatorname{Ext}_{(\mathcal{T}, \mathcal{J})}^{0}(D, E)
$$

The general feature is that \mathcal{J} acts by 0 on all derived functors.
Definition 1.63. Let $D \in \mathcal{T},\left(P_{n}, \partial_{n}\right)$ be an \mathcal{J}-projective resolution of D. Then $\operatorname{Ext}_{(\mathcal{T}, \mathcal{J})}^{n}(D, E)$ is the n-th cohomology of

$$
\ldots \leftarrow s T\left(P_{n}, E\right) \leftarrow \mathcal{T}\left(P_{n-1}, E\right) \leftarrow \ldots \leftarrow \mathcal{T}\left(P_{0}, E\right) \leftarrow 0
$$

For example

$$
\begin{gathered}
\operatorname{Ext}_{\mathcal{T}, \mathcal{J}}^{0}=\operatorname{ker}\left(\mathcal{T}\left(P_{0}, E\right) \rightarrow \mathcal{T}\left(P_{1}, E\right)\right) \\
P_{1} \longrightarrow P_{0} \longrightarrow D \longrightarrow 0 \\
\square \downarrow
\end{gathered}
$$

Assume we want to understand a triangulated category \mathcal{T}, that may have nothing to do with algebra, using the tools from homological algebra. We have been able to define projective resolutions and thus derived functors. How to achieve $F \circ F^{\vdash}=\mathrm{id}$? Is there abelian category that describes the derived functors?

Definition 1.64. Let $\mathcal{J} \subseteq \mathcal{T}$ be a homological ideal. A stable homological functor $F: \mathcal{T} \rightarrow \mathcal{A}$ with $\operatorname{ker} F=\mathcal{J}$ is called universal (for \mathcal{J}) if any other stable homological functor $H: \mathcal{T} \rightarrow \mathcal{A}^{\prime}$ with ker $H \supseteq \mathcal{J}$ factors through F uniquely up to equivalence.
Theorem 1.65. If the left adjoint F^{\vdash} is defined on all projective objects and $F \circ F^{\vdash}=\operatorname{id}_{\operatorname{Proj}_{\mathcal{A}}}$ then F is universal for $\operatorname{ker} F$.

Conversely, if ker F has enough projectives, and F is universal, then F^{\vdash} is defined on all projective objects and $F \circ F^{\vdash}=\operatorname{id}_{\operatorname{Proj}_{\mathcal{A}}}$.
Proof. Assume we have a functor $H: \mathcal{T} \rightarrow \mathcal{C}$

We want to prove that there is a unique $\bar{H}: \mathcal{A} \rightarrow \mathcal{C}$. There is a following sequence of functors

$$
\mathcal{A} \rightarrow \operatorname{Ho}\left(\operatorname{Proj}_{A}\right) \simeq \operatorname{Ho}\left(\operatorname{Proj}_{\mathcal{J}}\right) \subseteq \operatorname{Ho}(\mathcal{T}) \xrightarrow{H} \operatorname{Ho}(\mathcal{C}) \xrightarrow{\mathrm{H}_{0}} \mathcal{C}
$$

First functor is taking the projective resolution, on objects $B \mapsto\left(P_{n}, \alpha_{n}\right)$.

Example 1.66. The functor

$$
\begin{aligned}
\mathrm{KK}^{\mathbb{Z}} & \rightarrow \mathbf{A b}^{\mathbb{Z} / 2} \\
(D, \alpha) & \mapsto \mathrm{K}_{*}(D)
\end{aligned}
$$

is not universal. The universal functor \widetilde{F} here is defined on all projective objects and satisfies $\widetilde{F} \circ \tilde{F}^{\vdash}=\operatorname{id}_{\mathrm{Proj}_{\mathrm{Ab}}{ }^{Z / 2}}$. Notice that the \mathbb{Z}-action on D induces an action on $\mathrm{K}_{*}(D)$. We enrich F to a functor

$$
\begin{aligned}
\widetilde{F}: \mathrm{KK}^{\mathbb{Z}} & \rightarrow \operatorname{Mod}(\mathbb{Z}[\mathbb{Z}])^{\mathbb{Z} / 2} \\
\widetilde{F}(D) & :=\mathrm{KK}_{*}(\mathbb{C}, D)=\mathrm{KK}^{\mathbb{Z}}\left(C_{0}(\mathbb{Z}),(D, \alpha)\right)
\end{aligned}
$$

Then ker \widetilde{F} and \widetilde{F} is universal. Furthermore

$$
\operatorname{Hom}_{\mathbb{Z}[\mathbb{Z}]}(\mathbb{Z}[\mathbb{Z}], \widetilde{F}(D))=\tilde{F}(D)
$$

Thus $\widetilde{F}(\mathbb{Z}[\mathbb{Z}])=C_{0}(\mathbb{Z})$ and $\widetilde{F} \circ \widetilde{F}^{\vdash}(\mathbb{Z}[\mathbb{Z}])=\mathbb{Z}[\mathbb{Z}]$.
Example 1.67. Take the homology functor

$$
F=\mathrm{H}_{*}:(R-\text { Mod }) \rightarrow \mathbf{A} \mathbf{b}^{\mathbb{Z}}
$$

Passing from F to the universal functor for ker F reconstructs $\mathrm{H}_{*}: \operatorname{Ho}(R-\operatorname{Mod}) \rightarrow(R-$ Mod $)^{\mathbb{Z}}$. The left adjoint H_{*}^{\vdash} is defined on projective modules, and $H_{*} \circ \mathrm{H}_{*}^{\vdash}=\mathrm{id}$.
Example 1.68. Let (C, Δ) be a discrete quantum group, $\mathcal{T}=\mathrm{KK}^{(C, \Delta)}, F\left(A, \Delta_{A}\right)=\mathrm{K}_{*}(A)$ for a separable C^{*}-algebra with coaction $\Delta_{A}: A \rightarrow \mathcal{M}(A \otimes C)$.
F is a poor invariant - it forgets too much. Say $C=C^{*}(G)$ for finite G. Then

$$
\mathrm{KK}^{(C, \Delta)}(C \otimes A, B) \simeq \operatorname{KK}(A, B)
$$

The left adjoint F^{\vdash} is defined on free abelian groups. From Baaj-Skandalis duality

$$
\begin{gathered}
\mathrm{KK}^{(C, \Delta)}(A, B)=\mathrm{KK}^{(\widehat{C}, \widehat{\Delta})}(A \rtimes \widehat{C}, B \rtimes \widehat{C}) \\
A \rtimes \widehat{C} \rtimes C \simeq A \otimes \mathcal{K}\left(\mathcal{H}_{C}\right) \sim A
\end{gathered}
$$

There turns out to be a canonical $\operatorname{Rep}(\widehat{C})$-module structure on $\mathrm{K}_{*}(A \rtimes C)=: \mathrm{K}_{*}^{\widehat{C}}(A)$.
In Baaj-Skandalis duality example

$$
\mathrm{KK}_{*}^{\mathbb{Z}}(A, B) \simeq \mathrm{KK}^{\mathrm{U}(1)}(A \rtimes \mathbb{Z}, B \rtimes \mathbb{Z})
$$

Let \mathcal{T} be a triangulated category (with direct sums), and $F: \mathcal{T} \rightarrow \mathcal{A}$ be a stable homological functor into some abelian category (commuting with direct sums). The left adjoint of F is defined on all projecive objects in \mathcal{A}.
Examples 1.69 .

- $\mathcal{T}=\operatorname{Ho}(\widetilde{\mathcal{A}}), F: \mathcal{T} \rightarrow \widetilde{\mathcal{A}}^{\mathbb{Z}}, F\left(C_{\bullet}\right)=\mathrm{H}_{*}\left(C_{\bullet}\right)$
- $\mathcal{T}=\mathrm{KK}, F: \mathrm{KK} \rightarrow \mathbf{A b}^{\mathbb{Z} / 2}, F(B)=\mathrm{K}_{*}(B)$
- $\mathcal{T}=\mathrm{KK}^{\mathbb{Z}}, F: \mathrm{KK} \rightarrow \mathbf{A b}^{\mathbb{Z} / 2}, F(B, \beta)=\mathrm{K}_{*}(B), F^{\vdash}(\mathbb{Z})=C_{0}(\mathbb{Z})$ with free action of \mathbb{Z}

Let \mathcal{L} be the smallest subcategory of \mathcal{T} that is thick, contains all ker F-projective objects, and is closed under direct sums. Let $\mathcal{N}=\{A \in \mathcal{T} \mid F(A)=0\}$. Then if $L \in \mathcal{L}, N \in \mathcal{N}$ we have $\mathcal{T}(L, N)=0$ because it holds if L is ker F-projective, and $\{A \mid \mathcal{T}(A, N)=0\}$ is localising. For \mathcal{L}, \mathcal{N} to be complementary, we need that any $B \in \mathcal{T}$ can be embedded in an exact traingle

$$
L \rightarrow B \rightarrow N \rightarrow L[1], \quad L \in \mathcal{L}, N \in \mathcal{N}
$$

Theorem 1.70. If $F: \mathcal{T} \rightarrow \mathcal{A}$ commutes with direct sums and \mathcal{T} has enough ker F-projectives, then $(\mathcal{L}, \mathcal{N})$ are complementary.

Example 1.71. For K_{*} on KK

$$
\begin{gathered}
\mathcal{L}=\langle\mathbb{C}\rangle \\
\mathcal{N}=\left\{B \in \mathrm{KK} \mid \mathrm{K}_{*}(B)=0\right\}
\end{gathered}
$$

Example 1.72. For K_{*} on $\mathrm{KK}^{\mathbb{Z}}$

$$
\mathcal{L}=\left\langle C_{0}(\mathbb{Z})\right\rangle=\left\{(B, \beta) \in \mathrm{KK}^{\mathbb{Z}} \mid B \text { is the bootstrap class }\right\}
$$

The inclusion \subset is obvious, and \supset is closely related to the Pimsner-Voiculescu sequence and the Baum-Connes conjecture for \mathbb{Z}. We will give a sketch of the proof.

Take $(B, \beta) \in \mathrm{KK}^{\mathbb{Z}}$. Look at the extension

$$
C_{0}(\mathbb{R}, B) \mapsto C_{0}(\mathbb{R} \cup\{+\infty\}, B) \rightarrow B
$$

Here we have an action of \mathbb{Z} on \mathbb{R} by translation. This extension does not have an equivariant completely positive section. But an argument by Baaj-Skandalis shows that it yields an extension triangle nevertheless.

$$
C_{0}(\mathbb{Z} \times(0,1)) \longmapsto C_{0}(\mathbb{R}, B) \rightarrow C_{0}(\mathbb{Z}, B)
$$

If $B \in\langle\mathbb{C}\rangle$, then $C_{0}(\mathbb{Z}, B)$ and $C_{0}(\mathbb{Z} \times(0,1))$ belong to $\left\langle C_{0}(\mathbb{Z})\right\rangle$, hence so does $C_{0}(\mathbb{R}, B)$.
Theorem 1.73. $C_{0}((-\infty, \infty], B) \simeq 0$ in $\mathrm{KK}^{\mathbb{Z}}$ with diagonal action.
This is where the work has to be done. More generally, if $(B, \beta) \in \mathrm{KK}^{\mathbb{Z}}$ satisfies $B \simeq 0$ in KK , then $(B, \beta) \simeq 0$ in $\mathrm{KK}^{\mathbb{Z}}$. Equivalently if $f \in \mathrm{KK}^{\mathbb{Z}}\left(B_{1}, B_{2}\right)$ is invertible in $\operatorname{KK}\left(B_{1}, B_{2}\right)$, then f is invertible in $\mathrm{KK}^{\mathbb{Z}}$.

More generally we can replace \mathbb{Z} by any torsion-free (that is without compact subgroups) a-T-menable locally compact group. It is implied by the proof of the Baum-Connes conjecture by Higson and Kasparov.

The full proof of the fact that $(\mathcal{L}, \mathcal{N})$ are complementary is in Ralf Meyer, "Homological algebra in triangulated category", part II. We will prove a weaker fact, that is $\left(\mathcal{N}^{\vdash}, \mathcal{N}\right)$ are complementary. The proof uses phantom tower (maps in ker F are called phantom maps).

Definition 1.74. Let $B \in \mathcal{T}$. Phantom tower is a diagram of the form

where all P_{n} are $\operatorname{ker} F$-projective, $\iota_{n}^{n+1} \in \operatorname{ker} F$, and all triangles

are exact. This means that the maps $N_{n+1} \rightarrow P_{n-1}$ are of degree 1, that is actually $N_{n+1} \rightarrow$ $P_{n-1}[1]$. The bottom row

$$
P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow P_{3} \leftarrow \ldots
$$

is a chain complex with differential of degree 1.
Proposition 1.75. Given a phantom tower (1.6), the complex

$$
B \leftarrow P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow P_{3} \leftarrow \ldots
$$

is a projective resolution. Conversely, any projective resolution embeds uniquely in a phantom tower.

Proof. The sequence

$$
B \leftarrow P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow P_{3} \leftarrow \ldots
$$

is $\operatorname{ker} F$-exact. We know that

$$
F_{*+1}\left(N_{j+1}\right) \mapsto F_{*}\left(P_{j}\right) \rightarrow F_{*}\left(N_{j}\right)
$$

is a short exact sequence because $F\left(\iota_{j}^{j+1}\right)=0$. The Yoneda product of these extensions is the chain complex

$$
F(B) \leftarrow F\left(P_{0}\right) \leftarrow F\left(P_{1}\right) \leftarrow \ldots
$$

This is exact as a Yoneda product of extensions. Now take a projective resolution

$$
B \leftarrow P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow P_{3} \leftarrow \ldots
$$

Recursively construct N_{j} starting with $N_{0}=B$. Now embed $N_{j} \leftarrow P_{j}$ in an exact triangle $P_{j} \rightarrow N_{j} \xrightarrow{\iota_{j}^{j+1}} N_{j+1} \rightarrow P_{j}[1]$.

Induction assumption tells that $N_{j} \leftarrow P_{j}$ is ker F-epimorphism, that is $F\left(P_{j}\right) \rightarrow F\left(N_{j}\right)$ is an epimorphism. Then $F\left(\iota_{j}^{j+1}\right)=0$ because F is homological. Now we must lift the boundary $\operatorname{map} P_{j+1} \rightarrow P_{j}[1]$ to a map $P_{j+1} \rightarrow N_{j+1}$. and check that then it is ker F-epimorphism.

In the sequence

$$
\mathcal{T}\left(P_{j+1}, N_{j}\right) \rightarrow \mathcal{T}\left(P_{j+1}, N_{j+1}\right) \rightarrow \mathcal{T}\left(P_{j+1}, P_{j+1}[1]\right) \rightarrow \mathcal{T}\left(P_{j+1}, N_{j}[1]\right)
$$

the first map is zero, because P_{j+1} is projective and i_{j}^{i+1} is phantom.
Because the composition

$$
P_{j+1} \rightarrow P_{j}[1] \rightarrow P_{j-1}[2]
$$

vanishes, the boundary map goes to 0 in $\mathcal{T}\left(P_{j+1}, N_{j}[1]\right)$, hence comes from $\mathcal{T}\left(P_{j+1}, N_{j+1}\right)$.
Now routine check that it is an epimorphism.

Now we will prove that for any $B \in \mathcal{T}$ there is $N \in \mathcal{N}$ and a map $f: B \rightarrow N$ such that

$$
\mathcal{T}_{*}(N, M) \rightarrow \mathcal{T}_{*}(B, M)
$$

is invertible for all $M \in \mathcal{N}$. Then $B \mapsto N$ is a functor $\mathcal{T} \rightarrow \mathcal{N}$ that is left adjoint to the embedding functor $\mathcal{N} \rightarrow \mathcal{T}$. We let N to be the homotopy direct limit of the phantom tower.

$$
\bigoplus_{j} N_{j} \xrightarrow{\mathrm{id}-S} \bigoplus_{j} N_{j} \rightarrow \underset{\longrightarrow}{\operatorname{holim}} N_{j} \rightarrow \bigoplus_{j} N_{j}[1], \quad S=\bigoplus_{j} i_{j}^{j+1}
$$

Since F commutes with direct sums, and $i_{j}^{j+1} \in \operatorname{ker} F, F(S)=0$. Therefore $F(\mathrm{id}-S)=F(\mathrm{id})$ is invertible so that $F\left(\underset{\longrightarrow}{\operatorname{holim}} N_{j}\right)=0$.

Let $M \in \mathcal{N}$. Then $\mathcal{T}_{*}\left(P_{j}, M\right)=0$ because P_{j} is ker F-projective. Therefore i_{j}^{j+1} induces an isomorphism

$$
\mathcal{T}_{*}\left(N_{j+1}, M\right) \stackrel{\simeq}{\hookrightarrow} \mathcal{T}_{*}\left(N_{j}, M\right)
$$

There is an extension

1.6 Index maps in K-theory and K-homology

Consider the following extension of C^{*}-algebras

$$
\stackrel{i}{\longmapsto} E \xrightarrow{p} Q
$$

There are long exact sequences in K-theory and in K-homology:

and we have pairings between K-theory and K-homology. We will prove that

$$
\begin{equation*}
-\langle\partial(x), y\rangle=\langle x, \delta(y)\rangle, \quad x \in \mathrm{~K}_{1}(Q), y \in \mathrm{~K}^{0}(I) \tag{1.9}
\end{equation*}
$$

We will use only formal properties of the boundary maps.
Theorem 1.76. Let

$$
\begin{aligned}
\partial: \mathrm{K}_{1}(Q) & \rightarrow \mathrm{K}_{0}(I) \\
\delta: \mathrm{K}^{0}(I) & \rightarrow \mathrm{K}^{1}(Q)
\end{aligned}
$$

be natural for morphisms of extensions. Then there is $\varepsilon \in\{ \pm 1\}$ such that

$$
\langle\partial(x), y\rangle=\varepsilon\langle x, \delta(y)\rangle
$$

for all extensions and all $x \in \mathrm{~K}_{1}(Q), y \in \mathrm{~K}^{0}(I)$.
Remark 1.77. The $\operatorname{sign} \varepsilon$ is fixed by looking at the extension

$$
\mathcal{K} \mapsto \mathcal{T} \rightarrow C\left(S^{1}\right)
$$

and the generators of $\mathrm{K}_{1}\left(C\left(S^{1}\right)\right)=\mathbb{Z}, \mathrm{K}^{0}(\mathcal{K})=\mathbb{Z}$.

$$
\begin{gathered}
{\left[\mathcal{K} \mapsto \mathcal{T} \longmapsto C\left(S^{1}\right)\right] \in \mathrm{K}^{1}\left(C\left(S^{1}\right)\right) \simeq \operatorname{Hom}\left(\mathrm{K}_{1}\left(C\left(S^{1}\right)\right)\right) \simeq \mathbb{Z}} \\
{\left[\mathcal{K} \mapsto \mathcal{T} \longmapsto C\left(S^{1}\right)\right] \mapsto-1 \in \mathbb{Z}}
\end{gathered}
$$

Even more, up to sign there is only one natural boundary map.
Theorem 1.78. Let $\partial: \mathrm{K}_{*+1}(Q) \rightarrow \mathrm{K}_{*}(I)$ be a natural boundary map. Then there is $\varepsilon \in$ $\{ \pm 1\}$ such that for all extensions $\varepsilon \cdot \partial$ is the composition

$$
\mathrm{K}_{*+1}(Q) \simeq \mathrm{KK}_{*+1}(\mathbb{C}, Q) \rightarrow \mathrm{KK}_{*}(\mathbb{C}, I) \simeq \mathrm{K}_{*}(I)
$$

where the middle map is the Kasparov product with the class of the extension in $\operatorname{KK}_{1}(Q, I)$. The same holds in K-homology.

1.7 Mayer-Vietoris sequences

Consider the category of pullback diagrams

A natural Mayer-Vietoris sequence is a functor from this category to the category of exact chain complexes, whose entries are $\mathrm{K}_{*}(A), \mathrm{K}_{*}\left(A^{\prime}\right) \oplus \mathrm{K}_{*}(B), \mathrm{K}_{*}\left(B^{\prime}\right)$.

Theorem 1.79. Let $d: \mathrm{K}_{*}\left(B^{\prime}\right) \rightarrow \mathrm{K}_{*+1}(A)$ be a boundary map in a natural Mayer-Vietoris sequence. Then there is a sign $\varepsilon_{*} \in\{ \pm\}$ such that for any pullback diagram $\varepsilon \cdot d$ is the composition

Remark 1.80. To fix sign, one can look at pullback

or its suspension.

Let F be a homological functor on separable C^{*}-algebras, and let $d: F_{1}\left(B^{\prime}\right) \rightarrow F_{0}(A)$ be a natural transformation on pullback diagrams

We compare a given structure to simpler one

As a consequence, a natural transformation for pullback diagrams reduces to a natural transformation $E_{1}(Q) \rightarrow F_{0}(I)$ for extensions

$$
\digamma \stackrel{i}{\longrightarrow} E \xrightarrow{p} Q
$$

Next we compare this extension with mapping cylinder extension

where

$$
Z_{p}:=\{(e, q) \in E \oplus C([0,1], Q) \mid p(e)=q(1)\}
$$

Now there are

If p has a completely positive contractive section, then $F_{0}(I) \xrightarrow{\simeq} F_{0}\left(C_{p}\right)$. Actually if F is exact, this is true without completely positive contractive section. Then the class of the extension in $\operatorname{KK}_{1}(Q, I)$ is the product of

$$
C_{0}((0,1)) \otimes Q \hookrightarrow C_{p} \simeq I
$$

The map $I \hookrightarrow C_{p}$ has to be an E-equivalence because it is part of an extension

$$
\longmapsto C_{p} \longrightarrow C_{0}((0,1], Q)
$$

and $C_{0}((0,1], Q)$ is contractible.

Next we consider

and

This is d_{5} composed with the class of the extension $I \hookrightarrow E \rightarrow Q$ in $\mathrm{KK}_{0}(S Q, I)$ or rather $E_{0}(S Q, I)$ if there is no completely positive contractive section.

Now assume $F_{*}=\mathrm{K}_{*}$. We want to get rid of Q. Now the boundary map for the cone extension of Q is a natural transformation $\mathrm{K}_{1}(Q) \rightarrow \mathrm{K}_{0}(S Q)$. We have naturality of *-homomorphisms to begin with, but this implies naturality of KK_{0}-morphisms. Any $x \in \mathrm{~K}_{1}(Q)$ is of the form $\tilde{x}_{*}(g)$, where $g \in \mathrm{~K}_{1}\left(C_{0}(\mathbb{R})\right)$ is the canonical generator, and $\tilde{x} \in \mathrm{KK}_{0}\left(C_{0}(\mathbb{R}), Q\right)$.

$$
\begin{aligned}
\mathrm{K}_{1}(Q) & \simeq \mathrm{KK}_{0}\left(C_{0}(\mathbb{R}), Q\right) \\
x & \mapsto \tilde{x}
\end{aligned}
$$

We conclude that $d(x)=(\tilde{x})_{*}(d(g))$, so d is fixed completely once we know $d(g) \in \mathrm{K}_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right)=$ \mathbb{Z}. If we use an exact sequence

$$
\underbrace{\mathrm{K}_{1}\left(C_{0}([0,1)), C_{0}(\mathbb{R})\right)}_{=0} \rightarrow \underbrace{\mathrm{~K}_{1}\left(C_{0}(\mathbb{R})\right)}_{\simeq \mathbb{Z}} \stackrel{\simeq}{\Rightarrow} \mathrm{K}_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right) \rightarrow 0
$$

we conclude that $d(g)$ has to be a generator of $\mathrm{K}_{0}\left(C_{0}\left(\mathbb{R}^{2}\right)\right) \simeq \mathbb{Z}$, and

$$
\begin{aligned}
& \mathrm{K}_{1}(Q) \simeq \mathrm{KK}_{0}\left(C_{0}(\mathbb{R}), Q\right) \simeq \mathrm{KK}_{0}\left(\mathbb{C}, C_{0}(\mathbb{R}, Q)\right) \simeq \mathrm{K}_{0}\left(C_{0}(\mathbb{R}, Q)\right) \\
& x \mapsto \tilde{x}
\end{aligned}
$$

We fix natural isomorphisms

$$
\mathrm{K}_{1}(Q) \simeq \mathrm{KK}_{0}\left(C_{0}(\mathbb{R}), Q\right) \simeq \mathrm{KK}_{0}\left(\mathbb{C}, C_{0}(\mathbb{R}) \otimes Q\right) \simeq \mathrm{K}_{1}(S Q)
$$

which are unique up to sign. Then d is this isomorphism up to sign.
For the boundary map $\mathrm{K}_{0}(Q) \rightarrow \mathrm{K}_{1}(S Q)$ the same thing happens, but replacing g by the generator of $\mathrm{K}_{0}(\mathbb{C})$.

Let $x \in \mathrm{~K}_{1}(Q), y \in \mathrm{~K}^{0}(I)$.

$$
\mathbb{C} \rightarrow Q \xrightarrow{[E]} I
$$

Using Kasparov product \circ we write

$$
\begin{aligned}
\partial(x) & =\varepsilon_{\partial}[E] \circ x \\
\delta(y) & =\varepsilon_{\delta} y \circ[E] \\
\langle x, \delta y\rangle & =\delta(y) \circ x=\varepsilon_{\delta}(y) \circ[E] \circ x \in \mathrm{KK}_{0}(\mathbb{C}, \mathbb{C}) \simeq \mathbb{Z} \\
\langle\partial(x), y\rangle & =y \circ \partial(x)=\varepsilon_{\partial}(y) \circ[E] \circ x
\end{aligned}
$$

1.8 Localisation of functors

Assume we have a triangualted category \mathcal{T} with \oplus, a localising subcategory \mathcal{N} and a class of objects \mathcal{P} such that $(\langle\mathcal{P}\rangle, \mathcal{N})$ is complementary. For example we can take $\mathcal{T}=\mathrm{KK}$, $\mathcal{N}=\left\{B \in \mathrm{KK} \mid \mathrm{K}_{*}(B)=0\right\}, \mathcal{P}=\{\mathbb{C}\}$. Furthermore, let $F: \mathcal{T} \rightarrow \mathcal{A}$ be a homological functor commuting with \oplus. Recall that there are functors

$$
P: \mathcal{T} \rightarrow\langle\mathcal{P}\rangle, \quad N: \mathcal{T} \rightarrow \mathcal{N}
$$

and natural exact triangles

$$
P(B) \rightarrow B \rightarrow N(B) \rightarrow P(B)[1]
$$

Definition 1.81. The localisation of functor F at \mathcal{N}, denoted $\mathbb{L} F$, is a functor

$$
F \circ P: \mathcal{T} \rightarrow \mathcal{A}
$$

We may also view this as a functor on $\mathcal{T} / \mathcal{N}$. There is a natural transformation $\mathbb{L} F \rightarrow F$.
Proposition 1.82. $\mathbb{L} F \rightarrow F$ is universal among natural transformations $G \rightarrow F$ with G homological and $G / \mathcal{N}=0$

Proof. There is an isomorphism

$$
G(P(B)) \stackrel{\simeq}{\rightrightarrows} G(B)
$$

and a map

$$
G(P(B)) \rightarrow F(P(B))=\mathbb{L} F(B)
$$

Roughly speaking, $\mathbb{L} F$ is the best approximation to F that vanishes on \mathcal{N}.
Corollary 1.83. If $\mathbb{L} F \rightarrow F$ is invertible, then $\left.F\right|_{\mathcal{N}}=0$.
Proposition 1.84. Let G, F be homological, commuting with $\oplus, G / \mathcal{N}=0$, and let $\Phi: G \rightarrow F$ be a natural transformation. Then if Φ_{B} is invertible for all $B \in \mathcal{P}$, then Φ induces a natural isomorphism $G \simeq \mathbb{L} F$.

Proof. We get a transformation $\Psi: G \rightarrow \mathbb{L} F$ by the previous proposition. Ψ is invertible on \mathcal{P} because $\mathbb{L} F(B) \simeq F(B)$ for $B \in \mathcal{P}$. Since G and $\mathbb{L} F$ are homological and commuting with \oplus, the class of objects where Ψ is invertible is localising. Hence contains \mathcal{P}. It also contains \mathcal{N} because G and $\mathbb{L} F$ vanish on \mathcal{N}. Thus it contains \mathcal{T}.

Usually we do not expect the map $\mathbb{L} F \rightarrow F$ to be an isomorphism. But sometimes in noncommutative topology this happens for rather deep reason. For example the BaumConnes assembly map is of this form for suitable choice of \mathcal{N} and $F(B)=\mathrm{K}_{*}\left(G \rtimes_{r} B\right)$.

Let $\mathcal{T}=\mathrm{KK}^{G}, G$ locally compact group. How to chose \mathcal{N} ? In the group case the following choice is most useful

$$
B \in \mathcal{N} \text { if and only if } \operatorname{Res}_{G}^{H}(B) \simeq 0 \text { in } \mathrm{KK}^{H} \text {, for all compact subgroups } H \leq G
$$

This definition contains the insight that the K-theory for crossed products by compact groups has to be computes by hand, whereas those for non-compact groups often reduce to compact groups.
Theorem 1.85. Let $\mathcal{T}=\mathrm{KK}^{G}$ for a Lie group G, and $F(B)=\mathrm{K}_{*}\left(G \rtimes_{r} B\right), \mathcal{N}$ as above. Then the natural transformation $\mathbb{L} F \rightarrow F$ is naturally isomorphic to the Baum-Connes assembly map with coeffictients.

Proof. The domain of the Baum-Connes map
has two properties

- it vanishes for $B \in \mathcal{N}$

$$
\mathrm{KK}^{G}\left(C_{0}(X), B\right) \rightarrow \mathrm{KK}\left(G \rtimes_{r} C_{0}(X), G \rtimes_{r} B\right) \rightarrow \mathrm{K}_{*}\left(G \rtimes_{r} B\right)
$$

- the Baum-Connes assembly map is invertible

Definition 1.86. A G-algebra is called proper Husdorff if there is a proper G-space X and a continuous G-map $\operatorname{Prim}(A) \rightarrow X$ (equivalently $C_{0}(X) \rightarrow A$ is central).

1.9 Towards an analogue of the Baum-connes conjecture for quantum groups

The main question is: what are good choices for \mathcal{P}, \mathcal{N} ? We must choose \mathcal{N}, \mathcal{P} so that the resulting assembly map is invertible for "nice" quantum groups. first approach is to use restriction functors to all compact quantum subgroups.
Definition 1.87. A quantum group is a C^{*}-algebra A with a comultiplication $\Delta: A \rightarrow$ $A \otimes A$ satisfying certain properties.
A quantum group is compact if A is unital.
Example 1.88. Right now, we had only two examples: groups and their duals

1. $A=C_{0}(G)$

$$
\Delta: C_{0}(G) \rightarrow C_{0}(G \times G), \quad(\Delta f)(x, y)=f(x y) .
$$

2. $A=C_{r}^{*}(G)$,

$$
\Delta: C_{r}^{*}(G) \rightarrow M\left(C_{r}^{*}(G) \otimes C_{r}^{*}(G)\right), \quad \Delta\left(\int_{G} f(t) \lambda_{t} d t\right)=\int_{G} f(t) \lambda_{t} \otimes \lambda_{t} d t
$$

Group actions on C^{*}-algebras become coactions of (A, Δ)

$$
\delta_{B}: B \rightarrow M(B \otimes A)
$$

coassociative plus technical conditions.
Example 1.89.

1. Group actions as usual.
2. Grading by G.

Definition 1.90. A closed quantum subgroup of (A, Δ) is a quotient A / I to which Δ descends.

Example 1.91.

1. Closed quantum subgroups of $C_{0}(G)$ are $C_{0}(H)$ for $H \leq G$ closed subgroup.
2. Closed quantum subgroups of $C_{r}^{*}(G)$ are too few. The candidates are $C_{r}^{*}(G / N)$, where $N \leq G$ is a closed normal subgroup.

Many locally compact groups such as $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ have many open subgroups but no open normal subgroup.

Definition 1.92. A quantum homogeneous space for (A, Δ) is a C^{*}-subalgebra B of $M(A)$ that is a left Δ-coideal $(\Delta(B) \subseteq M(B \otimes A))$. It is proper if $B \subsetneq A$.
Example 1.93.

1. $B=C_{0}(G / H), H \subseteq G$ closed subgroup.
2. $C_{r}^{*}(H)$, for any closed subgroup of $H \subseteq G$ is even a two-sided Cl-coideal. Proper homogeneous spaces are open subgroups here.

Let us look at $C_{r}^{*}(G)$ when G is a compact Lie group. Then the following conditions are equivalent

1. G is connected.
2. G has no open subgroups.
3. $C_{r}^{*}(G)$ has no non-trivial proper homogeneous spaces.

But $G=\mathrm{SO}(3)$ creates a problem because it has projective representations. G acts on $M_{2}(\mathbb{C})$ because of the representation of $\mathrm{SO}(3)$ on $\mathbb{C}^{2} . G$ coacts on $G \rtimes_{r} M_{2}(\mathbb{C})$.

What are particularly simple actions of a quantum group?

$$
C_{0}(G / H) \ltimes_{r} G \sim_{M . E .} C^{*}(H) \simeq \bigoplus_{\pi \in \widehat{G}} M_{d_{\pi}}(\mathbb{C})
$$

A necessary condition for a torsion coefficient algebra is that the crossed product $B \ltimes_{r} A$ be a sum of matrix algebras (compact operators).

Theorem 1.94. Let G be a locally compact group.

$$
\begin{gathered}
\mathcal{P}:=\left\{C_{0}(G / H) \mid H \leq G, \text { compact }\right\} \\
\widetilde{\mathcal{N}}=P^{\dashv}:=\left\{B \mid \operatorname{KK}^{G}(P, B)=0 \text { for all } P \in \mathcal{P}\right\}
\end{gathered}
$$

The localisation of $\mathrm{K}_{*}(G \rtimes B)$ at \widetilde{N} and \mathcal{N} agree with the domain of the Baum-Connes assembly map

$$
\mathcal{N}=\left\{B \mid \operatorname{Res}_{G}^{H} B \simeq 0 \text { for all compact } H \leq G\right\}
$$

1.10 Quantum groups

Definition 1.95. A quantum group is a C^{*}-algebra A with a comultiplication $\Delta \in \operatorname{Mor}(A, A \otimes$ A) such that

and for all $a, b \in A$

$$
\begin{aligned}
& \Delta(a)(1 \otimes b) \in A \otimes A \\
& (a \otimes 1) \Delta(b) \in A \otimes A
\end{aligned}
$$

$\operatorname{span}\{\Delta(a)(1 \otimes b) \mid a, b \in A\}$ is dense in $A \otimes A$
$\operatorname{span}\{(a \otimes 1) \Delta(b) \mid a, b \in A\}$ is dense in $A \otimes A$
in the compact case, that is when $1_{A} \in A$ we have

Theorem 1.96. There is a unique state h on A such that

$$
(\mathrm{id} \otimes h) \Delta(A)=h(a) 1_{A}=(h \otimes \mathrm{id}) \Delta(a)
$$

Let G be a locally compact quantum group, $A=C_{0}(G),(\Delta f)(x, y)=f(x y)$. Here $\Delta \in \operatorname{Mor}(A, A \otimes A)$ is induced by the group multiplication $\mu: G \times G \rightarrow G$. Multiplication μ is associative if Δ is coassociative. The conditions
$\operatorname{span}\{\Delta(a)(1 \otimes b) \mid a, b \in A\}$ is dense $\operatorname{in} A \otimes A$
$\operatorname{span}\{(a \otimes 1) \Delta(b) \mid a, b \in A\}$ is dense $\operatorname{in} A \otimes A$
can be written as

$$
\begin{array}{ll}
\exists x & \mu(x y)=\mu(x z) \Longrightarrow y=z \\
\exists x & \mu(y x)=\mu(z x) \Longrightarrow y=z
\end{array}
$$

On a group Haar measure h satisfies

$$
\int_{G} f(s t) d h(s)=\int_{G} f(s) d h(s)
$$

Definition 1.97. A function $h: A_{+} \rightarrow[0, \infty]$ such that $h(a+b)=h(a)+h(b), h(\lambda a)=\lambda h(a)$ for $\lambda \geq 0$ is called a weight.

We define

$$
\begin{aligned}
\mathcal{N}_{h} & :=\left\{a \mid h\left(a^{*} a\right)<\infty\right\} \quad\left(L^{2}\right) \\
\mathcal{M}_{h} & :=\operatorname{span}\{a \geq 0 \mid h(a)<\infty\} \\
& =\operatorname{span}\left\{a^{*} b \mid a, b \in \mathcal{N}_{h}\right\}
\end{aligned}
$$

Then $\overline{\mathcal{M}_{h}}=A$ (h locally finite), and (id $\left.\otimes h\right) \Delta(a)=h(a) 1_{A}$ (h lower semicontinuous).
Let $\varphi \in A^{*}, a \in A$. Then

$$
\varphi * a:=(\mathrm{id} \otimes \varphi) \Delta(a) .
$$

In particular, for $\varphi=\delta_{t}$

$$
(\varphi * a)(s)=a(s t) .
$$

Right invariance of h means that

$$
h(\varphi * a)=h(a) \varphi\left(1_{A}\right)
$$

for all $\varphi \in A_{+}^{*}$ and all $a \geq 0$.
We say that h is strictly faithful if

$$
h\left(a^{*} a\right)=0 \Longrightarrow a=0 .
$$

There exists κ - closed densely defined map $A \rightarrow A$, such that

$$
\kappa=R \circ \tau_{i / 2},
$$

where R is an antiautomorphism, and $\tau_{i / 2}$ is an analitic extension of a 1-parameter group $\left(\tau_{t}\right)_{t \in \mathbb{R}}$ of automorphisms of A. There exists $\lambda>0$ such that $h \circ \tau_{t}=\lambda^{t} h$.

For all $\varphi \in A^{*}, \varphi \circ \kappa \in A$ and all $a, b \in \mathcal{N}_{h}$

$$
h\left(\left(\varphi * a^{*}\right) b\right)=h\left(a^{*}((\varphi \circ \kappa) * b)\right)
$$

Strong right invariance means that

$$
\mu(\kappa \otimes \mathrm{id}) \Delta(a)=\varepsilon(1) 1_{A}=\mu(\mathrm{id} \otimes \kappa) \Delta(a)
$$

The maps

$$
\begin{aligned}
& \Phi: a \otimes b \mapsto \Delta(a)\left(1_{A} \otimes b\right) \\
& \Psi: r \otimes s \mapsto(\operatorname{id} \otimes \kappa)(\Delta(r))(1 \otimes s)
\end{aligned}
$$

are inverse to each other.
We can embed A in a Hilbert space \mathcal{H} and extend Φ, Ψ to

$$
\begin{aligned}
W: \mathcal{H} \otimes \mathcal{H} & \rightarrow \mathcal{H} \\
V: \mathcal{H} \otimes \mathcal{H} & \rightarrow \mathcal{H}
\end{aligned}
$$

Strong right invariance means that $W^{*}=V$

$$
\langle W(a \otimes b), c \otimes d\rangle=\langle a \otimes b, V(c \otimes d)\rangle .
$$

1.11 The Baum-Connes conjecture

Let G be a torsion-free group, that is without compact subgroups. The Baum-Connes conjecture with coefficients for G means that $\mathrm{K}_{*}\left(G \rtimes_{r} A\right)=0$ whenever $\mathrm{K}_{*}(A)=0$. If G has torsion, then the statement is: if $\mathrm{K}_{*}\left(A \rtimes_{r} H\right)=0$ for all $H \leq G$ compact, then $\mathrm{K}_{*}\left(A \rtimes_{r} G\right)=0$.

Theorem 1.98 (Higson-Kasparov). The Baum-Connes conjecture with coefficients holds for all amenable groups.

In particular it holds if $G=\mathbb{Z}^{n}$ for some $n \in \mathbb{N}$.
Let

$$
\begin{aligned}
\mathcal{N} & :=\left\{A \in \operatorname{KK}^{G} \mid \mathrm{K}_{*}(A \rtimes H)=0 \text { for all compact } H \leq G\right\} \\
\mathcal{N}^{\vdash} & :=\left\{A \in \operatorname{KK}^{G} \mid \operatorname{KK}^{G}(A, B)=0 \text { for all } B \in \mathcal{N}\right\}
\end{aligned}
$$

for a discrete G. Then $\left(\mathcal{N}^{\vdash}, \mathcal{N}\right)$ are complementary.

