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Chapter 1

Foliations

1.1 What is a foliation and why is it interesting ?

Question 1 (H. Hopf). Is there a completely integrable plane field on S3 ? (Plane field - two
dimensional subbundle E ⊂ TS3).

Answer 1 (G. Reeb). Yes, it is a tangent bundle to a 2-dimensional Reeb’s foliation of S3,
described in the example (1.2(6)).

Question 2 (A. Haefliger). Given a plane subbundle E of TM is it homotopic to an integrable
one ?

Answer 2 (R. Bott). There exists at least one obstruction; not every subbundle has in its
K-theory class an an integrable one.

Roughly speaking, a foliation is the decomposition of a manifold Mn into disjoint family
of submanifolds (immersed injectively) of dimension n − q, which is locally trivial.

More precisely

Definition 1.1. (1) A codimension q foliation of an manifold Mn is a family F = {Lα}α∈I

of n − q-dimensional connected, injectively immersed submanifolds that satisfy

1.

Lα ∩ Lβ 6= ∅ iff. α = β and
⋃

α∈I

Lα = M.

2. For all p ∈ M there exist open U 3 p and a diffeomorphism

ϕ : U → Rn = Rn−q × Rq,

such that for all α ∈ I

ϕ((U ∩ Lα)conn. comp.) = {x; xn−q+1 = cn−q+1, . . . , xn = cn},

cj = constant, j = n − q + 1, . . . , n.

Example 1.2. 1. Fibrations.

2. Surjective submersions.
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3. The Kronecker foliation of T = S1 × S1, S1 = R/Z.

Solutions of differential equation d y = λ d x with λ = tan(θ) fixed. If a slope is rational
then we get a closed curve - closed leaves of foliation. If λ /∈ Q then leaves are dense -
they are immersions of R which is not closed manifold.

Rough quotient space M/F . Two points are equivalent if and only if they belong to the
same leaf. In the Kronecker foliation, when leaves are dense, we get a noncommutative
torus.

4. The 1-dimensional Reeb foliation of T.

PICTURE

5. The 2-dimensional Reeb foliation of a solid torus D2 × S1.

In the universal cover D2 × R → D2 × S1

PICTURE

We rotate these curves along vertical axis and define relation (x, y, z) ∼ (x, y, z + 1).
We have one closed leaf (boundary) and rest are open leaves (images of not closed
manifolds).

6. The 2-dimensional Reeb foliation of S3.

S3 = D2 × S1
∐

S1 × D2/ ∼

S3 = { (x1, x2, x3, x4) ∈ R4
∣∣ x2

1 + x2
2 + x2

3 + x2
4 = 1}

The two tori in above decomposition are

{x ∈ S3
∣∣ x2

1 + x2
2 6

1

2
}

{x ∈ S3
∣∣ x2

1 + x2
2 >

1

2
}

We put on each torus Reeb’s foliation from preceeding example.

The notion of foliation is interesting for two reasons:

1. the definition is multifaceted

2. it gives rise to an interesting equivalence relation on M , which in turn gives rise to an
interesting quotient “space” M/F .

1.2 Equivalent definitions

Definition 1.3 (Manifold reformulation). There exists covering of M by charts (Ui, ϕi)
such that ϕ(Ui) = Vi × Wi, where Vi and Wi are open subsets of Rn−q and Rq, respectively,
with the property that if Ui ∩ Uj 6= ∅ then the diffeomorphism

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is of the form

(x, y) 7→ (hij(x, y), gij(y)), gij : W ◦
i → W ◦

j .
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Definition 1.4 (1-cocycle reformulation). There exists collection (Ui, fi, gij), where (Ui)
is a covering of M , fi : Ui → Wi are surjective submersions onto open q-dimensional mani-
folds, gij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj) - diffeomorphisms satisfying

fi = gij ◦ fj on Ui ∩ Uj and gij ◦ gjk = gik on Ui ∩ Uj ∩ Uk.

Definition 1.5. Let (M,F) be manifold with foliation. The tangent bundle to F is

τF := {X ∈ TM
∣∣ X tangent to a leaf }.

Let S(τF) denote the space of smooth sections of this bundle. Clearly this is an involutive
sub-bundle, i.e.

[S(τF),S(τF)] ⊂ S(τF).

because this is local property, obvious on charts.
Conversely by Thm. of Frobenius we can take another

Definition 1.6. Any involutive subbundle E ⊂ TM is the tangent bubdle to a unique folia-
tion.

Equivalently we can say

Definition 1.7. The ideal I(E) generated by the sections of

νF = {ω ∈ T ∗M
∣∣ ∀X ∈ τF ω(X) = 0}

is closed under d, i.e. I(E) is a differential ideal.

1.3 Holonomy grupoid

Let x, y ∈ L ⊂ M be points in a leaf of foliation, γ : [0, 1] → M - path from x to y contained
in L.

PICTURE
Let W -transversal through x = ϕ−1(x1 = c1, . . . , xn−q = cn−q). If x′ is close to x one

can copy γ to γ′, at least for a while. By the compactness of γ, there exists transversal
Tx ⊂ W such that we reach transversal Ty through y, starting from any x′ ∈ Tx, and such
that x′ 7→ y′ = γ′(1) is a diffeomorphism hγ . We define holonomy of path γ as

Hol(γ) := germ of hγ : germ of Tx → germ of Ty

Obviously if γ1 ∼ γ2 are homotopic, then Hol(γ1) = Hol(γ2), i.e. holonomy factors
through homotopy.

Recall that grupoid is a small category with all arrows invertible.

Definition 1.8. Holonomy grupoid

G(F) := { (x,Hol(γ), y)
∣∣ ∃ leaf L 3 x, y, and path γ : [0, 1] → L from x to y}

with objects
G0 = M

and composition
(y, Hol(δ), z) ◦ (x,Hol(γ), y) = (z, Hol(δ ◦ γ), z).
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Interpretation:

• (x,Hol(const), x) “reflexibility” = unit,

• (x,Hol(γ), y) = (y, Hol(γ−1), x) “symmetry”= inverse,

• (y, Hol(δ), z) ◦ (x,Hol(γ), y) = (x,Hol(δ ◦ γ), z) “transitivity”= composition.

Let T be a complete transversal to F i.e. T is an immersed submanifold, transverse to
each leaf and intersecting each leaf at least once.

GT (F) = { (x,Hol(γ), y) ∈ G(F)
∣∣ x, y ∈ T}

C∞
c (GT (F)) ↪→ C∗(GT (F))

(f ∗ g)(Hol(γ)) =
∑

Hol(γ1)Hol(γ2)=Hol(γ)

f(Hol(γ1))g(Hol(γ2))

1.4 How to handle “M/F”

“M/F ′′ = grupoid G(F)

(A) “Homotopy quotient” approach, or equivalently via classifying spaces. This is similar
in spirit to

“M/Γ′′ ↔ M ×Γ E Γ → B Γ,

where Γ is a group.
“M/F ′′ ∼ BG(F) → BΓq

(B) “Topos” approach, by extending “duality”

Topological spaces ↔ Sheaves of sets,

and associating a suitably defined topos to G(F).

(C) Connes noncommutative geometry approach, by extending the duality

Topological spaces ↔ Commutative C*-algebras,

to include C∗(G), for G-grupoid.

1.5 Characteristic classes

All approaches produce cohomology groups for grupoids, equivalent for (A) & (B), and cyclic
cohomology HC∗ for (C), as well as characteristic maps. They are all “huge” and not well
understood. The ones which are best understood are the “geometric” characteristic classes.

1. Bott’s construction a la Chern-Weil.

2. Gelfand-Fuks realization.

3. Hopf-cyclic cohomological construction.
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Chapter 2

Characteristic classes

2.1 Preamble: Chern-Weil construction of Pontryagin ring

Let

E → M

be a real vector bundle. A connection on E is a linear operator

∇ : S(E) → S(T ∗M ⊗ E) = Ω1(M) ⊗ S(E)

satisfying following rule

∇(fs) = df ⊗ s + f∇(s).

Then ∇ extends to a graded Ω(M)-module map

∇ : Ω∗(M) ⊗ S(E) → Ω∗(M) ⊗ S(E) = Ω∗(M, E), by

∇(ω ⊗ s) = dω ⊗ s + (−1)deg ωω∇(s).

The Curvature of ∇: we can view Ω∗(M, E) as a module over Ω∗(M) and then for any
ζ ∈ Ω∗(M, E) and any ω ∈ Ω∗(M) we have

∇2(ωζ) = ∇(dωζ + (−1)∂ωω∇(ζ)) =

= (−1)∂ω+1dω∇(ζ) + (−1)∂ωdω∇(ζ) + ω∇2(ζ) = ω∇2(ζ).

It means that ∇2 is a local operator - multiplication by an element of the base ring. It follows
that

∇2(ζ) = R · ζ, R ∈ Ω2(M, End(E)).

We call R a curvature form.

Explicit expression in terms of covariant derivative:

X − vector field ,∇X(s) = ∇s(X)

∇X : S(E) → S(E).

Let {Xi} be basis of TM, i.e. linearly independent vector fields, {ωi} - its dual basis of
1-forms. Then

∇(s) =
∑

i

ωi ⊗∇Xi
(s), hence
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∇2(s) =
∑

i

dωi ⊗∇Xi
(s) −

∑

i

ωi∇(∇Xi
(s)) =

=
∑

i

dωi ⊗∇Xi
(s) −

∑

i,j

ωi ∧ ωj∇Xj
∇Xi

s.

Where the second sum could be written as

∑

i,j

ωi ∧ ωj∇Xj
∇Xi

s =
∑

i<j

ωi ∧ ωj [∇Xj
,∇Xi

]s.

Write

dωi =
∑

j<k

f i
jkω

j ∧ ωk,

with f i
jk = dωi(Xj , Xk) = −ωi([Xj , Xk]). With that, we can rewrite first sum as

∑

i

dωi ⊗∇Xi
(s) = −

∑

j<k

∑

i

ωi([Xj , Xk])ω
j ∧ ωk ⊗∇Xi

(s) =

= −
∑

j<k

ωj ∧ ωk ⊗∇P
i ωi([Xj ,Xk])Xi

(s) =

= −
∑

j<k

ωj ∧ ωk ⊗∇[Xj ,Xk](s).

We just proved

Lemma 2.1.

∇2s =
∑

j<k

ωj ∧ ωkRXj ,Xk
(s) = R · s,where

RX,Y = [∇X ,∇Y ] −∇[X,Y ] ∈ End(E), and

R =
∑

j<k

RXj ,Xk
ωi ∧ ωk.

For any Lie algebra g of a Lie group G, we denote by I(g) set of polynomials on g which
are invariant under adjoint action AdG. For

P ∈ Sym(g∗ ⊗ . . . ⊗ g∗)

it means that

P (Ad(g)x1, . . . ,Ad(g)xr) = P (x1, . . . , xr), where

Ad(g)(a) = gag−1.

Let gln(R) be the Lie algebra of GLn(R). The set I(gln) is in fact ring, and is generated by
elements

P2k(A) = P2k(A, . . . , A) = tr(Ak).

Theorem 2.2 (Chern-Weil). Let P ∈ I(gln(R)) be an invariant polynomial of degree k, R
- curvature of connection ∇ on real vector bundle E → M .

1. Then P (R) = P (R, . . . , R) ∈ Ω2k(M) is closed and its de Rham cohomology class is
independent of the connection.
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2. More precisely, if ∇0, ∇1 are two connections, then

P (R1) − P (R0) = k · d

∫ 1

0
P (α, Rt, . . . , Rt)dt,

where α ∈ Ω1(M, End(E)) is the difference α = ∇1 −∇0, and Rt is the curvature of a
connection ∇t = (1 − t)∇0 + t∇1.

Proof. It is based on the two lemmas.

Lemma 2.3. If deg(P ) is odd, then P (R) = 0 for any metric connection.

Proof. By hypothesis we have using Euclidean structure (E, 〈−,−〉)

X〈s, t〉 = 〈∇Xs, t〉 + 〈s,∇Xt〉.

This implies
XY 〈s, t〉 = X(〈∇Y s, t〉 + 〈s,∇Y t〉) =

〈∇X∇Y s, t〉 + 〈∇Y s,∇Xt〉 + 〈∇Xs,∇Y t〉 + 〈s,∇X∇Y t〉,

and
[X, Y ]〈s, t〉 = 〈[∇X ,∇Y ]s, t〉 + 〈s, [∇X ,∇Y ]t〉 =

= 〈∇[X,Y ]s, t〉 + 〈s,∇[X,Y ]t〉.

We can write then
〈RX,Y s, t〉 + 〈s, RX,Y t〉 = 0, i.e.

R + Rt = 0, and P (R) = P (Rt, . . . , Rt) = (−1)kP (R).

Lemma 2.4. For ω ∈ S(M, End(E)) one has

d(trω) = tr[∇, ω].

Proof. Locally, on a chart U we have ∇ = d + α, α ∈ Ω1(U,End(E)). Hence

[∇, ω] = [d + α, ω] = dω + [α, ω], and

tr[∇, ω] = tr dω + tr[α, ω] = d(trω).

In particular (Bianchi’s identity)

d tr(Rk) = tr[∇, Rk] = tr[∇,∇2k] = 0.

This gives proof of the first part, because polynomials of the form tr(Rk) generate I(gln(R)).
For the second part, note that if ∇t = (1 − t)∇0 + t∇1, we have

d

dt
(Rt) =

d

dt

(
∇2

t

)
=

d

dt
(∇t)∇t + ∇t

d

dt
∇t =

=

[
d

dt
∇t,∇t

]
= [α,∇t] = [∇t, α],

where α = ∇1 −∇0. Now

d

dt
tr(Rk

t ) = tr

(
d

dt
Rk

t

)
= k tr

(
dRt

dt
Rk−1

t

)
=

= k tr
(
[∇t, α]∇

2(k−1)
t

)
= k tr([∇t, α∇

2(k−1)
t ]) = kd tr(αRk−1

t ).
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2.2 Adapted connection and Bott’s theorem

Let E ⊂ TM be an involutive subbundle and let Q = TM/E with π : TM → Q be the
projection.

Definition 2.5. An adapted (or E-flat) connection on Q is a connection ∇ such that

∇Xπ(Z) = π([X, Z]), ∀X ∈ S(E).

This makes sense, since

∇fXπ(Z) = π([fX, Z]) = −π(Z(f)X) + fπ([X, Z]) = f∇Xπ(Z), and

∇X(fπ(Z)) = π([X, fZ]) = π(X(f)Z) + fπ([X, Z]) = X(f)π(Z) + f∇X(π(Z)).

To construct such a connection, take a decomposition TM = E ⊕ Q and set

∇Xπ(Z) = ∇XE
π(Z) + ∇X

E⊥
(Z) =

= π([XE , Z]) + ∇X
E⊥

(Z)

where we take an arbitrary connection on E⊥.

Lemma 2.6. For any adapted connection

RX,Y = 0, ∀X, Y ∈ S(E).

Proof.
RX,Y π(Z) = (∇X∇Y −∇Y ∇X −∇[X,Y ])(π(Z)) =

π([X, [Y, Z]] − [Y, [X, Z]] − [[X, Y ], Z]) = 0.

Theorem 2.7 (Bott’s vanishing theorem). Given E ⊂ TM which is involutive, we have
for Q = TM/E, dimQ = q

Pont>2q(Q) = 0.

Proof. Let
P2k(A) := tr(Ak).

Then for
R =

∑

i<j

RXi,Xj
ωi ∧ ωj

we have

P2k(R) = tr(Rk) =
∑

tr(RXi1
,Xj1

, . . . , RXi2k
,Xj2k

)ωi1 ∧ ωj1 ∧ . . . ∧ ωi2k ∧ ωj2k .

If k > q, at least one pair belongs to E, otherwise

ωi1 ∧ . . . ∧ ωi2k = 0.

Remark 2.8.
Pont(Q) = Pont(TM ª E),

hence the above is a restriction of [E] ∈ K0(M).
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2.3 The Godbillon-Vey class

Let F be a codimension q foliation of Mn, E = τF , Q = TM/E. First, assume that F is
transversaly orientable i.e. ΛqQ has nowhere zero section (giving trivialization ΛqQ ∼=
M × R).

Lemma 2.9. Let Ω be nonvanishing section of ΛqQ. Then

dΩ = α ∧ Ω

for some α ∈ Ω1(M, End(E)).

Proof. It suffices to prove it locally, then patch by partition of unity.
On a chart U , choose a basis ω1, . . . , ωq ∈ I(E) such that

Ω = ω1 ∧ . . . ∧ ωq,

dωi =

q∑

j=1

αij ∧ ωj

Then

dΩ =

q∑

i=1

(−1)iω1 ∧ . . . ∧ dωi ∧ . . . ∧ ωq =

=

q∑

i=1

(−1)iω1 ∧ . . . ∧




q∑

j=1

αij ∧ ωj


 ∧ . . . ∧ ωq

Only αii ∧ ωi can contribute to the sum, so

dΩ =

(
q∑

i=1

αii

)
∧ Ω.

Lemma 2.10. For all α as above (dα)q+1 = 0.

Proof.
0 = d2Ω = dα ∧ ω − α ∧ dΩ = dα ∧ Ω + α ∧ α ∧ Ω = dα ∧ Ω.

Write dα using basis of 2-forms extending {ω1, . . . , ωq}

dα =
∑

16i<j6n

fijωi ∧ ωj .

Now take exterior product with Ω = ω1 ∧ . . . ∧ ωq

∑

16i<j6n

fijωi ∧ ωj ∧ ω1 ∧ . . . ∧ ωq = 0.

If at least one of i, j ∈ {1, . . . , q} then corresponding summand is 0. Hence

∑

q+16i<j6n

fijωi ∧ ωj ∧ ω1 ∧ . . . ∧ ωq = 0,
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so

fij = 0 for q + 1 6 i < j 6 n.

Now we can write

dα =
∑

i<j; at least one 6q

fijωi ∧ ωj =

q∑

j=1

αj ∧ ωj ∈ S(E),

and

(dα)q+1 =
∑

fi1j1 . . . fiq+1jq+1ωi1 ∧ ωj1 ∧ . . . ∧ ωiq+1 ∧ ωjq+1 = 0.

We just proved that form η = α ∧ (dα)q is closed.

Lemma 2.11. The class

[η] ∈ H2q+1(M, R)

is independent on all choices involved in definition.

Proof. First assume that Ω′ = fΩ for f > 0 everywhere. Then

dΩ′ = fdΩ + dfΩ = fα ∧ Ω + df ∧ Ω = α ∧ Ω′ +
df

f
∧ Ω′ =

= (α + d(log f)) ∧ Ω′ = α′ ∧ Ω′.

Hence

Ω′ ∧ (dΩ′)q = (α + d(log f)) ∧ (dα)q = α ∧ (dα)+d(log(f)(dα)q),

so η and η′ = α′ ∧ (dα′) differ by boundary.

Now assume that dΩ = α′ ∧ Ω, β = α − α′ sucht that β ∧ Ω = 0. Hence β ∈ S(E), and
recall that also dα, dα′ ∈ S(E). Then we have

η′ = α′ ∧ (dα′)q = (α + β) ∧ ((dα)q + dβ ∧ σ)

with

σ =

q−1∑

i=0

ci(dαi) ∧ (dβ)q−i−1 ∈ S(E)q−1, and dσ = 0.

Then

α′ ∧ (dα′)q = α ∧ (dα)q + α ∧ dβ ∧ σ + β ∧ (dα)q + β ∧ dβ ∧ σ,

where the last two summands belong to S(E)q+1 = 0, so in fact we have

α′ ∧ (dα′)q = α ∧ (dα)q + α ∧ dβ ∧ σ =

= α ∧ (dα)q + α ∧ d(β ∧ σ) = α ∧ (dα)q − d(α ∧ β ∧ σ) + dα ∧ βσ,

where the last summand is from S(E)q+1 = 0. Again we see, that η′ − η is a boundary.

Definition 2.12. The class gv(F) := [η] ∈ H2q+1(M ; R) is called Godbillon-Vey class of
a manifold with foliation (M,F).
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Remark 2.13. Nonorientable case. Lift F to F̃ in M̃ = orientable double covering with γ=
the generator of Z/2. Replacing Ω̃ by 1

2(Ω̃ − γ∗Ω̃) 6= 0 if needed, we can always assume

γ∗(Ω̃) = −Ω̃.

Then

dΩ̃ = α̃ ∧ Ω̃, and d(γ∗Ω̃) = γ∗(α̃) ∧ γ∗(Ω̃).

Hence

dΩ̃ = γ∗(α̃) ∧ Ω̃, and

1

2
(α̃ + γ∗(α̃))

drops down to M.

2.4 Nontriviality of Godbillon-Vey class

On G = SL(2, R), with TG ' G × g, (g - Lie slgebra of G = traceless matrices) take the
foliation given by the subbundle E generated by the left invariant vector fields corresponding
to

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
,

with

[X, H] =

(
0 −1
0 0

)
−

(
0 1
0 0

)
= −2X.

The third basis element is

Y =

(
0 0
1 0

)
,

with

[Y, H] = 2Y, [X, Y ] = H.

Take the dual basis {ζ, η, χ} of g∗ and extend them as left-invariant 1-forms. Then η
defines F (i.e. E = ker η). One has

dχ = aχ ∧ ζ + bχ ∧ η + cζ ∧ η,

b = dχ(H, Y ) = −χ([H, Y ]) = 2χ(Y ) = 0

c = dχ(X, Y ) = −χ([X, Y ]) = −χ(H) = −1

a = dχ(H, X) = χ([X, H]) = −2χ(X) = 0,

hence

dχ = −ζ ∧ η.

Similarly

dζ = −2χ ∧ ζ,

dη = 2χ ∧ η.

The last implies

α = 4χ ∧ dχ = −4χ ∧ ζ ∧ η.
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The form α drops down to M = Γ \ G for any Γ cocompact giving a volume form, hence

[αΓ] = generator of H3(M ; R).

More precisely, let Σg be the Riemann surface of genus g > 2. Then its universal cover is
the upper half plane

H = SL(2, R)/ SO(2),

on which Γ = π1(Σg) acts by Mobius transformation

Γ ⊂ PSL(2, R), z 7→
az + b

cz + d
.

Let Γ̃ be the double cover of Γ. Then Γ̃ is cocompact. Morover M ' S1Σg (unit tangent
bundle), hence

[αΓ]([M ]) = 4

∫

S1Σg

ζ ∧ η ∧ χ = 4π

∫

Σg

ζ ∧ η = 4π Area(Σg) =

= −4π

∫

Σg

Kdσ = −8π2(2 − 2g).

2.5 Naturality under transversality

Let φ : N → M , E ⊂ TM integrable subbundle, F- codimension q foliation, τF = E.
If V → M is a vector bundle, then for each invariant polynomial P ∈ I(glq(R)) of degree

k, we have a class P (V ) ∈ H2k(M ; R). It behaves naturally with respect to pullback

φ∗(V ) - V

N
? φ - M

π

?

P (φ∗(V )) = φ∗(P (V )).

By Bott’s vanishing theorem (2.7), all classes for Q = TM/E are 0 if k > q. The
Godbillon-Vey class gv(M,F) ∈ H2q+1(M ; R) is a nontrivial invariant.

Definition 2.14. We say that φ is transversal to E (or to F), φtE, if for each x ∈ N

Tφ(x)M = φ∗(TxN) ⊕ Eφ(x).

Equivalently
π ◦ φ∗x : TxN → Tφ(x)M/E

is surjective.

Lemma 2.15. Ẽ := φ−1
∗ (E) is involutive, hence defining a foliation F̃ = φ−1(F), whose

leaves are the connected components of φ−1(L), L ⊂ F .

Proof. (Short) Let E = τF be given by a cocycle {(Ui, fi, gij)
∣∣ i, j ∈ I}, fi : Ui → Rq

submersions, gij : fj(Ui ∩ Uj)
'
−→ fi(Ui ∩ Uj). Then {(φ−1(Ui), fi ◦ φ, gij)

∣∣ i, j ∈ I} define

F̃ .

13



Proof. (More useful) Any map φ can be decomposed as a composition

N
id×φ
−−−→ N × M

prM−−→ M,

x 7→ (x, φ(x)); (x, y) 7→ y.

It is sufficient to prove the lemma for

(a) id×φ - injective immersion,

(b) prM - projection.

For each map in this composition the statement is obvious.

(a) Ẽ = E ∩ TN ,

(b) Ẽ = TN ⊕ E.

Definition 2.16. A characteristic class for foliation F is an assignment

(M,F) 7→ γ(M,F) ∈ H∗(M ; R)

such that if φ : N → M is transversal to F , then

γ(N, φ∗(F)) = φ∗(γ(M,F)).

Example 2.17. If (M,F) is transversally oriented, i.e. there exists nowhere zero section Ω of
ΛqQ, then we have Godbillon-Vey class. On local chart U

Ω = ω1 ∧ . . . ∧ ωq, {ω1, . . . , ωq} − generators of S(E
∣∣
U
),

dΩ = α ∧ Ω, gv(M,F) = [α ∧ (dα)q] ∈ H2q+1(M ; R).

For φ : N → M

{φ∗(ω1), . . . , φ
∗(ωq)} − generators of S(φ∗(E)

∣∣
φ−1(U)

)

and therefore

dφ∗(Ω) = φ∗(dΩ) = φ∗(α) ∧ φ∗(Ω),

and thus

gv(N, φ∗(F)) = φ∗(α) ∧ (dφ∗(α))q = φ∗(α ∧ (dα)q) = φ∗(gv(M,F)).

Example 2.18. Pontryagin classes are characteristic classes of for foliation, since for P ∈
Ik(glq(R)) we have

P (φ∗(F)) = φ∗(P (F)),

where P (F) = P (Q) for Q = TM/τF .
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2.6 Transgressed classes

Let (M,F) be a manifold with foliation, ∇0,∇1 two connections on Q = TM/E, E = τF .
Then

∇1 −∇0 = α ∈ Ω1(M, End(E)).

Let ∇t := t∇1 + (1 − t)∇0 be linear homotopy between connections, and R0, R1, Rt corre-
sponding curvatures. Then by the theorem of Chern-Weil (2.2) for P ∈ Ik(glq(R))

P (R1) − P (R0) = dTP (∇1,∇0), where

TP (∇1,∇0) := k

∫ 1

0
P (α, Rt, . . . , Rt)dt.

Let ∇1 = ∇[ be the E-flat connection (or Bott connection) (def. (2.5)), i.e.

∇[
X(π(Y )) = π([X, Y ]), ∀X ∈ S(E), π : TM → TM/E = Q.

The corresponding curvature satisfies (lemma (2.6))

R[(X1, X2) = 0, ∀X1, X2 ∈ S(E).

As a second connection ∇0 we take metric (or Riemannian) connection ∇], i.e.

X〈s1, s2〉 = 〈∇]
Xs1, s2〉 + 〈s1,∇

]
Xs2〉,

for s1, s2 ∈ S(Q). Then

• P (R[) = 0 if k > q, by Bott’s theorem (2.7),

• P (R]) = 0 if k is odd, by lemma (2.3).

In particular for k > q odd form TP (∇[,∇]) is closed, dTP (∇[,∇]) = 0, so

TP (M,F) := [TP (∇[,∇])] ∈ H2k−1(M, R).

Definition 2.19. We call TP (M,F) a transgressed class.

Proposition 2.20. For foliation F on a manifold M and P ∈ Ik(glq(R)), k > q =

dimTM/τF , class [TP (M,F)] ∈ H2k−1(M ; R) is independent of choices ∇[ and ∇], and
therefore is an invariant of foliation.

Proof. Let i∇[, i∇], i = 0, 1 be two different choices of connections, and let

t∇[ := ψ(t)1∇[ + (1 − ψ(t))0∇[,

t∇] := ψ(t)1∇] + (1 − ψ(t))0∇],

where in both cases ψ : [0, 1] → [0, 1] is a smooth function such that ψ ≡ 0 near 0 and ψ ≡ 1
near 1.

Now take the bundle Ẽ = E⊕R on M ×R (as a integrable bundle of foliation on M ×R).

On the quotient pr∗M (Q) we define the connections ∇̃[ and ∇̃].

pr∗M (Q) = T (M ⊕ R)/Ẽ Q = TM/τF

M × R
? prM - M

?

15



Sections of bundles over M × R can be represented as follows

S(T (M × R)) = {f(x, s)Y + g(x, s)
∂

∂s

∣∣ Y ∈ S(TM), f, g ∈ C∞(M × R)}.

S(pr∗M (Q)) = {f(x, s)π(Y )
∣∣ Y ∈ S(TM), π : TM → Q, f ∈ C∞(M × R)}

It suffices to define
∇̃(X, ∂

∂t
)(π(Y )) :=s ∇X(π(Y )).

for ∇̃ = ∇̃[ or ∇̃].
We have

∇̃X(f(x, s)π(Y )) = X(f)π(Y ) + fs∇X(π(Y )),

∇̃ ∂
∂s

(f(x, s)π(Y )) =
∂f

∂s
π(Y ),

where s∇[ = s0∇[ + (1− s)0∇[, s∇] = s0∇] + (1− s)0∇]. Using inclusions is : M → M ×R,
is(x) = (x, s), we can write

i∗0(R̃
[) =0 R[, i∗1(R̃

[) =1 R[

and analogously for ∇], R]. Similarly

i∗0(α̃) =0 α, i∗1(α̃) =1 α

for corresponding differences 0α =0 ∇[ −0 ∇] and 1α =1 ∇[ −1 ∇]. Hence

i∗0(TP (∇̃[, ∇̃])) = TP (0∇[,0 ∇]), and

i∗1(TP (∇̃[, ∇̃])) = TP (1∇[,1 ∇]).

Note that ∇̃[ is Ẽ-flat, and ∇̃] is Riemannian for pr∗M (Q).
The proof is completed by the elementary lemma (homotopy invariance of de Rham

cohomology)

Lemma 2.21. Let ω ∈ Ωk(M × R), dω = 0. Then i∗1(ω) − i∗0(ω) is exact.

Proof. We can write
ω = π∗(α) ∧ f(x, t)dt + g(x, t)π∗(β),

with α ∈ Ωk−1(M), β ∈ Ωk(M).
One has

L∂t
(ω) = dι∂t + ι∂tdω = L∂t

(ω) = d((−1)k−1f(x, t) pr∗M (α)) =

= (−1)k−1f(x, t)d pr∗M (α) + pr∗M (α) ∧ dxf + pr∗M (α) ∧ ∂tfdt,

where ∂t := ∂
∂t . On the other hand

L∂t

∣∣
s=t0

(ω) =
∂

∂s

∣∣
s=t0

(is(pr∗M (α) ∧ f(x, t)dt + g(x, t) pr∗M (β))) =

= ∂tf(x, t)
∣∣
t0

pr∗M (α) ∧ dt + ∂tg(x, t)
∣∣
t0

pr∗M (β).

Comparing both sides one gets

∂tg(x, t) ∧ pr∗M (β) = (−1)k−1(f(x, t)d pr∗M (α) + dxf(x, t) ∧ pr∗M (α)) =
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= (−1)k−1dx(f(x, t) pr∗M (α)).

Hence

g(x, 1) pr∗M (β) − g(x, 0) pr∗M (β) = (−1)k−1dx

(∫ 1

0
f(x, t)dt · pr∗M (α)

)
,

so

i∗1(ω) − i∗0(ω) = d

(
(−1)k−1

∫ 1

0
f(x, t)dt · α

)
.

Proposition 2.22. For any P ∈ Ik(gln(R)) with k > q odd, TP (MF) is a characteristic
class.

Proof. It is sufficient to prove the naturality in two special cases

1. i : N → M is injective immersion,

2. p : N × M → M a projection.

Case. 1 We have i∗(E) = E ∩ TN , i∗(Q) = Q
∣∣
N

, hence ∇[, ∇] restrict to the same kind of
connections. Thus one has

TP (N, i∗(F)) = i∗(TP (M,F)).

Case. 2 We lift ∇[, ∇] to the same kind of connections on N × M . R̃t = p∗(Rt), α̃ = p∗(α).

Definition 2.23. Two vector bundles E0, E1 ⊂ TM of codim = q are transversaly homotopic
if there exists Ẽ ⊂ T (M × R) of codim = q, such that

1. Ẽ is involutive,

2. Ẽ is transversal to M × {0} and M × {1},

3. i∗0(Ẽ) = E0 and i∗1(Ẽ) = E1.

Proposition 2.24. The class TP (M,F) depends only on transverse homotopy class of foli-
ation F .
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Chapter 3

Weil algebras

3.1 The truncated Weil algebras and characteristic homomor-
phism

The set of invariant polynomials I(glq(R)) is generated by P2k(A) := tr(Ak), A ∈ glq(R).
Alternatively we have

det(I + tA) =

q∑

i=0

ci(A)ti.

Coefficients ci(A) are symmetric functions of eigenvalues. If

A ∼




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λq




then

det(I + tA) = (1 + tλ1)(1 + tλ2) . . . (1 + tλq) =

= 1 + t(λ1 + λ2 + . . . + λq) + t2(
∑

λiλj) + . . . + tqλ1λ2 . . . λq.

c(A) := det(I + A) = 1 + c1(A) + . . . + cq(A),

c(A ⊕ B) = c(A)c(B).

The set I(glq(R)) can be presented as polynomial ring

I(glq(R)) = R[c1, . . . , cq].

For manifold with foliation (M,F), Q = TM/E, E = τF , we have

ck(R
[) = 0, ∀k > q.

Moreover for each P ∈ Rk[c1, . . . , cq], k > q

P (R[) = 0 ∈ Ω2k(M).

Define

R[c1, . . . , cq]q := R[c1, . . . , cq]/(weight > 2q), deg(ci) = 2i.
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For any connection ∇ on E we have a map

λE(∇) : R[c1, . . . , cq] → Ω•(M),

λE(∇)(P ) := P (∇2).

Proposition 3.1. 1. λE(∇[) annihilates all polynomials of degree > q, so it induces a
map

λE(∇[) : R[c1, . . . , cq]q → Ω•(M).

2. λE(∇]) annihilates all polynomials of odd degree, in particular

λE(∇])(c2i−1) = 0.

3. There is a third map

TλE(∇[,∇]) : R[c1, . . . , cq] → Ω∗(M)

satisfying
dTλE(∇[,∇])(P ) = λE(∇[)(P ) − λE(∇])(P ).

In particular
dTλE(∇[,∇])(c2i−1) = λ(∇[)(c2i−1).

This can be summarized in the following cochain complex. First form a differential graded
algebra (DGA)

WOq := Λ〈u1, u3, . . . , u2l−1〉 ⊗ R[c1, . . . , cq]q,

where the first algebra in the tensor product is an exterior algebra generated by elements u2i−1

of degree 4i− 3, and l is maximal integer such that 2l − 1 6 q. Generators of second algebra
cj have degree 2j, and this is a quotient of polynomial algebra by the ideal of polynomials of
degree > q (weight > 2q). Now define d : WOq → WOq as the differenital of degree 1 given
on generators by the formula

du2i−1 = c2i−1, 1 6 i 6 l,

dcj = 0, 1 6 i 6 q.

Definition 3.2. Define a map λE : WOq → Ω•(M) by

λE(u2i−1) := TλE(∇[,∇])(c2i−1),

λE(cj) := λE(∇[)(cj), 1 6 j 6 q.

Then λE : WOq → Ω•(M) is a map of DGA’s, hence it induces a map

λ∗
E : H∗(WOq) → H∗(M ; R)

of cohomology algebras.

We call λ∗
E a characteristic map in analogy to

χE : H∗(B GLn(R)) = I(gln(R)) → H∗(M ; R)

for a n-dimesional vector bundle E → M .
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Theorem 3.3 (Bott). 1. λ∗
E depends only on E, and not on the choice of connections.

2. λ∗
E is natural, i.e. for φ : N → M , φtF , one has

λ∗
φ∗(E) = φ∗ ◦ λ∗

E .

3. λ∗
E depends only on the transverse homotopy class of E (def. (2.23)).

Proof. Theorem has essentially been proved.

1. This has been proved in proposition (2.20).

2. This has been proved in proposition (2.22).

3. The same proof as in proposition (2.20) and lemma (2.21) with ∇̃t on M × I inducing
∇0

t on E0 and ∇1
t on E1.

Example 3.4 (WO1 and Godbillon-Vey class). For q = 1 we have

WO1 = Λ〈u1〉 ⊗ R[c1]1,

hence {1, u1, c1, u1c1} form a R-basis and du1 = c1, dc1 = 0. Clearly

H0(WO1) = R · 1,

H1(WO1) = 0,

H2(WO1) = 0,

H3(WO1) = R · u1c1.

Let (M, E) be a manifold with codim = 1 foliation F , τF = E, and assume that Q = TM/E
is trivializable (i.e. E transversaly oriented).

λE(c1) = λE(∇[)(c1),

λE(u1) = TλE(∇[,∇])(c1).

Let Ω ∈ Ω1(M) be the orientation form of Q∗, so E = ker Ω. Let Z be a vector field with
Ω(Z) = 1, which gives trivialization of Q. Then

TM = E ⊕ RZ.

Let Ω be defined by
Ω(X) = 0, for X ∈ E,

Ω(Z) = 1.

Then
dΩ = α ∧ Ω, α ∈ Ω1(M).

Form α defines a Bott connection by

∇[(π(Z)) = −α ⊗ π(Z),

∇[
X(π(Z)) = −α(X)(π(Z)) = π([X, Z]).
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Indeed, one has for all X ∈ E

dΩ(X, Z) = −Ω([X, Z]) = −Ω(π([X, Z])), and

α ∧ Ω(X, Z) = α(X)Ω(Z) − α(Z)Ω(X) = α(X).

Thus

α(X) = −Ω(π([X, Z])).

Godbillon-Vey class is a class of α ∧ dα in H3(M ; R). One the other hand one has

(∇[)2(π(Z)) = ∇[(−α ⊗ π(Z)) = −dα ⊗ π(Z) + α ∧ α ⊗ π(Z) =

= dα ⊗ π(Z),

hence

R[ = dα, so

λE(c1) = dα.

Define a Riemannian connection on Q by

∇]
X(π(Z)) = 0, ∀X ∈ E,

∇]
Z(π(Z)) = 0, where ||Z|| = 1.

Then ∇[ −∇] = −α ∈ Ω1(M, End(Q)) = Ω1(M), hence

λE(u1) = TλE(∇[,∇])(c1) = −α.

This implies

λE(u1c1) = α ∧ dα = gv(M,F).

Proposition 3.5. If E = τF is of codim = q, transversally oriented, then

λE(u1c
q
1) = gv(E).

Proof. We have nonvanishing form Ω ∈ S((Q∗)q). Locally it can be written as

Ω = ω1 ∧ . . . ∧ ωq,

with {ω1, . . . , ωq}- generators of S(E). Write

dωi =
∑

j

αij ∧ ωj ,

and define ∇[ : S(Q) → S(T ∗M ⊗ Q) by

∇[(π(Zi)) = −
∑

j

αji ⊗ π(Zj),

where {Z1, . . . , Zq} is a dual basis to {ω1, . . . , ωq} on a complement of E. One has for all
X ∈ E

dωi(X, Zk) =
∑

j

(αij(X)ωj(Zk) − αij(Zk)ωj(X)).
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But

dωi(X, Zk) = −ωi([X, Zk]) = π([X, Zk]),

and on the right hand side we have only αik(X), so

π([X, Zk]) =
∑

i

αik(X)π(Zi),

while

∇[
X(π(Zk)) = −

∑

j

αjk(X)π(Zj) = π([X, Zk]),

hence it is a Bott connection. Its curvature is

(∇[)2(π(Zi)) = −
∑

j

∇[(αij ⊗ π(Zj)) =

= −
∑

j

dαji ⊗ π(Zj) +
∑

j

αji(−
∑

k

αkj ⊗ π(Zk)) =

= −
∑

k

(dαki −
∑

j

αkj ∧ αji)π(Zk),

i.e.

R = dα − α ∧ α.

This implies

c1(R) = tr(dα) − tr(α ∧ α) = tr(dα) = d(trα),

hence

c1(R)q = d(trα)q.

Take Riemannian connection given by an orthogonal matrix form

∇](π(Zi)) =
∑

j

βij ⊗ π(Zj).

Now

(∇[ −∇])(π(Zi)) =
∑

j

(αij + βij) ⊗ π(Zj),

hence

∇[ −∇] = −α − β, trβ = 0

so the transgressed form is

Tc1(α + β) = trα.

Now

gv(E) = [trα ∧ (tr(dα))q] = [u1c1(R)q].
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3.2 Wq and framed foliations

Definition 3.6. Differential graded algebra Wq

Wq := Λ〈u1, . . . , uq〉 ⊗ R[c1, . . . , cq]q

dui = ci, dci = 0, ∀i = 1, . . . , q.

These algebras are useful for foliation (M,F) with Q trivializable, when one can transgress
to a flat Riemannian connection and get

µE : Wq → Ω•(M),

µE(ui) := TλE(∇[,∇],0)(ci),

µE(ci) := λE(∇[)(ci).

Notation: for i1 < . . . < ir︸ ︷︷ ︸
I

, j1 6 . . . 6 js︸ ︷︷ ︸
J

we denote

uIcJ = ui1 . . . uircj1 . . . cjr .

Proposition 3.7. The elements

(a)
1 ∪ {uIcJ

∣∣ |J | 6 q, i1 + |J | > q, i1 6 j1}

form a basis of H∗(Wq).

(b)

1 ∪ {uIcJ

∣∣ ik odd , |J | < q, i1 + |J | > q, and

{
if r = 0 then all jk even,

if r 6= 0 then i1 6 minodd{jk}
}

form a basis of H∗(WOq).

Proof. (sketch)

Ad.(a)

d(uIcJ) =
r∑

k=1

(−1)k−1ui1 . . . duik . . . uircJ =

=
r∑

k=1

(−1)k−1ui1 . . . ûik . . . uircikcJ = 0,

because deg cikcJ > 2(|J | + i1) > 2q.

Ad.(b) If r = 0 then d(cJ) = 0. The case r 6= 0 is treated as above.

Consequences of (a) for H∗(Wq).

1.
deg(uIcJ) = (2i1 − 1) + . . . + (2ir − 1) + (2j1 + . . . + 2js) 6

6 2(1 + . . . + q) − q + 2|J | 6 q(q + 1) − q + 2q = q2 + 2q.

Hence
Hm(Wq) = 0, for m > q2 + 2q.
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2. On the other hand
deg(uIcJ) > 2|J | > 2q,

hence
Hm(Wq) = 0, for 1 6 m < 2q.

With a little more work we can elliminate m = 2q which can occur only if |I| even.

3. The product structure is trivial.

4. In H2q+1(Wq) the classes u1c
α1
1 . . . cαk

k with
∑k

i=1 αi = q are linearly independent

Similar conclusions hold for H∗(WOq):

1.
Hm(WOq) = 0, for m > q2 + 2q.

2. For m 6 2q one gets the Pontryagin classes

{1, p1, . . . , p[ q
2 ]
}.

3. The product structure is trivial in ’high degree’.

4. In H2q+1(WOq) the classes u1c
α1
1 . . . cαk

k with
∑k

i=1 αi = q are linearly independent.
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Chapter 4

Gelfand-Fuks cohomology

4.1 Cohomology of Lie algebras

Recall the formula for the exterior derivation

d : Ωp(M) → Ωp+1(M)

dω(X0, . . . , Xp) =

p∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xp)+

+
∑

i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).

H∗(Ω•(M), d) = H∗
dR(M ; R).

We can view Ω•(M) as a C∞(M) linear homomorphisms

Ω•(M) ' HomC∞(M)(Λ
•VM , C∞(M)),

where VM is a Lie algebra of vector fields on M with

[X, Y ] = XY − Y X.

More general context consists of

• g - a Lie algebra of finite dimension over a field k,

• A - g-module

• Cochains C•(g; A) := Homk(Λ
•g, A) with differential

d : Cp(g; A) → Cp+1(g; A),

given by the same formula as above.

• Cohomology

H∗(g; A) := H∗(C•(g; A), d).
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Relative Lie algebra cohomology is defined as follows. Let h ⊂ g be the Lie subalgebra.
Define relative cochains as

C•(g,h; A) := {c ∈ C•(g; A)
∣∣ ιXc = 0 and ιXdc = 0 ∀X ∈ h}.

By definition it is a subcomplex and its cohomology is

H∗(g,h; A) := H∗(C•(g,h; A), d).

Since
LX = dιX + ιXd, LXω = dιXω + ιXdω = 0,

alternatively we can put

C•(g,h; A) := {c ∈ C•(g; A)
∣∣ c basic i.e. ιXc = 0 and LXc = 0 ∀X ∈ h}.

One has
C•(g,h; A) = Homk(Λ

•(g/h), A)h.

Slightly more generally, if H is a Lie group with h = Lie(H), acting on g and A such that,
the differential of the action on g is adg h, then

C•(g, H; A) := {c ∈ HomH(Λ•g, A)
∣∣ ιXc = 0 ∀X ∈ h},

and its cohomology is
H∗(g, H; A).

Example 4.1. Let g := gln(R). Its complexification is gC := gln(C). We have

H∗(gC) = H∗(g) ⊗ C.

Also one has for un := Lie(U(n))

H∗(gln(R)) = H∗(un) = Λ〈u1, u3, . . . , u2l+1〉, l =
[n

2

]
.

Furthermore for g ∈ U(n) and k odd

d tr((g−1dg)k) = − tr((g−1dg)k+1) = 0.

The class uk := [tr((g−1dg)k)] is called a Chern-Simons class.

4.2 Gelfand-Fuks cohomology

Let VM be the algebra of vector fields on a manifold M , that is S(TM). C∞ topology on
VM is given by C∞ convergence on compacta of the local components (which are functions),
and their derivatives.

X =

n∑

i=1

f i ∂

∂xi
, f i ∈ C∞(M).

Definition 4.2. Define the Gelfand-Fuks cohomology as the cohomology of the algebra VM

continuous with respect to the C∞ topology on VM

H∗
GF (VM ) := H∗

cont(VM ; R).
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Here C•
cont(VM ; R) are continuous functionals on VM with respect to C∞ topology.

The remarkable fact [Gelfand-Fuks] is that H∗
GF is finite dimensional. An important step

in the proof of this is played by an algebra of formal vector fields on M

An := {X =
n∑

i=1

f i ∂

∂xi

∣∣ f i ∈ R[[x1, . . . , xn]]}.

The dual algebra of vector fields

V ∗
M := Homcont(VM , R)

consists of distributions with compact support. The notion of support makes sense for the
cochains

C•
cont(VM , R) := Λ•V ∗

M

and is preserved by
d : Λ•V ∗

M → Λ•+1V ∗
M .

In particular one can take for p0 ∈ M the subcomplex

Λ•V ∗
M,p0

:= distributions supported at p0.

Then V ∗
M,p0

is a real vector space spanned by ∇p0 and its partial derivatives

X =
n∑

i=1

f i ∂

∂xi

X 7→ (−1)|α|
∂|α|f i

∂xα
.

They only depend on the jet of X at p0. Thus we are dealing with the continuous Lie algebra
complex of

An := {X =
n∑

i=1

f i ∂

∂xi

∣∣ f i ∈ R[[x1, . . . , xn]]}.

with the I-adic topology (since the elements of the dual depend on finite set).
In A∗

n we have following forms

θi(X) := f i(0), 1 6 i 6 n,

θi
j(X) := −

∂f i

∂xj

∣∣
x=0

, 1 6 i, j 6 n,

θi
jk(X) :=

∂2f i

∂xj∂xk

∣∣
x=0

, 1 6 i, j, k 6 n,

and generally for multiindex α = (α1, . . . , αn)

θi
α := (−1)|α|

∂|α|

∂xα

∣∣
x=0

.

We make Λ•A∗
n into a complex by defining the differential

dω(X0, . . . , Xn) :=
∑

i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn).
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1. The elements

{θi
α

∣∣ 1 6 i 6 n, α ∈ (Z+)n}

span C1(An) = A∗
n, hence generate all of

C•(An) =
∞⊕

k=0

ΛkA∗
n.

Note that θi
α = θi

β if α = β as an unordered sets.

2. The Lie derivative

L

(
∂

∂xj

)
θi = θi

j , and

L

(
∂

∂xj

)
L

(
∂

∂xk

)
θi = θi

jk, etc.

Indeed

L

(
∂

∂xj

)
θi(X) =

(
d

dt

∣∣
t=0

τ j
t θi

)
(X) = θi

(
d

dt

∣∣
t=0

τ j
−t(X)

)
=

=
d

dt

∣∣
t=0

f i(x1, . . . , xj − t, . . . , xn) = −
∂f i

∂xi

∣∣
x=0

= θi
j(X).

In general

L

(
∂

∂xj

)
θi
α = θi

α∪j

Since [
∂

∂xi
,

∂

∂xj

]
= 0,

we have [
L

(
∂

∂xi

)
,L

(
∂

∂xj

)]
= 0,

whence

3.

C1(An) ' R

[
∂

∂x1
, . . . ,

∂

∂xn

] {
θ1, . . . , θn

}

i.e. is a free module with n generators over the polynomial ring in n generators.

Proposition 4.3. We have following identities in C•(An)

1.

dθi +
∑

j

θi
j ∧ θj = 0,

2.

dθi
k +

∑

j

(
θi
jk ∧ θj + θi

j ∧ θj
k

)
= 0,

3.

dθi
kl +

∑

j

(
θi
jkl ∧ θj + θi

jk ∧ θj
l + θi

jl ∧ θj
k + θi

j ∧ θj
kl

)
= 0.
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Proof.

dθi(X, Y ) = Xθi(Y ) − Y θi(X)︸ ︷︷ ︸
=0

−θi([X, Y ]) = −θi([X, Y ]),

where X =
∑

j f j ∂
∂xj , X =

∑
j gk ∂

∂xk .

[X, Y ] =
∑

j,k

(
f j ∂gk

∂xj

∂

∂xk
− gk ∂f j

∂xk

∂

∂xj

)
=

=
∑

k


∑

j

(
f j ∂gk

∂xj
− gj ∂fk

∂xj

)
 ∂

∂xk
.

Hence

dθi(X, Y ) =
∑

j


f j ∂gi

∂xj
− gj ∂f i

∂xj︸ ︷︷ ︸
=0

−f j ∂gi

∂xj
+ gj ∂f i

∂xj
.




On the other hand

θi
j ∧ θj(X, Y ) = θi

j(X)θj(Y ) − θi
j(Y )θj(X) =

=
∑

j

(
−

∂f i

∂xj
gj +

∂gi

∂xj
f j

)
.

This proves (1). To obtain (2) we apply L
(

∂
∂xk

)
, and applying L

(
∂

∂xl

)
to (2) we obtain (3)

etc. These equations completely determine differential d.

Denote

Ri
j := dθi

j +
∑

k

θi
k ∧ θk

j ∈ C2(An) = Λ2A∗
n.

Then equation (2) becomes

2’

Ri
j = −

∑

k

θi
jk ∧ θk.

Proposition 4.4. 1.

Ri
j ∧ θj = 0,

2.

dRi
j =

∑

k

(
Ri

k ∧ θk
j − θi

k ∧ Rk
j

)
.

Proof. From (2’)

Ri
j ∧ θj = −

∑

k

θi
jk ∧ θk ∧ θj = 0

since θi
jk = θi

kj .

From (2)

dRi
j =

∑

k

(
dθi

k ∧ θk
j − θi

k ∧ dθk
j

)
=
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=
∑

k

(
−

∑

l

(θi
lk ∧ θl + θi

l ∧ θl
k) ∧ θk

j +
∑

l

θi
k ∧ (θk

lj ∧ θl + θk
l ∧ θl

j) =

)

=
∑

k,l

(
Ri

k ∧ θk
j − θi

l ∧ θl
k ∧ θk

j + θi
k ∧ Rk

j + θi
k ∧ θk

l ∧ θl
j

)
=

=
∑

k

(
Ri

k ∧ θk
j − θi

k ∧ Rk
j

)
.

Corollary 4.5. The subalgebra W̃n := R{θi
j , R

i
j} is closed under d and finite dimensional.

Proof. Finite dimension follows from (2’).

4.3 Some ”soft” results

We describe the grading on an algebra An.

An = {X =
n∑

i=1

f i ∂

∂xi

∣∣ f i(x) =
∑

α

ci
αxα ∈ R[[x1, . . . , xn]], α = (α1, . . . , αn)}.

An = Rn ⊕ gln(R) ⊕ . . .

One has

[xi ∂

∂xj
, xk ∂

∂xl
] = δk

j xi ∂

∂xl
− δi

lx
k ∂

∂xj
,

To see grading we take E =
∑n

i=1 xi ∂
∂xi ∈ An. Then

[E, X] =
∑

j

∑

i

(
xi ∂f j

∂xi
− f j

)
∂

∂xj

and if f j = cj
αxα1

1 . . . xαn
n with |α| = r, then

[E, cj
αxα ∂

∂xj
] = [

∑

i

xi ∂

∂xi
, cj

αxα ∂

∂xj
] =

=
∑

i

αix
α ∂

∂xj
−

∑

i

xαδi
j

∂

∂xi
= (|α| − 1)xα ∂

∂xj
.

Thus each monomial is an eigenvector for E, and we can write An as a sum of eigenspaces

LE(xα ∂

∂xj
) = (|α| − 1)xα ∂

∂xj
,

A(p)
n := {X ∈ An

∣∣ LE(X) = pX},

An =
∞⊕

p=−1

A(p)
n , E

∣∣
A

(p)

n

= p · Id .

It is a grading, i. e.

[A(p)
n ,A(q)

n ] ⊂ A(p+q)
n .
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We have a dual grading on the Gelfand-Fuks complex C•(An) = Λ•A∗
n. One has the Lie

derivative
LE : A∗

n → A∗
n.

LE = dιE + ιEd,

The dual grading on A∗
n can be described as

(A∗
n)(p) := {ω ∈ A∗

n

∣∣ LE(ω) = −pω}.

This induces a grading on G-F complex

Cm(An)(p) = (ΛmA∗
n)(p) =

⊕
Λk−1(A∗

n)(−1) ⊗ Λk0(A∗
n)(0) ⊗ . . . ⊗ Λkr(A∗

n)(r),

where
k−1 + k0 + . . . = m, −k−1 + k1 + 2k2 + . . . + rkr = p.

We have LEd = dLE (so LE is a map of complexes). We can restrict to degree p

LE

∣∣
C•(An)(p) = −p · Id

Proposition 4.6.
dim H∗

GF (An) < ∞, ∀n > 0,

Hm
GF (An) = 0, ∀m > n2 + 2n.

Proof. One has
LE(ω) = dιE(ω) + ιEdω

so any ω ∈ Cm(An)(p) with p 6= 0 such that dω = 0 is exact, since then

dιE(ω) = LE(ω) = −pω.

This gives on cohomology

Hm
GF (An) = Hm

GF (An)(0) := Hm(C•(An)(0)),

where

Cm(An)(0) = (ΛmA∗
n)(0) =

⊕
Λk−1(A∗

n)(−1) ⊗ Λk0(A∗
n)(0) ⊗ . . . ⊗ Λkr(A∗

n)(r),

−k−1 + k1 + 2k2 + . . . + rkr = 0,

k−1 + k0 + k1 + . . . + kr = m.

Since
dimA(−1)

n = dim Rn = n =⇒ k−1 6 n,

dimA(0)
n = n2 =⇒ k0 6 n2.

Furthermore
k1 6 n, k2 6

n

2
, . . . , kn 6 1.

Hence
dimCm(An)(0) < ∞ for m > 0,

Cm(An)(0) = 0 for m > n2 + 2n.
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Example 4.7. For n = 1 we have following

k1 + 2k2 + . . . kr = k−1,

k−1 + k0 + k1 + . . . + kr 6 3.

This gives

k1 6 1, k2 6
1

2
etc. =⇒ k2 = . . . = kr = 0.

The dual algebra

A∗
n ' Rθ1

︸︷︷︸
deg=−1

⊕ Rθ1
1︸︷︷︸

deg=0

⊕ Rθ1
11︸︷︷︸

deg=1

⊕ . . .

If k−1 = 0 then k1 = k2 = . . . = 0 hence the only one allowed is

Λ•(A∗
1)

(0) = R ⊕ Rθ1
1.

For k−1 = 1 we have k1 = 1 and

Λ1(A∗
1)

(−1)

︸ ︷︷ ︸
=Rθ1

⊗Λ•(A∗
1)

(0)

︸ ︷︷ ︸
=R⊕Rθ1

1

⊗Λ1(A∗
1)

(1)

︸ ︷︷ ︸
=Rθ1

11

Thus we need only to look at the subcomplex

R{1, θ1
1, θ

1 ∧ θ1
11, θ

1 ∧ θ1
1 ∧ θ1

11︸ ︷︷ ︸
=θ1

1∧R1
1

}

because R1
1 = dθ1

1 = −θ1
11 ∧ θ1 6= 0, so the cohomology is

H∗
GF = R︸︷︷︸

dim=0

⊕R(θ1
1 ∧ R1

1)︸ ︷︷ ︸
dim=3

.

4.4 Spectral sequences

The algebra generated by {θi
j , R

i
j} is closed under the differential d, so we have a subcomplex

(R{θi
j , R

i
j}, d) =: (W̃n, d) ⊂ (C•(An), d).

where

R{θi
j , R

i
j} ' Λ•gln(R)∗ ⊗ Sn(gln(R)∗)

Theorem 4.8. The inclusion

(W̃n, d) ↪→ (C•(An), d)

is a quasi-isomorphism (induces isomorphism on cohomology).

The proof uses Hochschild-Serre spectral sequence, which we describe next.
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4.4.1 Exact couples

Assume we have an exact sequence of the form

A
i - A

B
¾

j

¾

k

It is called an exact couple. Define

d : B → B, d := jk, d2 = jkjk = 0, and

H(B) := ker d/ im d.

Now we can form derived couple taking

A′ i′ - A′

B′
¾ j

′

¾

k ′

= H(B)

where

• A′ := i(A),

• B′ := H(B),

• i′(a′) = i(a′) = i(i(a)),

• j′(a′) = [j(a)] for a′ = i(a),

• k′([b]) = k(b).

Check this definitions for independence of representatives. The derived couple is again exact
couple.

4.4.2 Filtered complexes

Let (C•, d) be a filtered complex i.e. there is a sequence of subcomplexes

C• = C•
0 ⊃ C•

1 ⊃ C•
2 ⊃ . . .

Let
A :=

⊕

p∈Z

Cp, B :=
⊕

p∈Z

Cp/Cp+1

Inclusions Cp+1 ↪→ Cp induce exact sequence

0 → A
i
−→ A

B
−→→ 0,

a long exact sequence of homology

. . .H(A)
i∗−→ H(A)

j∗
−→ H(B)

k∗−→ A → . . . ,
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and an exact couple

A1 := H(A)
i∗ - H(A)

H(B)
¾ j ∗

¾

k
∗

=: B1

4.4.3 Illustration of convergence

Consider simple case, filtration of a complex H(C•)

. . . = C−2 = C−1 = C0 ⊃ C1 ⊃ C2 ⊃ 0 = . . .

. . . = C−2 = C−1 = C0 ⊃ C1 ⊃ C2 = 0 = . . .

. . . = C−2

¾
= C−1

¾
= C0

¾
⊃ C1

¾
⊃ C2

¾
= 0 = . . .

Here

B = . . . ⊕ 0 ⊕ 0 ⊕ C0/C1 ⊕ C1/C2 ⊕ C2 ⊕ 0 ⊕ . . .

Taking homology we get sequences

H(C•) = H(C0) ← H(C1) ← H(C2) ← 0 ← . . .

A1 :=
⊕

p∈Z

H(Cp)

H(C•) = H(C0) ⊃ i∗ H(C1) ← i∗ H(C2) ← 0 ← . . .

A2 :=
⊕

p∈Z

i∗ H(Cp)

H(C•) = H(C0) ⊃ i∗ H(C1) ⊃ i∗i∗ H(C2) ← 0 ← . . .

A3 :=
⊕

p∈Z

i∗i∗ H(Cp).

When we reach the stage in wich all maps become inclusions, process is stationary i.e.

A3 = A4 = . . .

A3
i - A3

B3

¾ j

¾

k

= H(A3)

where i is inclusion, im k = ker i = 0 so k = 0. This means that also

B3 = B4 = . . .

since d = kj = 0
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4.4.4 Hochschild-Serre spectral sequence

Let h ⊂ g be a subalgebra of a Lie algebra g.

C•(g; M) = Hom(Λ•g, M), d : C•(g; M) → C•+1(g; M)

dω(X0, X1, . . . , Xr) =
∑

i

(−1)iXiω(X0, . . . , X̂i, . . . , Xr)+

+
∑

i<j

(−1)i+jω([Xi, Xj ], . . . , X̂i, . . . , X̂j , . . . , Xr).

Define the filtration on the above complex by

F pCp+q(g; M) := {ω ∈ Cp+q
∣∣ ιX1 . . . ιXqω = 0 ∀X1, . . . , Xq ∈ h}.

This means that we can associate with ω ∈ F pCp+q an element

φ(ω) ∈ Hom(Λqh, Hom(Λp(g/h), M))

given by the formula

φ(ω)(X1, . . . , Xq)(Ŷ1, . . . , Ŷp︸ ︷︷ ︸
classes

) = ω(X1, . . . , Xq, Y1, . . . , Yp).

Then
kerφ = F p+1Cp+q,

Hence there is a spectral sequence with

Ep,q
0 ' Cq(h; Hom(Λp(g/h), M)), d0 = d,

Ep,q
1 ' Hq(h; Hom(Λp(g/h), M)),

Ep,0
2 ' Hp(g,h; M),

E∗
∞ =⇒ H∗(g; M)

Now we are ready to prove that the inclusion

i : W̃n ↪→ C•(An)

induces an isomorphism
H∗(W̃n, d) ' H∗

GF (An)

that is theorem (4.8).

Proof. Both W̃n and C•(An) are filtered differential graded algebras, and their associated

spectral sequences converge to H∗(W̃n) and respectively to H∗
GF (An). On the other hand i

induces isomorphism on the level of E1.
First W̃n is graded by

W̃n
p

=
⊕

r+2s=p

Λr〈θi
j〉 ⊗ Ss

n[Ri
j ]

and then
F pW̃n

p+q
:= {ω ∈ W̃n

p+q ∣∣ ιX0 . . . ιXqω = 0 ∀X0, . . . , Xq ∈ A(0)
n }
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Fact 4.9.

Ep,q
0 '

{
0, p odd or p > 2n,

Cq(A(0)
n ; S

p
2
n [Ri

j ]), p even and p 6 2n.

Ep,q
1 '

{
0, p odd or p > 2n,

Hq
GF (A(0)

n ; S
p
2
n [Ri

j ]), p even and p 6 2n.

The filtration on C•(An) =
⊕

p Cp(An) is the Hochschild-Serre filtration relative to A(0)
n .

F pCp+q(An) =

{
Cp+q(An), p 6 0

{ω ∈ Cp+q(An)
∣∣ ιX0 . . . ιXqω = 0 ∀X0, . . . , Xq ∈ A(0)

n }, p > 0, q > 0.

Fact 4.10.

Ep,q
1 ' Hq

GF (A(0)
n ; F pCp(An)).

It is a filtration, so

[A(0)
n ,A(p)

n ] ⊂ A(p)
n

and we have an action of gln(R) = A(0)
n on A(p)

n for each p. Since A(0)
n acts semisimply on

the coefficients one gets further

Ep,q
1 ' Hq

GF

(
A(0)

n ,
(
Λp(A(0)

n )
)∗)

' Hq
GF (A(0)

n ; Bp),

where

Bp := {ω ∈ Cp(An)
∣∣ ιXω = 0 = LXω ∀X ∈ A(0)

n }

are the basic elements with respect to A(0)
n . Note that if Y = Y r

s = Xr ∂
∂xs

ιY Ri
j = −ιY (θi

jk ∧ θk) = 0,

whence the map

Ep,q
1 (W̃n) → Ep,q

1 (C•(An)).

Lemma 4.11. The inclusion i : W̃n ↪→ C•(An) induces an isomorphism between the A(0)
n -

basic elements of W̃n and C•(An).

Proof. Elementary invariance theory to eliminate the form θi
α with |α| > 2.

Again let

Wn = Λ〈u1, . . . , un〉 ⊗ Sn[c1, . . . , cn]

deg(ui) = 2i − 1, deg(ci) = 2i, dui = ci, dci = 0.

W̃n = Λ〈θi
j〉 ⊗ Sn[Ri

j ]

Proposition 4.12. The map

ci 7→ ci(R), R = (Ri
j)

has an extension to a map of complexes Wn → W̃n. Any such extension induces isomorphism
in cohomology

H∗(Wn)
'
−→ H∗(W̃n).

36



For example if n = 1 we have

c1 7→ c1(R) = R1
1,

u1 7→ θ1
1.

Proof.
E0,2q−1

1 (W̃n) = H2q−1(gln(R); R) 3 uj ,

where uj is a generator for j = 1, . . . , n. Now each uj has a representative [wj ] such that

wj ∈ F 0W̃n
2q−1

, dwj = cj ∈ F 2qW̃n
2q

thus giving a basic element of W̃n in

E2q,0
1 ' Sq(Ri

j)inv.

The basic elements of Ŵn form an algebra isomorphic to R[c1, . . . , cn].
The extesnsion is given by

uj 7→ wj ,

cj 7→ dωj .

Filtering Wn by the ideals F pWn generated by polynomials of degree at least p in the ci’s
one obtains a morphism of complexes compatible with filtrations, which induces isomorphism
on the level of E1.

In the relative case on ⊂ gln(R) = A(0)
n gives actions of on on W̃n and C•(An). Passing to

the subalgebras of on-basic elements, then restricting the filtrations one obtains isomorphisms

H∗(WOn) ' H∗(W̃n, on) ' H∗
GF (An, on),

where
WOn = Λ〈u1, u3, . . . uk〉 ⊗ Sn[c1, . . . , cn],

du2j−1 = c2j , dcj = 0.

Corollary 4.13. Any class in H∗(An) (respectively H∗(An, on)) has a representative which
depends only on the second jet.
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Chapter 5

Characteristic maps and
Gelfand-Fuks cohomology

5.1 Jet groups

Definition 5.1. Let x ∈ Rn and let f : U → Rn be a C∞-function. Then jk
x(f) is an

equivalence class with respect to

f ∼k g iff
∂|α|f

∂xα

∣∣
x

=
∂|α|g

∂xα

∣∣
x
, ∀|α| = α1 + . . . + αn 6 k.

Then
Gk(n) := {jk

0 (f)
∣∣ f local diffeomorphism of Rn, f(0) = 0}

is a Lie group under composition

jk
0 (f) ◦ jk

0 (g) := jk
0 (f ◦ g).

Identifying with polynomial representatives

jk
0 (f) ' {

∑

16|α|6k

aj
αxα ∈ Pk

0 [x1, . . . , xn]
∣∣ 1 6 j 6 n}

Then jk
0 (f) ∈ Gk(n) means aj

α ∈ GLn(R).
One has a sequence of projections

G∞(n) := . . . → Gk+1(n) → Gk(n) → . . . → G1(n).

If h = f ◦ g

hi(x1, . . . , xn) = f i(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))

ci
k :=

∂hi

∂xk

∣∣
0

=
∑

l

∂f i

∂xl

∣∣
0

∂gl

∂xk

∣∣
0

=
∑

l

ai
lb

l
k.

ci
jk :=

∂2hi

∂xj∂xk

∣∣
0

=
∑

l,s

∂2f i

∂xs∂xl

∣∣
0

∂gs

∂xj

∣∣
0

∂gl

∂xk

∣∣
0
+

∑

l

∂f i

∂xl

∣∣
0

∂2gl

∂xj∂xk

∣∣
0

so
ci
jk =

∑

l,s

ai
slb

s
jb

l
k +

∑

l

ai
lb

l
jk
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etc. In particular ker(G2(n) → G1(n)) has multipllication

ci
jk = ai

jk + bi
jk.

In general
Nk(n) := ker(Gk(n) → G1(n))

is a vector space equipped with a polynomial multiplication which implies that Nk(n) is a
nilpotent Lie subgroup, and

Gk(n) = G1(n) n Nk(n).

gk(n) := Lie(Gk(n)) ' {jk
0X

∣∣ X =
∑

i

∂

∂xi
, X(0) = 0}

with the bracket
[jk

0 (X), jk
0 (Y )] = −jk

0 ([X, Y ]).

5.2 Jet bundles

Definition 5.2. Let Mn be a C∞-manifold. The jet bundle on M

Jk(M) := {jk
0 (f)

∣∣ f : U ⊂ Rn → M local diffeomorphism at 0 ∈ U}.

It has a tautological C∞-structure modelled on

Jk(Rn) = Pk(n) ' polynomial jets

Again one has a sequence of natural projections

J∞(M) := . . . → Jk+1(M) → Jk(M) → . . . → J1(M) → M,

which are principal bundles with structure groups

G∞(n) := . . . → Gk+1(n) → Gk(n) → . . . → G1(n).

J1(M) = F (M) → M is a frame bundle with the structure group GLn(R) = G1(n).
There is a natural (commuting with DiffM ) map

An
'
−→ Tj∞0 (φ)J

∞(M)

For

X ∈ An, X =
∑

i

f i ∂

∂xi

and a 1-parameter family ψt of local diffeomorphism of Rn such that

ψt(0) = 0, ψ0 = Id, X = j∞0

(
dψt

dt

∣∣
t=0

)
,

we have a curve in a manifold of jets j∞0 (ψt). For a local diffeomorphism φ : Rq → Mn we
have a curve passing through φ

j∞0

(
d

dt
(φ ◦ ψt)

∣∣
t=0

)
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and

X =
d

dt
j∞0 (ψt)

∣∣
t=0

= j∞0

(
dψt

dt

∣∣
t=0

)
.

Let u = j∞0 (φ) ∈ J∞(M), and define

X̃u := j∞0

(
d

dt
φ ◦ ψt

∣∣
t=0

)
=

d

dt
(φ ◦ ψt)

∣∣
t=0

∈ TuJ∞(M), φ ◦ ψt

∣∣
t=0

= φ.

The map
An → TuJ∞(M), X 7→ X̃u

is natural i.e. it commutes with the action of the diffeomorphisms

Tj∞0 (ρ◦φ)J
∞(M)

An
'-

'

-

Tj∞0 (φ)J
∞(M)

ρ∗
6

Proposition 5.3. We have a natural isomorphism of differential graded algebras

(C•(An), d)
'
−→ (Ω•(J∞(M))DiffM ,−d).

Proof. We take for u = j∞0 (φ)

ω̃u(X̃u
1
, . . . , X̃u

p
) := ω(X1, . . . , X

p).

[X̃, Ỹ ] := −[̃X, Y ].

In particular if we set for a basis {θi
α} of A∗

n

θ̃i
α(X̃u) =

∂|α|f i

∂xα

∣∣
x=0

= (−1)|α|θi
α(X)

then they satisfy the same differential equations as θi
α.

Example 5.4. In local coordinates (v1, . . . , vn) around u = j∞0 (φ)

{
vi

∣∣
u
, vi

j :=
∂(vi ◦ φ)

∂xj

∣∣
u
, vi

jk :=
∂2(vi ◦ φ)

∂xj∂xk

∣∣
u
, . . . , vi

α =
∂|α|(vi ◦ φ)

∂xα

∣∣
u

}

one has
dvi

α =
∑

β+γ=α

vi
β[k]θ̃

k
γ , β[k] := (β1, . . . , βk + 1, . . . , βn).

5.3 Characteristic map for foliation

Let (M,F) be a manifold with foliation, which we can describe by a 1-cycle with values in
Γq given by the following data

1. an open cover M =
⋃

α Uα,

2. ∀α there is a submersion fα : Uα → Vα ∈ Rq,
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3. ∀x ∈ Uα ∩ Uβ there is a local diffeomorphism gαβ : Vα → Vβ (neighbourhoods of fα(x)
and fα(x) rspectively) such that fβ = gβα ◦ fα near x.

Then
f∗

α(J∞(Vα)) → Uα, and f∗
β(J∞(Vβ)) → Uβ

can be identified over Uα ∩ Uβ via j∞0 (gβα), giving the principal Gk(q)-bundles over M :

J∞(F) := . . . → Jk+1(F) → Jk(F) → . . . → J2(F) → J1(F) → M.

This are jet bundles of “transverse local diffeomorphisms”. In particular J1(F) is a principal
GLq(R)-bundle associated to the transverse bundle Q(F) = TM/F - bundle of transverse
frames.

The forms θi
κ on J∞(Vα) are invariant under Diff hence they also define forms on J∞(F).

They are the “canonical forms” on J∞(F).
The characteristic homomorphisms

χGF : C•(Aq) → Ω•(J∞(F))

is defined by sending ω to the lift to M of the Diff-invariant forms ω̃α on Vα. It is a
homomorphism of DGA’s inducing

χ∗
GF : H∗

GF (Aq) → H∗(J∞(F)) ' H∗(J1(F)).

Remark 5.5 (Bott’s vanishing theorem revisited). Any E-flat (Bott) connection (def. (2.5))
∇[ on Q is given by a gln(R)-valued form on J1(F) which is of the form ωi

j = s∗(θ̃i
j) for some

GLn(R) -equivariant section s : J1(F) → J2(F). Then its curvature form

Ωi
j = s∗(Ri

j) =⇒ Ωi
j ∧ ωj = s∗(Ri

j ∧ θj) = 0

hence
Ωi1

j1
∧ . . . ∧ Ω

ip
jp

= 0, ∀p > q.

Assume the normal bundle Q = Q(F) is trivializable and choose a global section s : M →
F . Then the diagram

s∗ ◦ χ∗
GF : H∗

GF (Aq) - H∗(M)
pr∗

'
- H∗(J1(F))

H∗(Wq)

'

6

µ
∗
E

-

is commutative.
Passing to the relative subcomplex one gets

χrel
GF : C•(An, O(n)) → Ω•(J∞/O(n))

which induces
χrel

GF : H∗(An, O(n)) → H∗(J1(F)/O(n))
'
−→ H∗(M).

The isomorphism
σ∗ : H∗(J1(F)/O(n)) → H∗(M)
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is implemented by a metric on Q (i.e. a section σ : M → J1(F)/O(n)). Then the diagram

H∗(An, O(n))
χrel∗

GF - H∗(M)

H∗(WOn)

χ
∗
E

-
¾

is again commutative.
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Chapter 6

Index theory and noncommutative
geometry

6.1 Classical index theorems

Let (M, g) be a Riemannian manifold, g-metric. Index theorems describe properties of geo-
metric elliptic operators in terms of topological characteristic classes.

For a selfadjoint elliptic operator D = D∗

Index(D) := dim kerD − dim cokerD ∈ Z

We give a few examples of index theorems.

Example 6.1. Take a de Rham complex Ω•(M) with

d : Ωi(M) → Ωi+1(M)

and its adjoint
d∗ : Ωi(M) → Ωi−1(M).

One has even/odd grading on forms (γ = (−1)deg), and the operator

d + d∗ : Ωev → Ωodd

is selfadjoint elliptic operator. Furthermore

Index(d + d∗)ev = dim ker(d + d∗)ev − dim coker(d + d∗)ev

and
ker(d + d∗) = H∗

dR(M ; R),

ker(d + d∗)ev = Hev
dR(M ; R), coker(d + d∗)odd = Hodd

dR (M ; R).

This means
Index(d + d∗) = dim Hev(M ; R) − dim Hodd(M ; R) = χ(M)

- the Euler characteristic of a manifold M .

Theorem 6.2 (Gauss-Bonnet).

χ(M) = Index(d + d∗)ev =

∫

M

Pf(R),

where Pf(M) is a Pffafian i.e. the square root of the determinant, and R - a curvature.
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This theorem gives topological constraints on Gaussian curvature, for if n = 2 one has
Pf(R) = K. The right hand side depends on the metric, while on the left we have topological
invariant.

Example 6.3. In the example above lets take different grading. Assume that dim M = 4n.
Take a Hodge star operator

∗ : Ωk(M) → Ω4n−k.

One has ∗2 = (−1)k(4n−k) so it gives rise to another grading γ on Ω•(M). It splits the complex
into Ω−(M) and Ω+(M) (negative and positive eigenspaces). Furthermore

Index(d + d∗)+ = dim H2n(M)+ − dim H2n(M) = σ(M)

- the signature of M i.e. a signature of bilinear form

H2n(M) × H2n(M) → R, (α, β) 7→

∫

M

α ∧ β.

On the other side

Theorem 6.4 (Hirzebruch signature thm.).

σ(M) = Index(d + d∗) =

∫

M

L(R), L(R) := (det)
1
2

(
R
2

tanh R
2

)

as a formal series. L(R) is a L-genus of a manifold.

L(R) is a combination of Pontryagin classes which depends on a metric structure of a
manifold.

Example 6.5. Let E be a holomorphic Hermitian bundle on a manifold M . One has an
operator ∂̄E ⊕ ∂̄∗

E on Ω0,• ⊗ S(E). Its index

Index(∂̄E ⊕ ∂̄∗
E) = χ(E)

- the Euler characteristic of a bundle E. On the other hand

Theorem 6.6 (Riemann-Roch-Hirzebruch).

χ(E) = Index(∂̄E ⊕ ∂̄∗
E) =

∫

M

Td(M) ch(E),

where the Todd class of M and Chern character of E are given by

Td(M) = det
Rhol

eRhol − 1
, ch(E) = Tr(eFE ).

Example 6.7. The most general example one has for Dirac operator /D. One has a grading
/D

+
, /D

−
from Spin-bundle.

Index /D = dim ker /D − dim coker /D = S(M)

- the spinor number of a manifold M . On the other side

Theorem 6.8 (Atiyah-Singer).

S(M) = Index /D =

∫

M

Â(R), Â(R) := (det)
1
2

(
R
2

sinh R
2

)

Â(R) is another combination of Pontryagin classes. Together with Lichnerowicz theorem
it gives constraints on scalar curvature.

Summarizing
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Elliptic operator and grading Analitic index Index formula (characteristic classes) Corollaries

6.2 General formulation and proto-index formula

Let A be a C∗-algebra and A its dense subalgebra such that if a ∈ A has an inverse a−1 ∈ A,
then a−1 ∈ A

Example 6.9. M - closed manifold, A = C(M), A = C∞(M). Then

K∗(M) = K∗(C(M)) = K∗(C
∞(M)),

(via Serre-Swan theorem) where the right hand side has algebraic definition (purely for ∗ =
even and almost for ∗ = odd).

In general

K0(A) := Idemp(M∞(A))/ ∼ ' π1(GL∞(A)),

where ∼ is some equivalence relation,

K1(A) := GL∞(A)/ GL∞(A)0 ' π0(GL∞(A)),

where GL∞(A)0 is a group of connected components. For the definition of K1(A) we need a
topology on A. We can replace GL∞(A) by U∞(A) (unitary matrices). From Bott periodicity
K2(A) = K0(A) and so on.

What is the dual (homology) theory ? K-homology.

Assume A ⊂ B(H) (bounded operators on Hilbert space H). Let F = F ∗ ∈ A, Fredholm
operator, such that

[F, A] ⊂ K(H), (compact operators),

and moreover

[F,A] ⊂ Lp(H), (Schatten class)

for some p > 1. The triple (A,H, F ) is a p-summable Fredholm module. Together with
grading γ such that

γ2 = Id, γ = γ∗, γa = aγ ∀ a ∈ A,

γF + Fγ = 0,

the quadruple (A,H, γ, F ) is a K-cycle. The Hilbert space H decomposes into positive and
negative eigenspaces of γ

H = H+ ⊕H−

and there is a decomposition of F

F =

(
0 F+

F− 0

)
.

Lemma 6.10. Let F be bounded selfadjoint involution on H (i.e. F 2 = Id). Then

1. If e2 = e ∈ A then

Fe := eFe

is Fredholm operator.
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2. If g ∈ GL1(A) and P = 1+F
2 then

Fg := PgP

is Fredholm operator.

Proof.Ad. 1
F 2

e = eFeFe = e([F, e] + eF )Fe

which is a sum of e and compact operator on eHe.

Ad. 2
FgFg−1 = PgPg−1P = Pg([P, g−1] + g−1P )P

which is a sum of P and compact operator on PHP .

If e2 = e ∈ MN (A) = A ⊗ MN (C) then we can form

HN := H⊗ CN , FN := F ⊗ Id .

For an idempotent e, assignment

(F, e) 7→ Index(F+
e ) ∈ Z

extends to a pairing
K0(A) × K0(A) → Z.

Similarly for g ∈ GL1(A), assignment

(P, g) =

(
1 + F

2
, g

)
7→ Index(Fg) ∈ Z

extends to a pairing
K1(A) × K1(A) → Z.

Lemma 6.11 (Well known). Let P, Q be bounded operators on a Hilbert space H, such that

Id−QP, Id−PQ ∈ Lp.

Then P, Q are Fredholm operatos and

Index(P ) = Tr((Id−QP )n) − Tr((Id−PQ)n), ∀ n > p.

Proposition 6.12. Assume [F,A] ∈ Lp (that is (A,H, F ) is p-summable Fredholm module).
Then

1. In the graded case, that is given γ : H → H, one has for all projections e

Index(F+
e ) = (−1)m Tr(γe[F, e]2m), ∀ 2m > p.

2. In the ungraded case one has for all g ∈ GL1(A)

Index(Fg) =
1

22m+1
Tr(g[F, g−1])2m+1, ∀ 2m > p.
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Proof. In the graded case

Index(F+
e ) = Tr(γPker Fe

) = Tr(γ(e − F 2
e )m) = Tr(γ(e − eFeFe)m)

for 2m = n > p. Now as above

e − eFeFe = −e[F, e]Fe = −e[F, e]([F, e] + eF ) = −e[F, e][F, e] − e[F, e]e︸ ︷︷ ︸
=0

F =

= −e[F, e]2 = [F, e]2e

since
[F, e] = [F, e2] = [F, e]e + e[F, e].

Thus
Tr(γ(e − eFeFe)m) = (−1)m Tr(γ(e[F, e]2)m) = (−1)m Tr(γe([F, e])2m).

In the ungraded case one has

Index(Fg) = Tr((P − Pg−1PgP )m) − Tr((P − PgPg−1P )m)

for m sufficiently large. Furthermore

P − Pg−1PgP = P + P ([P, g−1] − Pg−1)gP =

= P [P, g−1]gP = −P [P, g−1]([P, g] − Pg) =

= −P [P, g−1][P, g] + P [P, g−1]P︸ ︷︷ ︸
=0

g

because

P 2 = P =⇒ [g−1, P ]P + P [g−1, P ] = [g−1, P ] =⇒ P [P, g−1]P = 0.

Hence
Tr((P − Pg−1PgP )m) = (−1)m Tr(P ([P, g−1][P, g])m).

Writig again
[P, g−1] = P [P, g−1] + [P, g−1]P,

[P, g] = P [P, g] + [P, g]P

one has
P [P, g−1][P, g] = P [P, g−1][P, g]P = [P, g−1][P, g]P.

Therefore
Tr((P − Pg−1PgP )m) = (−1)m Tr(P ([P, g−1][P, g])m) =

= (−1)m Tr

(
1 + F

2

(
1

2
[F, g−1]

1

2
[F, g]

)m)
=

=
(−1)m

22m+1

(
Tr(([F, g−1][F, g])m) + Tr(F ([F, g−1][F, g])m)

)
.

Changing g to g−1 one gets

Tr((P − PgPg−1P )m) =
(−1)m

22m+1

(
Tr(([F, g][F, g−1])m) + Tr(F ([F, g][F, g−1])m)

)
.
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Noting that

[F, g−1][F, g] = (−g−1[F, g]g−1)(−g[F, g−1]g) = g[F, g][F, g−1]g

one has
Tr(([F, g−1][F, g])m) = Tr(([F, g][F, g−1])m).

Now
([F, g−1][F, g])m = (−g−1[F, g−1]g−1[F, g])m = (−1)m(g−1[F, g])2m,

whence

Index(Fg) =
1

22m+1
(Tr(F (g−1[F, g])2m) − Tr(F (g[F, g−1])2m)).

The second term can be written as

Tr(F (g[F, g−1])2m) = Tr(F ([F, g]g−1)2m) =

Tr(Fg(g−1[F, g]g−1g)2mg−1) = Tr(g−1Fg(g−1[F, g])2m).

So the difference gives

Index(Fg) =
1

22m+1
Tr((F − g−1Fg)(g−1[F, g])2m) =

=
1

22m+1
Tr(g−1[g, F ](g−1[F, g])2m) =

1

22m+1
Tr((g−1[F, g])2m+1) =

1

22m+1
Tr((g[F, g−1])2m+1).

6.3 Multilinear reformulation: cyclic cohomology (Connes)

Observe that if T ∈ L1 then

Tr(γT ) =
1

2
Tr(γF [F, T ]).

Indeed
Tr(γF [F, T ]) = Tr(γ(T − FTF )) = Tr(γT ) + Tr(γT )

since Fγ + γF = 0.
Both formulas in proposition (6.12) can be obtained from multilinear forms τ ∈ Hom(A⊗n+1, C).

τF (a0, a1, . . . , an) =

{
Tr(γF [F, a0][F, a1] . . . [F, an]) n even > p − 1,
Tr(F [F, a0][F, a1] . . . [F, an]) n odd > p − 1.

The first comes from (using graded commutators)

Tr(γF [F, a0[F, a1] . . . [F, an]]) = Tr(γF [F, a0][F, a1] . . . [F, an])+

+
n∑

i=1

Tr(γFa0[F, a1] . . . [F, [F, ai]] . . . [F, an]),

where the terms in the sum are 0 because

[F, [F, a]] = F [F, a] + [F, a]F = a − FaF + FaF − a = 0.
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For anti-commutation reasons, the first expression vanishes for n odd, while the second
expression vanishes for n even.

Element φ ∈ Hom(A⊗n+1, C) ic cyclic if

φ(an, a0, . . . , an−1) = (−1)nφ(a0, a1, . . . , an)

i. e. λnφ = Id for cyclic operator λn+1
n = Id. One has

bτF (a0, a1, . . . , an+1) =

n∑

i=0

τF (a0, . . . , aiai+1, . . . , an+1)+

+(−1)n+1τF (an+1a0, a1, . . . , an) =

=
n∑

i=1

(−1)i Tr(F [F, a0] . . . [F, aiai+1] . . . [F, an])+

+(−1)n+1 Tr(F [F, an+1a0][F, a1] . . . [F, an]).

Now

[F, aiai+1] = [F, ai]ai+1 + ai[F, ai+1].

Because of the alternating signs, terms cancel pairwise if n + 1 is even

Tr(F [F, a0]a1[F, a2] . . . [F, an+1]) + Tr(Fa0[F, a1][F, a2] . . . [F, an+1])

−Tr(F [F, a0][F, a1]a2 . . . [F, an+1]) − Tr(F [F, a0]a1[F, a2] . . . [F, an+1]) + . . .

. . .+(−1)n+1 Tr(F [F, an+1]a0[F, a1] . . . [F, an+1])+(−1)n+1 Tr(Fan+1[F, a0][F, a1] . . . [F, an+1]).

Hence for odd n

bτF = 0.

For even n

Tr(γF [F, an][F, a1] . . . [F, an−1]) = Tr(F [F, an][F, a0] . . . [F, an−1]) =

−Tr(F [F, a0] . . . [F, an]).

This leads to the definition of cyclic cohomology, a homology of complex

(C•
λ(A), b), Cn

λ (A) = Homcont(A
⊗n+1, C)

for locally convex algebra A (with continuous multiplication).
The fact that n 7→ n + 2 leaves formulas in proposition (6.12) unchanged is related to the

periodicity operator

S : HCn
λ(A) 7→ HCn+2

λ (A)

which in turn is an arrow in Connes long exact sequence

. . .
S
−→ HCn

λ(A)
I
−→ HHn(A)

B
−→ HCn−1

λ (A)
S
−→ HCn+1(A)

I
−→ . . .

For A = C∞(M), ∂M = 0

τ(f0, f1, . . . , fn) =

∫

M

f0df1 ∧ . . . ∧ dfn

49



From Leibniz rule and Stokes theorem

bτ = 0, λ(τ) = τ.

If ω ∈ Ωn−k(M) then

τω(f0, . . . , fk) :=

∫

M

f0df1 ∧ . . . ∧ dfk ∧ ω, dω = 0.

If C-k-current
τC(f0, . . . , fk) = 〈C, f0df1 ∧ . . . ∧ dfk〉, dC = 0.

Theorem 6.13 (Connes).

HCq
λ(A) ' ker d+

q ⊕HdR
q−2(M ; C)⊕HdR

q−4(M ; C)⊕ . . .

HCq+2
λ (A)

S

?

' ker d+
q+2 ⊕ HdR

q (M ; C)

class

-

⊕HdR
q−2(M ; C)

'

-

⊕ . . .

'

-

where the inclusion ker d+
q ↪→ HCq

λ(A) is

C 7→ φC(f0, f1, . . . , f q) = 〈C, f0df1 ∧ . . . ∧ df q〉.

Compatibility considerations lead to the following normalization for the Connes-Chern
character of a K-cycle F over A of Schatten dimension p.

• For n odd > p − 1

τn(a0, a1, . . . , an) = (−1)
n−1

2
n

2

(n

2
− 1

)
. . .

1

2
Tr(F [f, a0][F, a1] . . . [F, an]),

Sτn = τn+2

• For n even > p − 1

τn(a0, a1, . . . , an) =
(n

2

)
!
1

2
Tr(γF [f, a0][F, a1] . . . [F, an]),

Sτn = τn+2

Homological Chern character is a homomorphism

ch∗ : K∗(M) → HdR
∗ (M ; C)

It is a special case of the Connes-Chern character for an algebra

ch∗ K∗(A) → HP∗(A)

if one takes A = C∞(M). For a cocycle (A,H, F ) representing an element in K-homology
one has

ch∗(A,H, F ) := [φn],

where φn is the following cocycle

φn(a0, a1, . . . , an) = Tr(γa0[F, a0] . . . [F, an])

50



for n even.

S[φn] = [φn+2]

For a Dirac operator D we can take F = D|D|−1 and then

ch∗(D) = Â(M) = (det)
1
2

(
R
2

sinh R
2

)

If γ is a gradation on H i.e.

γ =

(
1 0
0 −1

)
, D =

(
0 D−

D+ 0

)

then

Index(D+) = Tr(γe−tD2
), t > 0

D2 =

(
D−D+ 0

0 D+D−

)
.

For t → 0+ function Tr(γe−tD2
) has an expansion

c0 + c1t + c2t
2 + . . . ,

where

c0 =

∫

M

ωδ(D)

and ωδ(D) is called the local index formula.

6.4 Connes cyclic cohomology

HC∗(A) is defined as the cohomology of a complex (Cλ(A), b). A cycle representing an
element in HC∗(A) is a triple

(Ω, d,

∫
),

where (Ω, d) is a differential graded algebra

Ω0 d
−→ Ω1 d

−→ . . .
d
−→ Ωn, d2 = 0, (finite length),

and
∫

is a closed graded trace
∫

Ωn → C i.e.

∫
ω1ω2 = (−1)|ω1||ω2|

∫
ω2ω1 (graded trace),

∫
dω = 0 (closed).

Using homomorphism ρ : A → Ω0 we can write a character of (Ω, d,
∫

)

τ(a0, a1, . . . , an) =

∫
a0da1 . . . dan.

It is a cyclic cocycle.
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Define a chain as a triple (Ω, ∂Ω,
∫

), where ∂Ω ⊂ Ω, dim Ω = n, dim ∂Ω = n − 1, and d
preserves ∂Ω. There is given a surjective homomorphism r : Ω → ∂Ω of degree 0 (restriction
to the boundary) and ∫

dω = 0, ∀ ω such that r(ω) = 0.

A boundary of such chain is a cycle (∂Ω, d,
∫ ′

), where for ω′ ∈ ∂Ωn−1

∫ ′

ω′ :=

∫
dω, for r(ω) = ω′.

Two cycles Ω1, Ω2 are cobordant, Ω1 ∼ Ω2 if and only if there exists a chain (Ω, ∂Ω,
∫

)
such that

∂Ω = Ω1 ⊕ Ω̃2

where (Ω̃2, d,
∫̃
) is a cycle in which

∫̃
ω = −

∫
ω.

Theorem 6.14.
Ω1 ∼ Ω2 iff. τ2 − τ1 = B0φ ∈ im B0

where the operator B0 is defined as follows.

B0φ(a0, a1, . . . , an) = φ(1, a0, . . . , an) − (−1)n+1φ(a0, . . . , an, 1).

The operator B is then equal to AB0, where A is the cyclic antisymmetrization

(Aφ)(a0, a1, . . . , an) :=
n∑

i=0

(−1)niφ(ai, ai+1, . . . , ai−1).

The Connes exact sequence

. . .
B
−→ HCn−2

λ (A)
S
−→ HCn

λ(A)
I
−→ Hn(A)

B
−→ HCn−1

λ (A)
S
−→

starts with HC0
λ(A) = H0(A). Thus if there is an algebra homomorphism A → A′ which

induces isomorphism on Hochshild cohomology, then it also induces isomorphism on cyclic
cohomology.

We can form a bicomplex (Cn,m, b, B) with b2 = 0, B2 = 0, bB + Bb = 0, and Cn,m =
Cn−m(A) = A⊗n−m+1. The homology of the total complex is then cyclic cohomology.

6.5 An alternate route, via the Families Index Theorem

Set up: (A,H, D), D = D∗ unbounded with

[D,A] ⊂ L(H), (1 + D2) ∈ Lp

In fact we shall assume that D is invertible with D−1 ∈ Lp. The bounded version of this
K-cycle is given by (A,H, F ), where F = D|D|−1 is a phase.

On A one has a norm

|||a||| := ||a|| + ||[D, a]||, for a ∈ A.

Let V = V(A) be the span of ”vector potentials”, that is

V :=

{
A =

∑

i

ai[D, bi]
∣∣ ai, bi ∈ A, A = A∗

}
.
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Let U = U(A) be the gauge group, that is

U = U(A) :=
{
u ∈ GL1(A)

∣∣ u∗u = uu∗ = 1
}

,

acting on V by (affine action)

u · A := u[D, u∗] + uAu∗ = u(D + A)u∗ − D.

Denoting DA := D + A one has
Du·A = uDAu∗.

Fact 6.15. DA has the same dimension as D and D∗
A = DA. Also kerDA = ker(Id +D−1A),

hence is finite dimensional.

Let
Vinj :=

{
A ∈ V

∣∣ DA injective
}
⊂ V

It is an open subset with respect to ||| · |||. For A ∈ Vinj operator DA is invertible with

D−1
A = (1 + D−1A)−1D−1 ∈ Lp.

Graded trivial vector bundle over Vinj

H̃± := Vinj ×H±.

Superconnection is an operator d + D̃, where

D̃ : H̃ → H̃, is in the fiber D̃A = DA : H± → H±.

Curvature
R := (γd + D̃)2 = γdD̃ + D̃d + D̃2 = [γd, D̃]︸ ︷︷ ︸

=: eD′

+D̃2.

Explicit expression of D̃′ = [d, D̃] ∈ Ω1(Vinj , H̃):

d : Ωp(Vinj , H̃) → Ωp+1(Vinj , H̃)

(dω)(X̃0, . . . , X̃p+1) =

p∑

i=0

X̃iω(X̃0, . . . ,
̂̃
Xi, . . . , X̃p)

(commutators vanish), where

X̃Af :=
d

dt

∣∣
t=0

f(A + tX), X ∈ V.

One has with F : Vinj → L(H), F (A) := D + A

γd(D̃ω) = γdF ∧ ω,

Hence
D̃′(ω) = dF ∧ ω, dFA(X̃A) = X,

D̃′(ω)A(X0, . . . , Xp+1) =

r∑

i=0

(−1)i Xi︸︷︷︸
∈L(H)

ωA(X0, . . . , X̂i, . . . , Xp)︸ ︷︷ ︸
∈H
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(Super) Chern form

Ω
(n)
t := Tr

(
γe−(t eD′+t2 eD2)

)(n)
= Tr

(
γe−R2

t

)(n)
=

= (−t)n

∫

∆n

Tr
(
e−s1t2 eD2

D̃′e−(s1−s2)t2 eD2
D̃′ . . . e−(sn−sn−1)t2 eD2

D̃′e−(1−sn)t2 eD2
)

ds1ds2 . . . dsn,

and the integration is over a simplex

∆n := {0 6 s1 6 s2 6 . . . 6 sn 6 1
∣∣ s1 + s2 + . . . + sn = 1}

One has
d

ds
(es(A+B)e−sB) = es(A+B)Ae−sB

eu(A+B) = euB +

∫ u

0
es(A+B)Ae(u−s)Bds.

[TO BE CONTINUED ...]

6.6 Index theory for foliations

Let (Mm,F) be a foliated manifold. To define an index in noncommutative geometry we
have to complete definitions of the following tasks

1. transverse coordinates,

2. analog of elliptic operator,

3. index pairing between K-theory and K-homology.

Foliation can be described using 1-cocycle (Vi, fi, gij), where

fi : Vi → Ui ⊂ Rn, n = codimF are surjective submersions,

and gij : fj(Vi ∩ Vj) → fi(Vi ∩ Vj) are diffeomorphisms such that

gij ◦ gjk = gik.

Above cocycle gives a grupoid Γ = {gij} which leads to the algebra of foliation

AΓ := C∞
c (FM) o Γ

fuφ · guψ = fgφ−1uφψ, φ, ψ ∈ Γ.

where FM = J1(M) is a frame bundle. This gives a transverse coordinates. The advantage
in working with frame bundle is that FM has a natural volume form. It is paralelizable (i.e.
TFM is trivial). One has a principal bundle

GLn(R) - FM

M

π
?
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One has vertical vector fields Y j
i coming from the GLn(R) action, and when chooses a con-

nection, also horizontal vector fields Xk. Let {θk, ωi
j} be the dual basis of differential forms.

Then
Λωi

j ∧ Λθk

is an invariant volume form.
For our second task we have to give up ellipticity. Consider a quotient bundle

FM/ SO(n)=: PM

M

π
?

The fiber PMx is the space of all Euclidean structures on TxM

〈ζ, η〉 = 〈aζ, aη〉, a ∈ SO(n).

Section of PM are all Riemannian metrics on TM . Let

V ⊂ TPM = ker π∗

be the vertical subbundle (vectors tangent to the fibers). On the quotient GLn(R)/ SO(n)
there is a metric, and determines a metric on V.

TPM/V=: N

PM
?

The horizontal bundle N has a tautological Riemannian structure. Indeed, p ∈ PM is an
Euclidean structure for Tπ(p)M , and Np is identified with Tπ(p)M by π∗.

The bundle TPM has a decomposition into vertical and horizontal part, TPM = V ⊕N .
The Hilbert space

L2(ΛT ∗PM, volP )

where volP is a volume form induced by canonical volume form on FM , decomposes also as
a tensor product of corresponding Hilbert spaces

L2(ΛT ∗PM) = L2(ΛV∗) ⊗ L2(ΛN ∗).

On this two parts we have operators

• On L2(ΛV∗) with vertical differential dV

QV := i(dV + d∗V )(dV − d∗V ) = −i(dV d∗V + d∗V dV )

• On L2(ΛN ∗) with horizontal differential dH

QH := dH + d∗H

On the whole L2(ΛT ∗PM) we put Q = QV ⊕ γV QH , where γV is the grading of the vertical
signature. Operator Q = Q∗ is called hypoeliptic signature operator. We have a spectral
triple (AΓ,H, D), where D is determined by the equation Q = D|D|.
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For a ∈ A [D, a] ∈ L(H) and (1 + D2)−
1
2 ∈ Lp(H) for p = dimV + 2n, where dim M =

n. The K-cycle (A,H, D) gives an element in K∗
DiffM

(A) (DiffM -equivariant K-cycle). Its
character ch∗(D) ∈ HC∗(AΓ) can be expressed in terms of residues of spectrally defined zeta-
functions, and is given by a cocycle {φn} in the (b, B)-bicomplex of AΓ whose components
are of the following form

Ress=0 Tr(a0[a1, D](k1) . . . [an, D](kn)|D|−n−2|k|−s)

which we denote by

/

∫
Tr(a0[a1, D](k1) . . . [an, D](kn)|D|−n−2|k|−s)

φn(a0, . . . , an) =
∑

k

cn,k /

∫
a0[Q, a1](k1) . . . [Q, an](kn)|Q|−n−2|k|
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Chapter 7

Hopf cyclic cohomology

7.1 Preliminaries

Lecture given by Piotr Hajac

7.1.1 Cyclic cohomology in abelian category

Our task is to understand cup product for Hopf-cyclic cohomology with coefficients, that is
mapping

HCm
H(C; M) ⊗ HCn

H(A; M) → HCm+n(A; M).

Concider a category C, with finite sets [n] := {0, 1, . . . , n} for n ∈ N as objects, and mor-
phism which preserve order. To describe a cyclic structure we introduce following morphisms

• Face

[n − 1]
δi−→ [n], 0 6 i 6 n,

- injection which misses i.

• Degeneracy

[n + 1]
σj
−→ [n], 0 6 j 6 n,

- surjection which sends both j and j + 1 to j.

• Cyclic operator

[n]
τn−→ [n]

- cyclic shift to the right.

The morphism above satisfy following identities, which we can group to obtain succesive
complications of our category.

• Presimplicial category.

Mor(C) := {δ
(n)
i

∣∣ 0 6 i 6 n, n ∈ N},

with

δjδi = δiδj , j > i.
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• Simplicial category.

Mor(C) := {δ
(n)
i , σ

(m)
j

∣∣ 0 6 i 6 n, 0 6 j 6 m, n, m ∈ N},

with additional identities
σjσi = σiσj+1, i 6 j,

σjδi =





δiσj−1, i < j,
id[n], i ∈ {j, j + 1},

δi−1σj , i > j + 1

• Precyclic category.

Mor(C) := {δ
(m)
i , τn

∣∣ 0 6 i 6 m, m, n ∈ N},

with the identities as for presimlicial category and

τn+1
n = id[n],

τnδi = δi−1τn−1, 1 6 i 6 n.

• Cyclic Category.

Mor(C) := {δ
(m)
i , σ

(l)
j , τn

∣∣ 0 6 i 6 m, 0 6 j 6 l, m, l, n ∈ N},

with all above identieties and
τnσ0 = σnτ2

n+1,

τnσj = σj−1τn+1, 1 6 j 6 n.

Now, let A be an abelian category, and F : C → A a functor. It means that we have a
sequence of objects, and morphisms

An
δi−→ An

τn−→ An
σi←− An+1.

Define

bn :=
n∑

i=0

(−1)iδi, b′n :=
n−1∑

i=0

(−1)iδi,

λn := (−1)nτn, n ∈ N.

These morphisms satisfy the following identities

bn+1bn = 0, (1 − λn)bn = b′n(1 − λn−1).

Consider a diagram

kern+1
- An+1

1 − λn+1- An+1

kern

bn+1
6

- An

bn+1
6

1 − λn - An

b′n+1
6

kern−1

bn
6

- An−1

bn
6

1 − λn−1- An−1

b′n
6
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The composition bn+1bn = 0, so we have a complex

kern−1
bn- kern

bn+1- kern+1

ker coker bn
∃!φn -

-

ker bn+1

¾

Define the cyclic cohomology of the complex (A•, bn) as the cokernel of the unique map φn

HCn(F ) := HCn(A•) := coker φn.

Define another operator

Nn :=
n∑

i=0

(λn)i, n ∈ N.

Now one can form a bicomplex

...
...

...
...

...

A2

b3

6

1 − λ2- A2

−b′3
6

N2- A2

b3

6

1 − λ2- A2

−b′3
6

N2- A2

b3

6

- . . .

A1

b2
6

1 − λ1- A1

−b′2
6

N1- A1

b2
6

1 − λ1- A1

−b′2
6

N1- A1

b2
6

- . . .

A0

b1
6

1 − λ0- A0

−b′1
6

N0- A0

b1
6

1 − λ0- A0

−b′1
6

N0- A0

b1
6

- . . .

Then the cohomology of the total complex is the cyclic cohomology of the functor F : C →
A

HCn(F ) = Hn(Tot A••).

7.1.2 Hopf algebras

Summary of notations.

• Coalgebra (C,∆, ε)

C
∆ - C ⊗ C

C ⊗ C

∆
? id⊗∆- C ⊗ C ⊗ C

∆ ⊗ id
?

C
∆- C ⊗ C

C ⊗ C

∆
? id⊗ε - C

ε ⊗ id
?

id

-
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• Comodule (M, ∆R)

M
∆R - M ⊗ C

M ⊗ C

∆R
? id⊗∆R- M ⊗ C ⊗ C

∆R ⊗ id
?

M
∆R- M ⊗ C

M

ε ⊗ id
?

id

-

• Bicomodule (M, ∆L, ∆R)

M
∆R - M ⊗ C

M ⊗ C

∆L
? id⊗∆R- C ⊗ M ⊗ C

∆L ⊗ id
?

• Hopf algebra (H, m, 1, ∆, ε, S), where

– (H, m, 1) algebra,

– (H, ∆, ε) coalgebra,

– ∆, ε are algebra homomorphisms,

– Convoloution product f ∗ g

f ∗ g : H
∆
−→ H ⊗ H

f⊗g
−−→ H ⊗ H

m
−→ H,

– Antipode S
S ∗ id = 1ε = id ∗S.

Properties of S:

• if exists, it is unique,

• it is an antialgebra map: S(ab) = S(b)S(a),

• it is an anticoalgebra map: ∆ ◦ S = (S ⊗ S) ◦ ∆op,

• if there exists S−1, it has the above properties and satisfies

S−1 ∗cop id = 1ε = id ∗copS
−1.

Sweedler notation:
∆h =

∑

i

ai ⊗ bi =: h(1) ⊗ h(2).

If we treat multiple tensor products as trees, then we can forget how the tree was constructed.

∆2h = h(1)(1) ⊗ h(1)(2) ⊗ h(2) = h(1) ⊗ h(2)(1) ⊗ h(2)(2) = h(1) ⊗ h(2) ⊗ h(3).

∆Rm = m(0) ⊗ m(1), ∆Lm = m(−1) ⊗ m(0).
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7.1.3 Motivation for Hopf-cyclic cohomology

If D is a Dirac operator, E idempotent, then there exists an index pairing

〈ch∗(D), ch∗(E)〉 =: Index(DE).

For the transverse geometry of a codim = n foliation

ch∗(D)(a0, . . . , am) = trδ(a0h1(a1) . . . hm(am)),

where hi ∈ Hn - the universal Hopf algebra for codim = n foliations, δ : H → k- character,
trδ - δ-invariant trace.

Hn ⊗ A → A

h(ab) = h(1)(a)h(2)(b), 1H(a) = a.

In particular

∆(g) = g ⊗ g (group-like element) =⇒ g(ab) = g(a)g(b),

∆x = x ⊗ 1 + 1 ⊗ x (primitive element) =⇒ x(ab) = x(a)b + ax(b).

One has

trδ(a0h1(a1) . . . hm(am)) = (−1)m trδ(amh1(a0) . . . hm(am−1))

= (−1)m trδ(h1(a0) . . . hm(am−1)am).

In particular

trδ(h(a)) = δ(h) trδ(a),

trδ(h(a)b) = trδ(h
(1)(a)(h(2)S(h(3)))(b)) = trδ(h

(1)(a)h(2)(S(h(3)))(b))) =

= trδ(h
(1)(aS(h(2))(b))) = δ(h(1)) trδ(aS(h(2))(b)) =

= trδ(a(δ ∗ S)(h)(b)).

Hence

trδ(a0h1(a1) . . . hm(am)) = (−1)m trδ(a0(δ ∗ S)(h1)(h2(a1) . . . hm(am−1)am))

Denote

h1 ⊗ . . . ⊗ hm = (−1)m(δ ∗ S)(h1)(h2 ⊗ . . . hm ⊗ 1) =: (−1)mτm(h1 ⊗ . . . ⊗ hm).

For an element σ ∈ Hn such that ∆σ = σ ⊗ σ, δ(σ) = 1

trσ
δ (ab) = trσ

δ (bσ(a))

which implies

τm(h1 ⊗ . . . ⊗ hm) = (δ ∗ S)(h1)(h2 ⊗ . . . ⊗ hm ⊗ σ).

(−1)m trδ(h1(a0)h2(a1) . . . hm(am−1)am︸ ︷︷ ︸
b

) = (−1)m trδ(a0 (δ ∗ S)(h1)︸ ︷︷ ︸
h̃

(h2(a1) . . . hm(am−1)am)) =

= (−1)m trδ(a0h̃(b)).

(−1)m(δ ∗ S)(h1)(h2 ⊗ . . . ⊗ hm ⊗ 1) = λm(h1 ⊗ . . . ⊗ hm).
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Now one has to check that τm+1
m = id. For m = 1

τ2
1 (h) = τ1((δ ∗ S)(h)σ) = δ(h(1))(δ ∗ S)(S(h(2))σ)σ =

δ(h(1))δ(S(h(3)))σ−1S2(h(2))σ = σ−1(δ ∗ S2 ∗ δ−1)(h)σ = h

Denote
Sσ

δ (h) := (δ ∗ S)(h)σ.

Now from (τ1)
2 = (Sσ

δ )2 = id one can deduce after computation that for all m τm+1
m = id

(Connes-Moscovici). This yields a new cyclic complex

(H⊗m, δi, σj , τm)m∈N

for any Hopf algebra H equipped with modular pair in involution (MPII) (δ, σ). For example,
if S2 = id, then (ε, 1) is a modular pair in involution.

Example 7.1. Let H = H1 be an universal algebra for codim = 1 foliations. First take a Lie
algebra h1 with generators X, Y, λn, n ∈ N satisfying

[Y, X] = X,

[X, λn] = λn+1,

[Y, λn] = nλn,

[λn, λm] = 0 ∀ n, m > 1.

Then form an universal enveloping algebra H1 := U(h1). The coproduct on H1 id uniquely
determined by

∆(X) = X ⊗ 1 + 1 ⊗ X + λ1 ⊗ Y,

∆(Y ) = Y ⊗ 1 + 1 ⊗ Y,

∆(λ1) = λ1 ⊗ 1 + 1 ⊗ λ1.

The counit
ε(X) = ε(Y ) = ε(λ1) = 0.

The antipode
S(Y ) = −Y, S(λ1) = −λ1,

S(X) = −X + λ1Y.

Now take σ = 1,
δ(X) = 0, δ(λ1) = 0, δ(Y ) = −1.

One has to check that
δ(h(1))S2(h(2))δ(S(h(3))) = h.

On generators

Y (1) ⊗ Y (2) ⊗ Y (3) = Y ⊗ 1 ⊗ 1 + 1 ⊗ Y ⊗ 1 + 1 ⊗ 1 ⊗ Y,

δ(Y ) + S2(Y ) − δ(Y ) = Y.

Similarly for λ1.
X(1) ⊗ X(2) ⊗ X(3) =

= X ⊗ 1 ⊗ 1 + 1 ⊗ X ⊗ 1 + 1 ⊗ 1 ⊗ X + 1 ⊗ λ1 ⊗ Y + λ1 ⊗ Y ⊗ 1 + λ1 ⊗ 1 ⊗ Y,
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S2(X) + δ(S(X))︸ ︷︷ ︸
=0

−S2(λ1)δ(Y ) = S(−X + λ1Y ) + λ1 =

= X −λ1Y + S(Y )S(λ1)︸ ︷︷ ︸
=[Y,λ1]=λ1

+λ1 =

X + λ1 − λ1 = X.

Thus (δ, 1) is a modular pair in involution.

7.1.4 Hopf-cyclic cohomology with coefficients

Motivation:

• Short proof of
τ2
1 = id =⇒ τn+1

n = id .

• Constructive common denominator for all known cyclic theories.

• Non-trivial coefficients are geometrically desired and occur in ”real life” in the number
theory work of Connes-Moscovici.

Simplicial structure in coalgebra case:

Cn(C, M) := M ⊗ C ⊗ C⊗n, n ∈ N,

C is an H-module coalgebra

∆(hc) = h(1)c(1) ⊗ h(2)c(2), ε(hc) = ε(h)ε(c).

M is a C-bimodule
∆R(m ⊗ c) = (m ⊗ c(1)) ⊗ c(2),

∆L(m ⊗ c) = m(−1)c(1) ⊗ (m(0) ⊗ c(2)).

The standard example yields

δi(m ⊗ c0 ⊗ . . . ⊗ cn−1) = m ⊗ c0 . . . ⊗ c
(1)
i ⊗ c

(2)
i ⊗ . . . ⊗ cn−1,

δn(m ⊗ c0 ⊗ . . . ⊗ cn−1) = m(0) ⊗ c
(2)
0 ⊗ c1 ⊗ . . . ⊗ cn−1 ⊗ m(−1)c

(1)
0 ,

σi(m ⊗ c0 ⊗ . . . ⊗ cn+1) = m ⊗ c0 ⊗ . . . ⊗ ε(ci+1) ⊗ . . . ⊗ cn+1.

Simplicial structure in algebra case:

Cn(A, M) := Hom(M ⊗ A ⊗ A⊗n, k), n ∈ N.

A is an H-module algebra

h(ab) = (h(1)a)(h(2)b), h1 = ε(h).

M is aleft H-comodule

Hom(M ⊗ A ⊗ A⊗n, k) ' Hom(A⊗n, Hom(M ⊗ A, k)).

M ⊗ A is an A-bimodule

(m ⊗ a)b = m ⊗ ab, b(m ⊗ a) = m(0) ⊗ (S−1(m(−1))b)a
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The standard example yields

(δif)(m ⊗ a0 ⊗ . . . ⊗ an) = f(m ⊗ a0 ⊗ . . . ⊗ aiai+1 ⊗ . . . ⊗ an),

(δnf)(m ⊗ a0 ⊗ . . . ⊗ an) = f(m(0)(S−1(m(−1))an)a0 ⊗ . . . ⊗ an−1),

(σif)(m ⊗ a0 ⊗ . . . ⊗ an) = f(m ⊗ a0 ⊗ . . . ⊗ ai ⊗ 1 ⊗ ai+1 ⊗ . . . ⊗ an).

Paracyclic structures:
For {Cn(A, M)}n∈N

(τnf)(m ⊗ a0 ⊗ . . . ⊗ an) = f(m(0)(S−1(m(−1))an) ⊗ a0 ⊗ . . . ⊗ an−1).

For {Cn(C, M)}n∈N

τn(m ⊗ c0 ⊗ . . . ⊗ cn) = m(0) ⊗ c1 ⊗ . . . ⊗ cn ⊗ m(−1)c0.

Invariant complexes:

Cn
H(A, M) := HomH(M ⊗ A⊗n+1, k),

M ∈H MH , (m ⊗ ã)h = mh(1) ⊗ S(h(2))ã, k = kε

Cn
H(C, M) := M ⊗H C⊗n+1,

M ∈H MH , h(c0 ⊗ . . . cn) = h(1)c0 ⊗ . . . ⊗ h(n+1)cn.

Cyclic structures:
We say that a bimodule M ∈H MH is stable iff.

∀ m ∈ M m(0)m(−1) = m.

It is anti-Yetter-Drinfeld iff.

∆L(mh) = S(h(3))m(−1)h(1) ⊗ m(0)h(2), ∀ m, h.

Theorem 7.2. If M is a stable anti-Yetter-Drinfeld module (SAYD), then the formulas for
δi, σi and τn define cyclic structures on Cn

H(A, M) and Cn
H(C, M).

Shortly

• anti-Yetter-Drinfeld =⇒ τn is well defined,

• stability =⇒ τn+1
n = id.

Proof. First we check that τn is well defined, that is

τn(mh ⊗ c0 ⊗ . . . ⊗ cn) = τn(m ⊗ h(c0 ⊗ . . . ⊗ cn)),

(mh)(0) ⊗H (c1 ⊗ . . . ⊗ cn ⊗ (mh)−1c0) = m(0) ⊗H (h(2)(c1 ⊗ . . . ⊗ cn) ⊗ m(−1)h(1)c0),

hence it suffices to prove the following identity

(mh)(0) ⊗H (1 ⊗ (mh)(−1)) = m(0) ⊗H (h(2) ⊗ m(−1)h(1)).

Take

M ⊗H (H· ⊗ H·) (diagonal structure)
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and morphism

H· ⊗ H·
Φ
−→ H· ⊗ H (multiplication on the first term)

Φ(h ⊗ k) = h(1) ⊗ S(h(2))k,

Φ−1(h ⊗ k) = h(1) ⊗ h(2)k.

Now
Φ(−1)(l(h ⊗ k)) = Φ−1(lh ⊗ k) = lΦ−1(h ⊗ k).

Consider
M ⊗H (H· ⊗ H·)

id⊗HΦ
−−−−→ M ⊗H (H· ⊗ H) ' M ⊗ H.

(mh)(0) ⊗ (mh)(−1) = m(0)h(2) ⊗ S(h(3))m(−1)h(1).

-anti-Yetter-Drinfeld condition.

τn+1
n (m ⊗H c0 ⊗ . . . ⊗ cn) = τn

n (m(0) ⊗H c1 ⊗ . . . ⊗ cn ⊗ m(−1)c0) =

= m(0) ⊗ m(−1)(c0 ⊗ . . . ⊗ cn) = m(0)m(−1) ⊗ c0 ⊗ . . . ⊗ cn =

= m ⊗H c0 ⊗ . . . ⊗ cn,

where in the last equality we used stability of M .

7.1.5 Special cases

1. Connes-Moscovici construction.

C = H, M =σ kδ

Then σkδ is SAYD iff. (δ, σ) is MPII. Let F be the isomorphism

F : k ⊗H (H· ⊗ H⊗n
· )

'
−→ H⊗n.

Then for f̃ ∈ H⊗n

τn(h1 ⊗ . . . hn) = (F ◦ τ̃n ◦ F−1)(h̃) = (F ◦ τ̃n)(1 ⊗H Φ̃−1(1 ⊗ h̃)) =

F (1 ⊗H (h̃ ⊗ σ)) = 1 ⊗H Φ̃(h1 ⊗ . . . ⊗ hn ⊗ σ) =

= 1 ⊗H h
(1)
1 ⊗ S(h

(2)
1 )(h2 ⊗ . . . ⊗ hn ⊗ σ) = δ(h

(1)
1 )S(h2

1)(h2 ⊗ . . . ⊗ hn ⊗ σ).

2.
trσ

δ ∈ HC0
H(A;σ kδ)

3. Characteristic map of Connes-Moscovici

HCm
H(H;σ kδ) ⊗ HC0

H(A;σ kδ) → HCm(A),

h1 ⊗ . . . ⊗ hm 7→ ((a0 ⊗ . . . ⊗ am) 7→ trσ
δ (a0h1(a1) ⊗ hm(am)))

4. The n > 0 and dimM > 1 already applied in Connes-Moscovici work on number theory.

5.
HCm

k (A; k) = HCm(A)
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6. Twisted cyclic cohomology

HC∗
k[σ,σ−1](A;σ kε).

Lemma 7.3.
σkδ is SAYD ⇐⇒ (δ, σ) is MPII.

Proof.

m(0)m(−1) = m ⇔ 1 · σ = δ(σ) = 1,

(mh)(−1) ⊗ (mh)(0) = S(h(3))m(−1)h(1) ⊗ m(0)h(2)

σδ(h) = S(h(3))σh(1)δ(h(2))

L(h) = R(h) ⇔ (L ∗op S−1)(h) = (R ∗op S−1)(h)

L(h(2))S(−1)(h(1)) = R(h(2))S(−1)(h(1))

S̃σ
δ (h) = σδ(h(2))S(−1)(h(1)) = S(h(2))σδ(h(1)) =: Sσ

δ (h)

By direct computation

S̃σ
δ ◦ Sσ

δ = id = Sσ
δ ◦ S̃σ

δ , i.e.

S̃σ
δ = (Sσ

δ )−1.

Therefore

AYD ⇔ (Sσ
δ )−1 = Sσ

δ

(Sσ
δ )2 = id (involution condition).

7.2 The Hopf algebra Hn

Let the manifold Mn be affine flat (the Rn or the disjoint union of Rn). The frame bundle
is then trivial with FM ' M × GLn(R). In local coordinates (xµ) for x ∈ U ⊂ M , we can
view the frame coordinates xµ, yµ

j as a 1-jet of a map φ : Rn → Rn

φ(t) = x + yt, x, t ∈ Rn, y ∈ GLn(R),

where (yt)µ =
∑

i y
µ
i ti for t = (ti) ∈ Rn.

We endow it with the trivial connection, given by the matrix-valued 1-form ω = (ωi
j),

where

ωi
j :=

∑

µ

(y−1)i
µdyµ

j = (y−1dy)i
j

The corresponding basic horizontal fields on FM are

Xk =
∑

µ

yµ
k ∂µ, k = 1, . . . , n, ∂µ =

∂

∂xµ
.

Denote by θk be the canonical form of the frame bundle

θk :=
∑

µ

(y−1)k
µdxµ = (y−1dx)k, k = 1, . . . , n.
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Then let

Y j
i =

∑

µ

yµ
i ∂j

µ, i, j = 1, . . . , n, ∂j
µ :=

∂

∂yµ
j

be the fundamental vertical vector fields associated to the standard basis of gln(R) and
generating the canonical right action of GLn(R) on FM . At each point of FM , {Xk, Y

j
i }

and {θk, ωi
j} form bases of the tangent and cotangent space, dual to each other

〈ωi
j , Y

l
k〉 = δi

kδ
l
j , 〈ωi

j , Xk〉 = 0,

〈θi, Y l
k〉 = 0, 〈θi, Xj〉 = δi

j .

The group of diffeomorphism DiffM = DiffRn acts on FM by the natural lift of the
tautological action to the frame level

ϕ̃(x, y) := (ϕ(x), ϕ′(x)y)

where ϕ′(x) is Jacobi matrix ϕ′(x)i
j = ∂ϕi

∂xj .
Viewing DiffM as a discrete group we form the crossed product algebra

AM := C∞
c (FM) o DiffM

As a vector space, it is spanned by monomials of the form fu∗
ϕ, where f ∈ C∞(FM) and u∗

ϕ

stands for ϕ−1. The product is given by

f1u
∗
ϕ1

· f2u
∗
ϕ2

= f1(f2 ◦ ϕ̃1)u
∗
ϕ2ϕ1

.

Since the right action of GLn(R) on FM commutes with the action of DiffM , at the Lie
algebra level one has

uϕY j
i u∗

ϕ = Y j
i .

This allows to promote the vertical vector fields to derivations of AM . Indeed, setting

Y j
i (fu∗

ϕ) = Y j
i (f)u∗

ϕ

the extended operators satisfy the derivation rule

Y j
i (ab) = Y j

i (a)b + aY j
i (b), a, b ∈ AM .

We shall also prolong the horizontal vector fields to linear transformations Xk ∈ L(AM ) in
similar fashion

Xk(fu∗
ϕ) = Xk(f)u∗

ϕ.

The resulting operators are no longer DiffM -invariant. They satisfy

uϕXku
∗
ϕ = Xk − γi

jk(ϕ
−1)Y j

i ,

where ϕ 7→ γi
jk(ϕ) is a group 1-cocycle on DiffM with values in C∞(FM). Specifically

γi
jk(ϕ)(x, y) =

∑

µ

(y−1 · · ·ϕ′(x)−1 · ∂µ · y)i
jy

µ
k

The above expression comes from the pull-back formula for the connection

ϕ̃∗(ωi
j) = ωi

j + γi
jk(ϕ)θk.
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Now one uses the fact that {θk, (ϕ̃−1)∗(ωi
j)} is the dual basis to {uϕXku

∗
ϕ, Y j

i }.
As a consequence, the operators Xk ∈ L(AM ) are no longer derivations of AM , but satisfy

a non-symmetric Leibniz rule

Xk(a, b) = Xk(a)b + aXk(b) + δi
jk(a)Y j

i (b), a, b ∈ AM ,

where the linear operators δi
jk ∈ L(AM ) are defined by

δi
jk(fu∗

ϕ) = γi
jkfu∗

ϕ.

These are derivations, i.e.
δi
jk(ab) = δi

jk(a)b + aδi
jk(b).

The operators {Xk, Y
i
j } satisfy the commutation relations of the group of affine transfor-

mations of Rn

[Y j
i , Y l

k ] = δj
kY

l
i − δl

iY
j
k ,

[Y j
i , Xk] = δj

kXi,

[Xk, Xl] = 0.

The succesive commutators of the operators δi
jk with the Xl’s yield new generations of

δi
jk|l1...lr

:= [Xlr , . . . [Xl1 , δ
i
jk] . . .],

which involve multiplication by higher order jets of diffeomorphisms

δi
jk|l1...lr

(fu∗
ϕ) = γi

jk|l1...lr
fu∗

ϕ, where

δi
jk|l1...lr

:= Xlr . . . Xl1(γ
i
jk).

They commute among themselves

[δi
jk|l1...lr

, δi′

j′k′|l′1...l′r
] = 0.

It can be checked that the order of {j, k} and {l1, . . . , lr} does not matter - in any case we
get the same operator.

The commutators between Y λ
µ ’s and δi

jk’s can be obtained from explicit expression of the
cocycle γ, by computing its derivatives in the direction of the vertical vector fields. One
obtains

[Y λ
µ , δi

jk] = δλ
j δi

µk + δλ
kδi

jµ − δi
µδλ

jk

By induction

[Y λ
µ , δi

j1j2|j3...jr
] =

r∑

s=0

δλ
js

δi
j1j2|j3...js−iµjs+1...jr

− δi
µδλ

j1j2|j3...jr
.

Definition 7.4. Let Hn be the universal enveloping algebra of the Lie algebra hn with basis

{Xλ, Y µ
ν , δi

jk|l1...lr

∣∣ 1 6 λ, µ, ν, i 6 n, 1 6 j 6 k 6 n, 1 6 l1 6 . . . 6 lr 6 n}

and the following presentation
[Xk, Xl] = 0,

[Y j
i , Y l

k ] = δj
kY

l
i − δl

iY
j
k ,
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[Y j
i , Xk] = δj

kXi,

[Xlr , δ
i
jk|l1...lr−1

] = δi
jk|l1...lr

,

[Y λ
ν , δi

j1j2|j3...jr
] =

r∑

s=0

δλ
js

δi
j1j2|j3...js−iνjs+1...jr

− δi
νδ

λ
j1j2|j3...jr

,

[δi
jk|l1...lr

, δi′

j′k′|l′1...l′r
] = 0.

We shall endow Hn := U(hn) with a canonical Hopf structure, which is noncommutative,
and therefore different from the standard structure of a universal enveloping algebra.

Proposition 7.5. 1. The formulae

∆Xk = Xk ⊗ 1 + 1 ⊗ Xk + δi
jk ⊗ Y j

i ,

∆Y j
i = Y j

i ⊗ 1 + 1 ⊗ Y j
i ,

∆δi
jk = δi

jk ⊗ 1 + 1 ⊗ δi
jk,

uniquely determine a coproduct ∆: Hn → Hn ⊗Hn, which makes Hn a bialgebra with
respect to the product m : Hn ⊗ Hn → Hn and the counit ε : Hn → C inherited from
U(hn).

2. The formulae
S(Xk) = −Xk + δi

jkY
j
i ,

S(Y j
i ) = −Y j

i ,

S(δi
jk) = −δi

jk,

uniquely determine an anti-homomorphism S : Hn → Hn, which provides the antipode
that turns Hn into a Hopf algebra.

The notation is justified while one proves that the subalgebra of L(AM ) generated by the
linear operators {Xk, Y

i
j , δi

jk

∣∣ i, j, k = 1, . . . , n} is isomorphic to the algebra Hn. The action

of Hn turns An into a left Hn-module algebra. Morover to any element h1 ⊗ . . . ⊗ hp ∈ Hp
n

we can associate a multilinear differential operator T acting on AM as follows

T (h1 ⊗ . . . ⊗ hp)(a1, . . . , ap) = h1(a1) . . . hp(ap).

The linearization T : THp
n → L(A⊗p

M ,AM ) of this assignment is injective for each p ∈ N.
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